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existing symplectic DIRK methods in the literature.

B Xiong You
youx@njau.edu.cn

Julius Osato Ehigie
jehigie@unilag.edu.ng

Dongxu Diao
2016111003@njau.edu.cn

Ruqiang Zhang
2016204021@njau.edu.cn

Yonglei Fang
ylfangmath@163.com

Xilin Hou
hxl@njau.edu.cn

1 College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China

2 College of Sciences, Nanjing Agricultural University, Nanjing 210095, China

3 School of Mathematics and Statistics, Zaozhuang University, Zaozhuang 277160, China

4 Department of Mathematics, University of Lagos, Lagos 23401, Nigeria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10910-017-0841-x&domain=pdf


J Math Chem (2018) 56:1130–1152 1131

Keywords Exponential fitting · Diagonally implicit Runge–Kutta method ·
Symmetry · Symplecticity · Hamiltonian system

Mathematics Subject Classification 65L04 · 65L05 · 65L06

1 Introduction

In this paper, we are concerned with effective integration of initial value problems of
the system of first order differential equations in the form

y′ = f (x, y), y(x0) = y0, (1)

where y ∈ R
d , f : R×R

d → R
d is a smooth function. Such problems arise frequently

in applied sciences such as celestial mechanics, chemistry, molecular dynamics and
systems biology.More than often, the exact solution to the problem (1) is not available,
therefore highly accurate numerical solution is of great importance. Runge–Kutta
type methods constitute a category of most widely used integrators for the numerical
solution of the problem (1) (see [1–4]).

Implicit RK methods have been designed for stiff differential equations [1,5].
Besides, implicit methods usually possess large stability regions, which means less
limitation in stepsizes. Unfortunately, to integrate a system of d differential equations,
an s-stage implicit method with a full coefficient matrix requires the solution of d × s
simultaneous implicit (in general nonlinear) equations at each time step. But for an
s-stage diagonally implicit RK (DIRK) method with a lower triangular matrix, each
internal stages can be computed by solving an d-dimensional system (see [6]). This
saves computational cost dramatically. Al-Rabeh [7] examined the optimal order of
non-confluent DIRKmethods with non-zero weights. Faragó et al. [8] investigated the
convergence of the combination of any of the diagonally implicit (including also the
explicit) Runge–Kutta methods with active Richardson extrapolation and showed that
the numerical solution obtained converges under rather natural conditions.

In many cases, the problem (1) takes the form of a Hamiltonian system with the
differential equations (see Hairer et al. [9], Feng and Qin [10])

ẏ = −J∇H(y) (2)

where y = (pT , qT )T , p = (p1, . . . , pN )T is the generalized momenta, q =
(q1, . . . , qN ))T is the generalized coordinates, J =

(
0 IN

−IN 0

)
and H = H(p, q)

is the Hamiltonian energy. As typical examples of Hamiltonian systems, we men-
tion the Kepler problem, the mathematical pendulum, the Fermi-Pasta-Ulam and the
Lotka–Volterra oscillator (see [9,11,12]).

The problem (2) calls for some special class of numerical integrators, namely,
symplectic integrators. Many numerical analysts in this area attest to the fact that
symplectic integrators for the numerical solution of (2) have great advantages because
of the preservation of the qualitative (geometric) properties of the flow over classical
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integrators. The symplecticity conditions for Runge–Kutta were discovered by Sanz-
Serna [13]. Among pioneers in this area are Forest and Ruth [14], Yoshida [15], Feng
and Qin [16] and McLachlan and Atela [17]. Some symplectic diagonally implicit
methods (DIRK) were proposed by Cooper [18], Sanz-Serna and Calvo [19] and Feng
and Qin [10].

On the other hand, as Hairer et al. [9] pointed out, symmetric methods show better
long time behaviour than non-symmetric methods when applied to reversible systems.
Earlier work on the numerical solution of the system (2) with the Runge–Kutta type
method seldom considered the symmetry property of themethod. Sanz-Serna andAbia
[20] proposed to construct symplecitc and symmetric DIRK methods. J.M. Franco
and I. Gómez [21] derived fourth-order symmetric DIRK methods for periodic stiff
problems.

In applications, the solution to the IVP (1) can often be expressed primarily as a
linear combination of functions {exp(±λx)} for some complex number λ with per-
haps a small perturbation. This motives the attempt to design RK methods that can
integrate without truncation error differential equations with solution of the form
{exp(±λx)}. These methods are named exponentially fitted methods. Calvo et al. [22]
investigated the structure (linear and quadratic invariants) preservation of exponen-
tially fitted Runge–Kutta methods and derived a family of symplectic two-stage and
fourth order EFRK methods.

In the particular case that λ = iωwhereω > 0, i2 = −1, the previous exponentially
fitted methods are called trigonometrically fitted methods. Gautschi [23] and Bettis
[24] constructed linear multistep methods and Runge–Kutta methods respectively
which are exact if the solution is a trigonometric polynomial in ωt of a prescribed
degree. A survey of exponentially fitted methods can be found in the monograph by
Ixaru and Vanden Berghe [25] and the monograph by Wu et al. [26].

The combination of symplecticity with the exponential/trigonometric fitting was
first proposed by Simos and Vigo-Aguiar [27] where a two-stage Runge–Kutta–
Nyströmmethodwas derived for second order differential equations. Recently,Vanden
Berghe andVanDaele [28] have derived trigonometrically fittedRKmethods.Unfortu-
nately explicit Runge–Kuttamethods cannot be symplectic [10] or symmetric. Calvo et
al. [29] constructed sixth-order symmetric and symplectic exponentially fitted Runge–
Kutta methods of the Gauss type. Very recently, Kalogiratou [30] derived a three-stage
trigonometricallyfittedDIRKmethodwhich is shown tobevery effectivewhenapplied
to oscillatory Hamiltonian systems.

The purpose of this paper is to investigate the symmetry and symplecticity con-
ditions for modified exponentially fitted DIRK methods when they are applied to
Hamiltonian systems in the form (1) or (2). The remainder of this paper is orga-
nized as follows. In Sect. 2 we introduce a new type of imaginary trees to derive the
order conditions for modified DIRK methods followed by symmetry, symplecticity
and exponentially fitting conditions. In Sect. 3, we derive two practical symmetric and
symplectic exponentially fitted RK methods. Phase properties of the new EFSSDIRK
methods are analyzed in Sect. 4. Numerical experiments are carried out in Sect. 5
to illustrate the effectiveness of the new methods. Conclusive remarks are given in
Sect. 6.
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2 Modified RK methods with order conditions, symmetry, symplecticity
and exponential fitting conditions

Suppose the IVP (1) has oscillatory solution of the principal frequency ω. The idea of
a fitted type Runge–Kutta method is to introduce coefficients depending on z = iωh
and the method is referred to as a modified Runge–Kutta method.

Definition 2.1 An s-stagemodified Runge–Kutta (RK) method for solving the system
(1) has the scheme

Yi = ηi (z)yn + h
s∑

j=1

ai j (z) f (xn + c j (z)h,Y j ), i = 1, . . . , s,

yn+1 = yn + h
s∑

i=1

bi (z) f (xn + ci (z)h,Yi ), (3)

where h is the stepsize, ηi (z), bi (z), ai j (z), ci (z), 1 ≤ j ≤ i, i = 1, . . . , s are
assumed to be even functions of z = ωh.

It is usually assumed that lim
z→0

ηi (z) = 1 so that as z → 0, the scheme (3) reduces

to a traditional Runge–Kutta method.
The scheme (3) can be briefly expressed by the Butcher tableau of coefficients

c(z) η(z) A(z)
bT

=
c1(z) η1(z) a11(z) . . . a1s(z)

...
...

...
...

...

cs(z) ηs(z) as1(z) . . . ass(z)
b1(z) … bs(z)

.

The purpose of this section is to present the algebraic order conditions, symmetric
conditions and exponential fitting conditions for the modified RK method (3).

2.1 Order conditions

A modified Runge–Kutta method of the form (3) has order p if for any sufficiently
smooth function f (x, y) in Problem (1), under the assumption that y(x0) = y0, the
local truncation error of the solution satisfies

LT E = y(x0 + h) − y1 = O(h p+1) as h → 0.

The order conditions can be obtained by comparing the series expansion of the numer-
ical solution with that of the exact solution. The exact solution can be expanded into
series of the time step in terms of the rooted tree (see Butcher [4], Hairer et al. [9])

y(xn + h) = yn +
∑
τ∈T

hρ(τ)

ρ(τ )!α(τ)F(τ )(yn),
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where T is the set of (modified) rooted trees, F(τ )(yn) is the elementary differential
of f associated to τ ∈ T at yn , ρ(τ) is the order of the tree τ , γ (τ) is the density of
τ , α(τ) is the number of monotonic labellings of τ and 	(τ)is the elementary weight
coefficient which depends on A(z).

On the other hand, the numerical solution of the modifed RK method (3)

yn+1 = yn + h
s∑

i=1

bi (z) f

⎛
⎝ηi (z)yn + h

s∑
j=1

ai j (z) f (Y j )

⎞
⎠

= yn + h
s∑

i=1

bi (z)

⎡
⎣ f (yn) + f ′(yn)

⎛
⎝(ηi (z) − 1)yn + h

s∑
j=1

ai j (z) f (Y j )

⎞
⎠

+ 1

2! f
′′(yn)

⎛
⎝(ηi (z) − 1)yn + h

s∑
j=1

ai j (z) f (Y j )

⎞
⎠

2

+ 1

3! f
(3)(yn)

⎛
⎝(ηi (z) − 1)yn + h

s∑
j=1

ai j (z) f (Y j )

⎞
⎠

3

+ · · ·
⎤
⎥⎦ .

Further expanding f (Y j ) at yn we have

yn+1 = yn +
∑
τ∈T

hρ(τ)

ρ(τ )!γ (τ)b(z)T	(τ)α(τ)F(τ )(yn)

+
∑
τ∈T̃

hρ(τ)

ρ(τ )! γ̃ (τ )b(z)T 	̃(τ )̃α(τ )F̃(τ )(yn),

where T̃ is the set of complex rooted trees (also called imaginary rooted trees, or
imaginary trees), for τ ∈ T̃ , the order ρ(τ), the function α̃(τ ) and the density γ̃ (τ )

are defined in the same way as those for traditional trees τ ∈ T , F̃(τ )(yn) is the
elementary differential of f associated to τ at yn and 	̃(τ ) is the vector of elementary
weight coefficients which depends on A(z) and η(z). The first imaginary trees with the
corresponding vector of elementary weight coefficients and elementary differentials
are presented in Table 1.

Thus the local truncation error of the modified RK method (3) can be expressed as

LT E =
∑
τ∈T

hρ(τ)

ρ(τ )!
(
γ (τ)b(z)T	(τ) − 1

)
α(τ)F(τ )(yn)

+
∑
τ∈T̃

hρ(τ)

ρ(τ )! γ̃ (τ )b(z)T 	̃(τ )̃α(τ )F̃(τ )(yn, y
′
n), (4)

By the independence of the elementary differentials, it follows from (4) that themethod
(3) is of order p if
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b(z)T	(τ) − 1

γ (τ)
= O

(
h p+1−ρ(τ)

)
for all τ ∈ T with order ρ(τ) ≤ p,

and

b(z)T 	̃(τ ) = O
(
h p+1−ρ(τ)

)
for all τ ∈ T̃ with order ρ(τ) ≤ p.

To be specific, the p-th order conditions are listed in two groups as follows:

(i) For traditional trees

b(z)T e = 1 + O(z p), b(z)T A(z)e = 1

2
+ O

(
z p−1),

b(z)T (A(z)e)2 = 1

3
+ O

(
z p−2), b(z)T A2(z)e = 1

6
+ O

(
z p−2),

b(z)T (A(z)e)3 = 1

4
+ O

(
z p−3), b(z)T

(
A(z)e · (A(z)2e

)) = 1

12
+ O(z),

b(z)T A(z)
(
A(z)e

)2 = 1

8
+ O

(
z p−3), b(z)T A3(z)e = 1

24
+ O

(
z p−3),

. . . (5)

(ii) For imaginary trees

b(z)T
(
η(z) − e

)k = O(z p), 1 ≤ k < p/2,

b(z)T
((

η(z) − e
)k · A(z)

(
η(z) − e

)l) = O
(
z p−1), 1 < k + l < p/2,

b(z)T
((

η(z) − e
)k · A(z)

(
η(z) − e

)l · A(z)
(
η(z) − e

)m)
= O

(
z p−2),

1 ≤ k + l + m < p/2,

b(z)T
(
(η(z) − e)k · A(z)

(
(η(z) − e)l · A(z)(η(z) − e)m

)) = O
(
z p−2),

1 ≤ k + l + m < p/2,

b(z)T
(
η(z) − e)k · (A(z)(η(z) − e)l · A(z)(η(z) − e)m · A(z)(η(z) − e)n

)

= O
(
z p−3), 1 ≤ k + l + m + n < p/2,

b(z)T
(
(η(z) − e)k · A(z)(η(z) − e)l · A(z)

(
(η(z) − e)m · A(z)(η(z) − e)n

))

= O
(
z p−3), 1 ≤ k + l + m + n < p/2,

b(z)T
(
(η(z) − e)k · A(z)(η(z) − e)l · (

A(z)(η(z) − e)m · A(z)(η(z) − e)n
))

= O
(
z p−3), 1 ≤ k + l + m + n < p/2,

b(z)T
(
(η(z) − e)k · A(z)

(
(η(z) − e)l · A(z)((η(z) − e)m · A(z)(η(z) − e)n)

))

= O
(
z p−3), 1 ≤ k + l + m + n < p/2,

. . . (6)
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where e = (1, . . . , 1)T , k, l,m, n are non-negative integers and a dot “·” between two
vectors indicates componentwise multiplication. The first set of conditions (5) can be
used to simplify successively the second set (6). For example, for k = 2, l = 1 and
p = 7, if the conditions

b(z)T A(z)e = 1

2
+ O

(
z6

)
, b(z)T

(
η(z) · A(z)e

) = 1

2
+ O

(
z6

)
,

b(z)T
(
η(z)2 · A(z)e

) = 1

2
+ O

(
z6

)
, b(z)T A(z)η(z) = 1

2
+ O

(
z6

)
,

b(z)T
(
η(z) · A(z)η(z)

) = 1

2
+ O

(
z6

)
,

have been confirmed, then the second condition in (5) implies that

b(z)T
(
η(z)2 · A(z)η(z)

) = 2b(z)T
(
η(z) · A(z)η(z)

)
− b(z)T A(z)η(z) + b(z)T

(
η(z)2 · A(z)e

)
− 2b(z)T

(
η(z) · A(z)e

) + b(z)T A(z)e + O
(
z6

)
,

= 1

2
+ O

(
z6

)
,

which can be equivalently replaced by a simpler one

b(z)T
(
η(z)2 · A(z)η(z)

) = 1

2
+ O(z6).

Keeping η(z) − e = O(z2) in mind, the first to fourth conditions are listed as
follows:

(i) First order conditions:
b(z)T e = 1 + O(z). (7)

(ii) Second order conditions:

b(z)T e = 1 + O(z2), b(z)T A(z)e = 1

2
+ O(z). (8)

(iii) Third order conditions:

b(z)T e = 1 + O
(
z3

)
, b(z)T η(z) = 1 + O

(
z3

)
, b(z)T A(z)e = 1

2
+ O

(
z2

)
,

b(z)T (A(z)e)2 = 1

3
+ O(z), b(z)T A(z)2e = 1

6
+ O(z). (9)

(iv) Fourth order conditions:

b(z)T e = 1 + O
(
z4

)
, b(z)T η(z) = 1 + O

(
z4

)
, b(z)T A(z)e = 1

2
+ O

(
z3

)
,
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b(z)T A(z)η(z) = 1

2
+ O

(
z3

)
, b(z)T

(
η(z) · A(z)e

) = 1

2
+ O

(
z3

)
,

b(z)T (A(z)e)2 = 1

3
+ O

(
z2

)
, b(z)T A2(z)e = 1

6
+ O

(
z2

)
,

b(z)T (A(z)e)3 = 1

4
+ O(z), b(z)T A(z)(A(z)e)2 = 1

12
+ O(z),

b(z)T
(
A(z)e · A2(z)e

) = 1

8
+ O(z), b(z)T A3(z)e = 1

24
+ O(z). (10)

(iv) Fifth order conditions:

b(z)T e = 1 + O(
z5

)
, b(z)T η(z) = 1 + O(

z5
)
, b(z)T η(z)2 = 1 + O(

z5
)
,

b(z)T A(z)e = 1

2
+ O(

z4
)
, b(z)T A(z)η(z) = 1

2
+ O(

z4
)
,

b(z)T
(
η(z) · A(z)e

) = 1

2
+ O(

z4
)
, b(z)T (A(z)e)2 = 1

3
+ O(

z3
)
,

b(z)T
(
η(z) · (A(z)e)2

) = 1

3
+ O(

z3
)
, b(z)T

(
A(z)η(z) · (A(z)e)

) = 1

3
+ O(

z3
)
,

b(z)T A2(z)e = 1

6
+ O(

z3
)
, b(z)T

(
η(z) · A2(z)e) = 1

6
+ O(

z3
)
,

b(z)T A(z)
(
η(z) · A(z)e

) = 1

6
+ O(

z3
)
, b(z)T A2(z)η(z) = 1

6
+ O(

z3
)
,

b(z)T (A(z)e)3 = 1

4
+ O(

z2
)
, b(z)T A(z)(A(z)e)2 = 1

12
+ O(

z2
)
,

b(z)T
(
A(z)e · A2(z)e) = 1

8
+ O(

z2
)
, b(z)T A3(z)e = 1

24
+ O(

z2
)
,

b(z)T (A(z)e)4 = 1

5
+ O(z),

b(z)T
(
(A(z)e)2 · A(z)2e

) = 1

10
+ O(z), b(z)T

(
A(z)2e · A(z)2e

) = 1

20
+ O(z),

b(z)T
(
A(z)e · A(z)(A(z)e)2

) = 1

15
+ O(z), b(z)T

(
A(z)e · A(z)3e

) = 1

15
+ O(z),

b(z)T A(z)
(
A(z)e

)3 = 1

20
+ O(z), b(z)T A(z)

(
A(z)e · A(z)2e

) = 1

10
+ O(z),

b(z)T A(z)2
(
A(z)e

)2 = 1

40
+ O(z), b(z)T A(z)4e = 1

60
+ O(z).

2.2 Symmetry conditions

Definition 2.2 [9] The adjoint method 	∗
h of a modified RKmethod	h is the inverse

map of the original method with reversed time step −h, i.e., 	∗
h := 	∗−h . A method

for which 	∗
h := 	∗−h is called symmetric.

Theorem 2.1 The adjoint method of a modified RK method (3) is again an s-stage
modified RK method and its coefficients are given by

c∗
i (z) = 1 − cs+1−i (z), η∗

i (z) = ηs+1−i (z), b∗
i (z) = bs+1−i (z), i = 1, . . . , s,

a∗
i j (z) = ηs+1−i (z)bs+1− j (z) − as+1−i,s+1− j (z), i, j = 1, . . . , s, (11)
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If

ci (z) = 1 − cs+1−i (z), ηi (z) = ηs+1−i (z), bi (z) = bs+1−i (z), i = 1, . . . , s,

ai j (z) = ηs+1−i (z)bs+1− j (z) − as+1−i,s+1− j (z), i, j = 1, . . . , s, (12)

then the modified RK method (3) is symmetric.

Proof Interchanging yn+1 ↔ yn and h ↔ −h in (3) yields

Yi =ηi (z)yn + h
s∑

j=1

(
ηi (z)b j (z)−ai j (z)

)
f
(
xn+(1 − c j (z))h,Y j

)
, i=1, . . . , s,

yn+1 = yn + h
s∑

i=1

bi (z) f
(
xn + (1 − ci (z))h,Yi

)
.

Replacing i by s + 1 − i and j by s + 1 − j and denoting Ys+1−i as Y ∗
i gives

Y ∗
i = ηs+1−i (z)yn + h

s∑
j=1

(
ηs+1−i (z)bs+1− j (z) − as+1−i,s+1− j (z)

)

f (xn + (1 − cs+1− j (z))h,Y ∗
j ), i = 1, . . . , s,

yn+1 = yn + h
s∑

i=1

bs+1−i (z) f (xn + (1 − cs+1−i (z))h,Y ∗
i ). (13)

The system (13) resprents a modified RK methods with coefficients given by (11).
Comparing (11) and (12) implies that the adjoint coincides the original method if
c∗
i (z) = ci (z), a∗

i j (z) = ai j (z) and b∗
i (z) = bi (z) and the result follows. The proof is

complete. 	

Remark 2.1 As z → 0, the conditions (12) reduces to the symmetry conditions for
traditional RK methods with constant coefficients.

In this paper we are mainly interested in modified diagonally implicit RK (DIRK)
methods, that is, in the scheme (3), ai j (z) = 0 for i < j .

Corollary 2.1 Under the assumptions of (11), the modified DIRK is symmetric if

ci (z) = 1 − cs+1−i (z), ηi (z) = ηs+1−i (z), bi (z) = bs+1−i (z), i = 1, . . . , s,

ai j (z) = ηi (z)b j (z), 1 ≤ j < i ≤ s,

a j j (z) + as+1− j,s+1− j (z) = η j (z)b j (z), j = 1, . . . , s. (14)

2.3 Symplecticity conditions

The flow of the Hamiltonian system (2) is the map ϕt : U ⊂ R
2N → R

2N ,
ϕt (p0, q0) = (

p(t, p0, q0), q(t, p0, q0)
)
, where p(t, p0, q0), q(t, p0, q0) is the solu-

tion of the system with the initial values p(0) = p0, q(0) = q0. It is well-known that
the flow ϕt satisfies
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(
∂ϕt

∂(p0, q0)

)T

J

(
∂ϕt

∂(p0, q0)

)
= J.

Definition 2.3 A one-step method 	h : yn → yn+1 is symplectic if its Jacobian

matrix
∂yn+1

∂yn
is symplectic, that is,

(
∂yn+1

∂yn

)T

J

(
∂yn+1

∂yn

)
= J .

Theorem 2.2 [31] The modified RK method (3) is symplectic if its coefficients satisfy
the following conditions

mi j := b j (z)
a ji (z)

η j (z)
+ bi (z)

ai j (z)

ηi (z)
− bi (z)b j (z) = 0, i, j = 1, . . . , s.

The proof is essentially the same as that of Theorem 2 in Sanz-Serna and Calvo
[19].

For a DIRK method, it follows from the symplecticity condition (15) that

aii = 1

2
ηi (z)bi (z),

ai j = ηi (z)b j (z) for i > j, (15)

assuming that bi (z) �= 0 (i = 1, . . . , s).
Combining (15) with (14), the scheme of a symmetric and symplectic modified

DIRK can written as

c1(z) η1(z)
1
2η1(z)b1(z)

c2(z) η2(z) η2(z)b1(z)
1
2η2(z)b2(z)

...
...

...
...

. . .

c2(z) η2(z) η2(z)b1(z) η2(z)b2(z) . . . 1
2η2(z)b2(z)

c1(z) η1(z) η1(z)b1(z) η1(z)b2(z) . . . η1(z)b2(z)
1
2η1(z)b1(z)

b1(z) b2(z) … b2(z) b1(z)

(16)

2.4 Exponentially fitting conditions

The basic idea of exponential fitting is to introduce fitting coefficients to the scheme of
a traditional Runge–Kutta method so that the method can integrate without truncation
error differential equations with solution of a exponential function exp(λx), λ ∈
C. Exponentially fitted (EF) algorithms have been systematically studied by Ixaru
and Vanden Berghe [25]. Vanden Berghe et al. [32] presented the exponential fitting
conditions for the Runge–Kutta methods and derived some practical explicit EFRK
methods. We follow the approach of Albrecht [33] and view each internal stage of the
scheme (3) as a linear multistep method on a non-equidistant grid. In what follows,
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• to the internal stages of (3), we associate the linear operators

Li [A(z), h]y(x) = y(x + ci (z)h) − ηi (z)y(x)

− h
s∑

j=1

ai j (z)y
′(x + c j h), i = 1, . . . , s;

• to the update of (3), we associate a linear operator

L[b(z), h]y(x) = y(x + h) − y(x) − h
s∑

i=1

bi (z)y
′(x + ci h).

Requiring that the operators Li and L to vanish for the functions {exp(±λx)} leads
to the following equations:

s∑
j=1

ai j (z) sinh(c j (z)z) = cosh(ci (z)z) − ηi (z)

z
, i = 1, . . . , s,

s∑
j=1

ai j (z) cosh(c j (z)z) = sinh(ci (z)z)

z
, i = 1, . . . , s,

s∑
i=1

bi (z) sinh(ci (z)z) = cosh(z) − 1

z
,

s∑
i=1

bi (z) cosh(ci (z)z) = sinh(z)

z
, (17)

where z = λh. Equations (17) are called the exponential fitting conditions.
If the coefficients of a modified diagonally implicit Runge–Kutta method satisfy

the conditions (14), (15) and (17), then the method is referred to as an EFSSDIRK
method.

3 Construction of new EFSSDIRK methods

The purpose of this section is to construct one to three-stage practical EFSSDIRK
methods of order two and order four, respectively.

3.1 A one-stage EFSSDIRK method of order two

For s = 1, the scheme (16) becomes

1/2 η1(z)
1
2η1(z)b1(z)

b1(z)
(18)
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For this scheme, the exponentially fitting conditions (17) imply that

cosh(c1(z)z) − η1(z) − za11(z) sinh(c1(z)z) = 0,

sinh(c1(z)z) − za11(z) cosh(c1(z)z) = 0,

cosh(z) − zb1(z) sinh(c1(z)z) − zb2(z) sinh(c2(z)z) = 1,

sinh(z) − zb1(z) cosh(c1(z)z) − zb2(z) cosh(c2(z)z) = 0. (19)

Solving the system (19) with c1(z) = 1/2, a11(z) = 1
2η1(z)b1(z), we obtain

η1(z) = sech(z/2), a11(z) = tanh(z/2)

z
, b1(z) = 2 sinh(z/2)

z
. (20)

It is easy to check that

b1(z) = 1 + z2

24
+ O(z4), b1(z)a11(z) = 1

2
− z2

48
+ O(z4).

Thus the method defined by (18) and (20) has order two and we denote the method as
EFSSDIRK1s2. Note that as the frequency ω → 0 (z → 0), this method reduces to a
one-stage symmetric and symplectic DIRK method of order two

1/2 1/2
1

which is denoted as SSDIRK1s2 (Alexander [6]).

3.2 A two-stage EFSSDIRK method of order two

For s = 2, the scheme (16) becomes

c1(z) η1(z)
1
2η1(z)b1(z)

1 − c1(z) η1(z) η1(z)b1(z)
1
2η1(z)b1(z)

b1(z) b1(z)
(21)

For this scheme, the exponentially fitting conditions (17) imply that

cosh(c1(z)z) − η1(z) − z

2
η1(z)b1(z)) sinh(c1(z)z) = 0,

sinh(c1(z)z) − z

2
η1(z)b1(z) cosh(c1(z)z) = 0,

cosh((1 − c2(z))z) − η2(z) − zη1(z)b1(z) sinh(c1(z)z)

− z

2
η1(z)b1(z) sinh((1 − c2(z))z) = 0,

sinh(c2(z)z) − zη1(z)b1(z) cosh(c1(z)z) − z

2
η1(z)b1(z) cosh((1 − c2(z))z) = 0,
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cosh(z) − zb1(z) sinh(c1(z)z) − zb1(z) sinh((1 − c2(z))z) = 1,

sinh(z) − zb1(z) cosh(c1(z)z) − zb1(z) cosh((1 − c2(z))z) = 0. (22)

Taking c1(z) as constant we solve the system (22) and obtain

c1 = 1/4, η1(z) = sech
( z
4

)
, b1(z) = 2sinh

( z
4

)
/z. (23)

It is easily checked that the method defined by (21) and (23) has order two and we
denote the method as EFSSDIRK2s2.

We note that as z → 0, the EFSSDIRK2 method reduces to a classical two-
stage SSDIRK, which first appeared in Cooper [18] and we denote the method by
SSDIRK2s2.

3.3 A three-stage EFSSDIRK method

Now we proceed to construct a three-stage method. For s = 3, the scheme (16)
becomes

c1(z) η1(z)
1
2η1(z)b1(z)

1/2 η2(z) η2(z)b1(z)
1
2η2(z)b2(z)

1 − c1(z) η1(z) η1(z)b1(z) η1(z)b2(z)
1
2η1(z)b1(z)

b1(z) b2(z) b1(z)

(24)

The exponentially fitting conditions for a three-stage modified DIRK method are
given by

cosh(c1(z)z) − η1(z) − za11(z) sinh(c1(z)z) = 0,

sinh(c1(z)z) − za11(z) cosh(c1(z)z) = 0,

cosh(c2(z)z) − η2(z) − za21(z) sinh(c1(z)z) − za22(z) sinh(c2(z)z) = 0,

sinh(c2(z)z) − za21(z) cosh(c1(z)z) − za22(z) cosh(c2(z)z) = 0,

cosh(c3(z)z) − η3(z) − za31(z) sinh(c1(z)z) − za32(z) sinh(c2(z)z)

−za33(z) sinh(c3(z)z) = 0,

sinh(c3(z)z) − za31(z) cosh(c1(z)z) − za32(z) cosh(c2(z)z) − za33(z)

cosh(c3(z)z) = 0,

cosh(z) − 1−zb1(z) sinh(c1(z)z)−zb2(z) sinh(c2(z)z) − zb3(z) sinh(c3(z)z) = 0,

sinh(z) − zb1(z) cosh(c1(z)z) − zb2(z) cosh(c2(z)z) − zb3(z) cosh(c3(z)z)=0,

(25)

where c2(z) = 1/2, c3(z) = 1 − c1(z), η3(z) = η1(z), a11(z) = 1
2η1(z)b1(z), a21(z)

= η2(z)b1(z), a22(z) = 1
2η2(z)b2(z), a31(z) = η1(z)b1(z), a31(z) = η1(z)b2(z), a33

= 1
2η1(z)b1(z), b3(z) = b1(z).
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We solve the system (25) for η1(z), η2(z), b1(z) and b2(z) expressed in terms of
c1(z) as follows

η1(z) = sech(c1(z)z), η2(z) = sech((1 − 4c1(z))z/2),

b1(z) = 2 sinh(c1(z)z)

z
, b2(z) = 2 sinh((1 − 4c1(z))z/2)

z
. (26)

Substituting the above coefficients into the order four conditions (10) with the node
c1(z) expanded as

c1(z) = c10 + c12z
2 + c14z

4 + c16z
6 + c18z

8 + · · · (27)

we obtain

c10 = 1

3
+ 1

12
3
√
4 + 1

6
3
√
2, c12 = − 1

576
− 1

960
3
√
4 − 1

720
3
√
2,

c14 = 1

11,520
+ 11

201,600
3
√
4 + 37

537,600
3
√
2,

c16 = − 43

7,741,440
− 4063

1,161,216,000
3
√
4 − 5119

1,161,216,000
3
√
2

c18 = 1201

2,972,712,960
+ 2,184,631

8,583,708,672,000
3
√
4 + 2,752,457

8,583,708,672,000
3
√
2.

(28)

The fourth-order method by defined (24), (26), (27) and (28) is denoted by EFSS-
DIRK3s4. We note that as z → 0, the EFSSDIRK3s4 method reduces to a classical
three-stage symmetric and symplectic DIRK with constant coefficients. This method
first appeared in Sans-Serna and Abia [20] and was also presented in Feng and Qin
[10]. We denote the method by SSDIRK3s4S.

4 Phase properties of the new EFSSDIRK methods

The dispersion and dissipation are important properties which give an idea of the
numerical behaviour of methods constructed for oscillatory problems. This section is
devoted to the phase-lag and the amplification errors of the methods derived in Sect.
3. Applying the modified RK method (3) to the linear scalar test equation

y′ = iλy

gives the recurrence
yn+1 = R(iμ, z)yn

where μ = hλ and

R(iμ, z) = 1 + iμb(z)T (I − iμA(z))−1η(z) (29)
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Table 2 Dispersion and dissipation comparison

Method Dispersion Dissipation

SDIRK1s2
1

12
μ3 + O(μ5) 0

SDIRK2s2
1

48
μ3 + O(μ5) 0

SDIRK3s4
1

1440

(
32 + 25 3√2 + 20 3√4

)
μ5 + O(μ7) 0

TFSDIRK3s4
1

4320

(
32 + 25 3√2 + 20 3√4

) (
3 r2 + 4

) (
r2 + 1

)
μ5 + O(μ7) 0

EFSSDIRK1s2
1

12

(
r2 + 1

)
μ3 + O(μ5) 0

EFSSDIRK2s2
1

48

(
r2 + 1

)
μ3 + O(μ5) 0

EFSSDIRK3s4
1

5760

(
32 + 25 3√2 + 20 3√4

) (
3 r2 + 4

) (
r2 + 1

)
μ5 + O(μ7) 0

is the stability function. The definitions of dispersion and dissipation are given as
follows.

Definition 4.1 The quantities

P(μ) = μ − arg(R(iμ, z)), D(μ) = 1 − |R(iμ, z)|

are respectively called the dispersion (phase-lag) and the dissipation (amplification
error), where R((iμ; z) is given by (29).

Definition 4.2 The dispersion order is p if

P(μ) = Pp+1(r)μ
p+1 + O

(
μp+3),

and the dissipation order is q if

D(μ) = Dq+1(r)μ
q+1 + O(μq+3),

where r = z

μ
. The method is called zero-dispersive or zero-dissipative if P(μ) = 0

and D(μ) = 0 respectively.

The dispersion and dissipation for the methods derived in Sect. 3 and their limit
methods are displayed in Table 2. The table shows that EFSSDIRK3s4 has the lowest
phase lag. All the methods have zero dissipation.

5 Numerical experiments

To examine the numerical effectiveness of the newly constructed exponentially fitted
symmetric and symplectic diagonally implicit Runge–Kutta methods, we carry out
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experiments on four test problems. Some highly efficient codes are selected from the
recent literature. The codes used for comparison are listed as follows:

• EFSSDIRK1s2: the one-stage exponentially fitted symmetric and symplectic
DIRK method of order two constructed in this paper.

• EFSSDIRK2s2: the two-stage exponentially fitted symmetric and symplectic
DIRK method of order two constructed in this paper.

• EFSSDIRK3s4: the three-stage exponentially fitted symmetric and symplectic
DIRK method of order four constructed in this paper.

• EFSDIRK2s2: the two-stage exponentially fitted symmetricDIRKmethodof order
two constructed by R. D’Ambrosio and B. Paternoster in [34].

• SSDIRK1s2: the one-stage symmetric and symplectic DIRK method of order two
given by Cash [35], which is the limit method of the EFSSDIRK1s2 method as
z → 0.

• SSDIRK2s2: the two-stage symmetric and symplectic DIRK method of order two
proposed by Cooper [18], which is the limit method of the EFSSDIRK2s2 method
as z → 0.

• SSDIRK3s4: the three-stage symmetric and symplectic DIRK method of order
four derived by Sanz-Serna and Abia [20], which is the limit method of the EFSS-
DIRK3s4 method as z → 0.

• SDIRK4s4: the four-stage symplectic DIRKmethod of order four derived by Feng
and Qin [10].

• TFSSDIRK3s4: A three-stage trigonometrically fitted symplectic DIRK method
of order four given by Kalogiratou [30].

The effectiveness of the methods is tested by measuring the error in the numerical
solution and preservation of Hamiltonian. For each problem, we first integrate the
problem on a time interval and give the maximal global error of the solution for
different stepsizes of integration.We then integrate the problem on a long time interval
with a fixed stepsize and plot the time evolution of the maximal global error of the
Hamiltonian.

Problem 1 The two-body problem We consider the two-body problem studied in
Hairer et al. [3] which involves finding the positions and velocities of two massive
bodies that attract each other gravitationally. The first body is located at the origin
while the second body moves around the first body in a plane. Denote the position and
the velocity of the second body by (q1, q2) and (p1, p2), respectively. The motion of
the second body is governed by the systems of differential equations

q ′
1 = p1, p′

1 = − q1√(
q21 + q22

)3 ,

q ′
2 = p2, p′

2 = − q2√(
q21 + q22

)3 .

123



J Math Chem (2018) 56:1130–1152 1147

log2(stepsize)
-5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2

lo
g 10

(M
G

E
)

-14

-12

-10

-8

-6

-4

-2

0

2
SSDIRK1s2
SSDIRK2s2
SSDIRK3s4
SDIRK4s4
TFSSRK3s4
EFSDIRK2s2
EFSSDIRK1s2
EFSSDIRK2s2
EFSSDIRK3s4

time
500 1000 1500 2000 2500 3000 3500

lo
g 10

(M
G

E
 o

f H
am

ilt
on

ia
n)

-14

-12

-10

-8

-6

-4

-2

0
SSDIRK1s2
SSDIRK2s2
SSDIRK3s4
SDIRK4s4
TFSSRK3s4
EFSDIRK2s2
EFSSDIRK1s2
EFSSDIRK2s2
EFSSDIRK3s4

(a) (b)

Fig. 1 Problem 1. a Accuracy comparison, b preservation of Hamiltonian

This is a Hamiltonian system with the Hamiltonian

H(p1, p2, q1, q2) = 1

2

(
p21 + p22

) − 1√
q21 + q22

.

For initial values

q1(0) = 1, p1(0) = 0, q2(0) = 0, p2(0) = 1,

the exact solution is q1(x) = cos(x), q2(x) = sin(x). We integrate the problem on the
interval [0, 10π ] with different stepsizes h = π/2 j , j = 3, 4, 5, 6. Then the problem
is integrated with stepsize h = π/15 on the interval [0, 1000π ]. The numerical results
are presented in Fig. 1.

Problem 2 AnonlinearHamiltonian systemConsider theHamiltonian system studied
by Franco [36]

H(p, q) = 1

2

(
p21 + p22

) + w2

2

(
q21 + q22

) + α

6

(
q21 + q22

)3
,

with the initial data

q1(0) = 1, q2(0) = 0, p1(0) = 0, p2(0) = w + ε

where α = ε(2w + ε). The analytic solution is given by

q1(t) = cos((w + ε)t), q2(t) = sin((w + ε)t),

p1(t) = −(w + ε) sin((w + ε)t), p2(t) = (w + ε) cos((w + ε)t),

representing a periodic motion. In this experiment, we have chosen the parameter
values ε = 10−2, w = 5, and the integration carried out on the interval [0, 10π ] with
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Fig. 2 Problem 2. a Accuracy comparison, b preservation of Hamiltonian
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Fig. 3 Problem 3. a Accuracy comparison, b preservation of Hamiltonian

stepsizes h = 1/2i , j = 5, 6, 7, 8. Then we integrate the problem on the interval
[0, 100π ] with stepsize h = 1/24. The numerical results are presented in Fig. 2.

Problem 3 The standard pendulum Consider the differential equation describing the
standard pendulum given by

q ′ = p, p′ = − sin(q), q(0) = 0, p(0) = 1.5.

The Hamiltonian of the this problem is

H(p, q) = p2

2
− cos q.

We integrate the problem in the interval [0, 100] with stepsizes h = 1/2 j , i =
3, 4, 5, 6. Then the problem is integrated on the interval [0, 1000] with the stepsize
h = 1/16. Numerical results obtained are presented in Fig. 3.
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Fig. 4 Problem 4. a Accuracy comparison, b preservation of Hamiltonian

Problem 4 The Lotka–Volterra model for chemical oscillatorsConsider the chemical
reaction system consisting three reactions between two reactants S1 and S2 [9,11,37,
38]:

S1 → 2S1, S1 + S2 → 2S2, S2 → ∅.

The reaction rates of the three reactions are r, k and d, respectively. Let u(t) and v(t)
denote the concentrations of S1 and S2 at time t . By the mass-action law, the evolution
of the reactants is governed by the following Lotka–Volterra system

u̇ = (r − kv)u, v̇ = (ku − d)v. (30)

By the logarithmic transformation p = log u, q = log v, the system (30) becomes a
Hamiltonian problem

ṗ = r − keq , q̇ = kep − d,

with the Hamiltonian

H(p, q) = kep + keq − (dp + rq).

In this experiment, we take the values for the parameters k = d = 1, r = 2. The
system (5) is integrated with initial values p(0) = log 2, q(0) = log 2 on the interval
[0, 100] with fitting frequency ω = 1.46 and stepsizes h = 1/2 j , j = 4, 5, 6, 7. Then
we integrate the problem on the time interval [0, 2000] with initial values p(0) =
log 0.1, q(0) = log 5 and stepsize h = 1/32. The numerical results are presented in
Fig. 4.

It can be observed fromFigs. 1, 2, 3 and 4 that in comparison of accuracy andHamil-
tonian preservation, the newmethodsEFSSDIRK1s2, EFSSDIRK2s2, EFSSDIRK3s4
outperform their limit methods SSDIRK1s2, SSDIRK2s2, SSDIRK, respectively. The
fourth-order method EFSSDIRK3s4 is comparable to or even more accurate than
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Kalogiratou’s TFSSDIRK3s4 method. In Problem 1, the second-order method EFSS-
DIRK2s2 works as well as the fourth-order method EFSSDIRK3s4 while in Problem
2, EFSSDIRK2s2 even outperforms EFSSDIRK4s4. Among the four fourth-order
methods, the four-stage method SDIRK4s4 does the most poorly. It is not surprising
since SDIRK4s4 is not a symmetric method.

6 Conclusions and discussions

In this paper, we have adapted the symmetric and symplectic conditions given in
[9,13] respectively to the modified DIRK methods for autonomous Hamiltonian sys-
tems. Order conditions for modified DIRK methods are obtained through imaginary
rooted trees. The exponentially fitting conditions are given following the line of [25].
Three practical symmetric and symplectic methods of algebraic order two and four
were constructed respectively using the symmetric, symplectic and exponentially fitted
conditions presented in Sect. 2 of this paper. These methods are reduced to classi-
cal DIRK methods with constant coefficients which have appeared in the literatures
[10,18,20], when the frequency used in the fitting process is set to zero. Phase lags of
the methods are analyzed. Although the new three-stage method EFSSDIRK3s4 has
the same phase lag order as Kalogiratou’s TFSSDIRK3s4 method [30], the leading
term of the phase lag is smaller. All these methods are zero-dissipative due to their
sympleticity.

Numerical experiments considered in this paper shows that the exponential fitted
methods produces more accurate results on Hamiltonian problems than their classical
counterparts. We note that in implementation of exponentially fitted or trigonometri-
cally fitted methods, a fitting frequency ω must be prescribed in advance. This fitting
frequency is an estimate of the frequency of the solution. If the solution has been
given as in Problems 1 and 2, then the frequency of the solution is of course known
and the numerical solution is not necessary. However, in most cases, the true solution
and its frequency are not available and the choice of a fitting frequency becomes a
challenge. More than often, the true frequency, if available, is not suitable for fitting.
For instance, in Problem 4 of Sect. 5, the Lotka–Volterra model for chemical oscilla-
tors, for the initial value (p(0), q(0)) = (log 2, log 2), the exact frequency is known to
be 2π/4.61487051945103 = 1.361508471515472, but it can not serve as the fitting
frequency for our new EFSSDIRK methods (and for TFSSDIRK3s4). The fact is, as
mentioned in Zhang et al. [37], each method has its own best fitting frequency which
depend on the differential equation, initial data and the integration interval. In Prob-
lems 1 and 2, the fitting frequency is taken as the frequency of the true solution while
in Problems 3 and 4 the frequency utilized is obtained with a searching algorithm. For
other techniques of determining the fitting frequency, the reader is referred to Ixaru
and Vanden Berghe [39], Ramos and Vigo-Aguiar [40] and Vigo-Aguiar and Ramos
[41].

Finally, it should be noted that an RK method having more stages does not neces-
sarily lead to higher effectiveness. In Problem 1, for example, the one-stage method
EFSSDIRK1s2 and the two-stage method EFSSDIRK2s2 outperform all the other
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fourth-order methods with three or four stages. Relative effectiveness of different
integrators depends to some extent on the problem they solve.
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