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1 Introduction

A single number, representing a chemical structure in graph-theoretical terms via the
molecular graph, is called a topological descriptor and if it in addition correlates with a
molecular property it is called topological index, which is used to understand physico-
chemical properties of chemical compounds. Topological indices are interesting since
they capture some of the properties of a molecule in a single number. Hundreds of
topological indices have been introduced and studied, starting with the seminal work
by Wiener in which he used the sum of all shortest-path distances of a (molecular)
graph for modeling physical properties of alkanes (see [22]).

Topological indices based on end-vertex degrees of edges have been used over
40 years. Among them, several indices are recognized to be useful tools in chemical
researches. Probably, the best know such descriptor is the Randić connectivity index
(R) [12]. There are more than thousand papers and a couple of books dealing with this
molecular descriptor (see, e.g., [5–7,15,16] and the references therein). During many
years, scientists were trying to improve the predictive power of the Randić index. This
led to the introduction of a large number of new topological descriptors resembling
the original Randić index. The first geometric–arithmetic index GA1, defined in [20]
as

GA1 = GA1(G) =
∑

uv∈E(G)

√
dudv

1
2 (du + dv)

where uv denotes the edge of the graph G connecting the vertices u and v, and du
is the degree of the vertex u, is one of the successors of the Randić index. Although
GA1 was introduced in 2009, there are many papers dealing with this index (see, e.g.,
[1–3,9,14,17,20] and the references therein). There are other geometric–arithmetic
indices, like Z p,q (Z0,1 = GA1), but the results in [2, p. 598] show that theGA1 index
gathers the same information on observed molecule as other Z p,q indices.

The reason for introducing a new index is to gain prediction of target property
(properties) of molecules somewhat better than obtained by already presented indices.
Therefore, a test study of predictive power of a new index must be done. As a standard
for testing new topological descriptors, the properties of octanes are commonly used.
We can find 16 physico-chemical properties of octanes at www.moleculardescriptors.
eu.

The GA1 index gives better correlation coefficients than R for these properties, but
the differences between them are not significant. However, the predicting ability of
the GA1 index compared with Randić index is reasonably better (see [2, Table 1]).
Although only about 1000 benzenoid hydrocarbons are known, the number of possible
benzenoid hydrocarbons is huge. For instance, the number of possible benzenoid
hydrocarbons with 35 benzene rings is 5.85 × 1021 [19]. Therefore, the modeling of
their physico-chemical properties is very important in order to predict properties of
currently unknown species. The graphic in [2, Fig.7] (from [2, Table 2], [18]) shows

123

www.moleculardescriptors.eu
www.moleculardescriptors.eu


J Math Chem (2018) 56:1865–1883 1867

that there exists a good linear correlation between GA1 and the heat of formation of
benzenoid hydrocarbons (the correlation coefficient is equal to 0.972).

Furthermore, the improvement in prediction with GA1 index comparing to Randić
index in the case of standard enthalpy of vaporization is more than 9%. That is why
one can think that GA1 index should be considered in the QSPR/QSAR researches.

The aim of this paper is to obtain new inequalities involving the geometric–
arithmetic index GA1 and characterize graphs extremal with respect to them.

Throughout this work, G = (V (G), E(G)) denotes a (nonoriented) finite simple
(without multiple edges and loops) nontrivial (E(G) �= ∅) graph.

2 Some lower and upper bounds for GA1

If G is a graph with m edges, minimum degree δ and maximum degree Δ, then in [1]
(see also [2]) we find the bounds:

2m
√

δΔ

δ + Δ
≤ GA1(G) ≤ m. (1)

Let us recall Lemma 2.2 and Corollary 2.3 in [13].

Lemma 1 Let f be the function f (t) = 2t
1+t2

on the interval [0,∞). Then f strictly
increases in [0, 1], strictly decreases in [1,∞), f (t) = 1 if and only if t = 1 and
f (t) = f (t0) if and only if either t = t0 or t = t−1

0 .

Corollary 1 Let g be the function g(x, y) = 2
√
xy

x+y with 0 < a ≤ x, y ≤ b. Then

2
√
ab

a + b
≤ g(x, y) ≤ 1.

The equality in the lower bound is attained if and only if either x = a and y = b, or
x = b and y = a, and the equality in the upper bound is attained if and only if x = y.

The following lemma is a direct consequence of Lemma 1 and the fact that
2
√
xy

x+y =
f (t) with t =

√
x
y .

Lemma 2 For every 1 ≤ a < b and every i ∈ N,

2
√
a(a + i)

2a + i
<

2
√
b(b + i)

2b + i
.

LetG be a graph with n vertices,m edges, minimum degree δ andmaximum degree
Δ. Let k = Δ − δ and consider the partition of the vertices given by their degrees
where Vi is the set of vertices with degree δ + i for every 0 ≤ i ≤ k. Let ni be the
number of vertices in Vi and mi j be the number of edges joining a vertex in Vi with a
vertex in Vj . Then,
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GA1(G) =
k∑

i, j=0
i≤ j

2mi j
√

(δ + i)(δ + j)

2δ + i + j
=

k∑

i=0

mii +
k∑

i, j=0
i< j

2mi j
√

(δ + i)(δ + j)

2δ + i + j
.

(2)
Therefore, from this and Corollary 1 it is clear that GA1(G) = m if and only if all

the edges are joining vertices with equal degree. Hence, GA1(G) = m if and only if
each connected component of G is regular.

As usual, we use the convention ∑

�∈∅
a� = 0.

Therefore, if k = 0 (i.e., if G is a regular graph), then the last sum in (2) is equal to
zero.

Let us assume k = Δ − δ > 0 and let ni = |Vi | for every 0 ≤ i ≤ k.

Proposition 1 Let G be a nontrivial graph with minimum degree δ and maximum
degree Δ > δ. Then

GA1(G) ≤
k∑

i=0

min
{1
2
ni (δ + i),

(
ni
2

)}
+

k∑

i, j=0
i< j

2nin j
√

(δ + i)(δ + j)

2δ + i + j

≤
k∑

i=0

min
{1
2
ni (δ + i),

(
ni
2

)}
+

k∑

i, j=0
i< j

2nin j
√

Δ(Δ − j + i)

2Δ − j + i
.

Furthermore, if G is a connectedgraph, thenwecan replace in the previous inequalities
1
2ni (δ + i) by 1

2ni (δ + i) − 1.

Proof First, notice that in every set Vi , since there are ni vertices, mii ≤ (ni
2

)
. Also,

since dv = δ+ i for every vertex v in Vi ,mii ≤ 1
2ni (δ+ i). Moreover, since V (G)\Vi

is nonempty, if G is connected, then mii ≤ 1
2ni (δ + i) − 1.

The number of edges joining Vi and Vj is at most nin j . Thus, the result follows
from (2) and Lemma 2. �	

Note that the hypothesis Δ > δ is not essential, since if Δ = δ then the graph G is
regular and GA1(G) = m.

Let us consider an ordering of the vertices in G where u < v implies that du ≤ dv .
Let us assume an orientation of the edges where uv is always considered with the
orientation given by the ordering u < v. Let k = Δ − δ, let mi be the number of
oriented edges whose tail is a vertex with degree δ + i and m′

i the number of oriented
edges whose head is a vertex with degree δ + i for 0 ≤ i ≤ k. Moreover, let ai be
the number of edges whose tail is a vertex with degree δ + i and whose head is a
vertex with degree at least δ + i + 1 with 0 ≤ i ≤ k − 1, let bi the number of edges
whose head is a vertex with degree δ + i and whose tail is a vertex with degree at most
δ + i − 1 with 1 ≤ i ≤ k, and ci the number of edges joining two vertices with degree
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δ + i with 0 ≤ i ≤ k. Notice that mi = ai + ci and m′
i = bi + ci for every 0 ≤ i ≤ k,

mk = ck and m′
0 = c0.

Define the classes of graphs G1, G2 and G3 as follows. G1 is the set of graphs G
such that if uv ∈ E(G), then du = dv or max{du, dv} = Δ, where Δ is the maximum
degree of G. G2 is the set of graphs G such that if uv ∈ E(G), then du = dv or
min{du, dv} = δ, where δ is the minimum degree of G. G3 is the set of graphs G such
that if uv ∈ E(G), then du = dv or |du − dv| = 1.

Proposition 2 Let G be a nontrivial graph with minimum degree δ and maximum
degree Δ > δ. Then

k∑

i=0

ci +
k−1∑

i=0

2ai
√

Δ(δ + i)

Δ + δ + i
≤ GA1(G) ≤

k∑

i=0

ci +
k−1∑

i=0

2ai
√

(δ + i)(δ + i + 1)

2δ + 2i + 1
,

(3)
and

k∑

i=0

ci+
k∑

i=1

2bi
√

δ(δ + i)

2δ + i
≤ GA1(G) ≤

k∑

i=0

ci+
k∑

i=1

2bi
√

(δ + i − 1)(δ + i)

2δ + 2i − 1
. (4)

The lower bound in (3) is attained if and only if G ∈ G1. The upper bound in (3) is
attained if and only if G ∈ G3. The lower bound in (4) is attained if and only if G ∈ G2.
The upper bound in (4) is attained if and only if G ∈ G3.
Proof Since

1 <
δ + i + 1

δ + i
≤ δ + i + r

δ + i
≤ Δ

δ + i

for every 1 ≤ r ≤ Δ − δ − i and f is decreasing on [1,∞), Lemma 1 gives

f

(√
δ + i + 1

δ + i

)
≥ f

(√
δ + i + r

δ + i

)
≥ f

(√
Δ

δ + i

)
.

Hence, (2) gives (3).
Since

1 <
δ + i

δ + i − 1
≤ δ + i

δ + i − r
≤ δ + i

δ

for every 1 ≤ r ≤ i and f is decreasing on [1,∞), Lemma 1 gives

f

(√
δ + i

δ + i − 1

)
≥ f

(√
δ + i

δ + i − r

)
≥ f

(√
δ + i

δ

)
.

Therefore, (4) follows from (2).
One can easily check the statements on the equalities. �	
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Remark 1 Note that if C := ∑k
i=0 ci , ri := 2ai

√
δ + i and r ′

i := 2bi
√

δ + i , then

C +
k−1∑

i=0

ri

√
Δ

Δ + δ + i
≤ GA1(G) ≤ C +

k−1∑

i=0

ri

√
δ + i + 1

2δ + 2i + 1
,

and

C +
k∑

i=1

r ′
i

√
δ

2δ + i
≤ GA1(G) ≤ C +

k∑

i=1

r ′
i

√
δ + i − 1

2δ + 2i − 1
.

Define the classes of graphs G0
1 and G0

2 as follows. G0
1 is the set of graphs G such

that if uv ∈ E(G), then max{du, dv} = Δ, where Δ is the maximum degree of G. G0
2

is the set of graphs G such that if uv ∈ E(G), then min{du, dv} = δ, where δ is the
minimum degree of G. It is clear that G0

1 ⊂ G1 and G0
2 ⊂ G2.

Corollary 2 Let G be a nontrivial graph with minimum degree δ ≥ 2 and maximum
degree Δ > δ. Then

k∑

i=0

2mi
√

Δ(δ + i)

Δ + δ + i
=

k−1∑

i=0

2mi
√

Δ(δ + i)

Δ + δ + i
+ mk ≤ GA1(G) ≤ m,

and

k∑

i=0

2m′
i

√
δ(δ + i)

2δ + i
= m′

0 +
k∑

i=1

2m′
i

√
δ(δ + i)

2δ + i
≤ GA1(G) ≤ m.

The first (respectively, second) lower bound is attained if and only if G ∈ G0
1 (respec-

tively, G ∈ G0
2 ).

Since in a connected graph with at least 3 vertices, there are no edges joining two
vertices with degree 1, we have the following consequence.

Corollary 3 Let G be a nontrivial connected graph with at least 3 vertices, minimum
degree 1 and maximum degree Δ. Then

k∑

i=0

2mi
√

Δ(i + 1)

Δ + i + 1
≤ GA1(G) ≤ 2

√
2m0

3
+

k∑

i=1

mi = 2
√
2m0

3
+ m − m0.

Similarly, the following result, which is Corollary 3.11 in [1], is an immediate
consequence from Corollary 2. A vertex v is called pendant if the set of its neighbors
has exactly one vertex, this is, if dv = 1. Thus, with the notation above, there are m0
pendant vertices.

Corollary 4 Let G be a nontrivial connected graph with at least 3 vertices, minimum
degree 1 and minimal non-pendant vertex degree δ1. Then
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GA1(G) ≤ 2m0
√

δ1

δ1 + 1
+ m − m0.

Given any graph G and uv ∈ E(G), let us define the gradient of the edge uv as
∇uv := |du − dv|.
Proposition 3 Let G be a nontrivial graph with minimum degree δ and maximum
degree Δ. If d = minuv∈E(G) ∇uv and D = maxuv∈E(G) ∇uv , then

2m
√

δ(δ + D)

2δ + D
≤ GA1(G) ≤ 2m

√
(Δ − d)Δ

2Δ − d
. (5)

The equality in each inequality is attained if and only if G is either regular or bipartite
with the two sets being respectively the set of vertices with degree δ and degree Δ.

Proof Consider any edge uv ∈ E(G). By symmetry, we can assume that dv ≥ du .
Thus, d ≤ dv − du ≤ D and

δdv ≤ δdu + δD ≤ δdu + duD.

Hence,

dv

du
≤ δ + D

δ

with equality if and only if dv = du + D and du = δ. Since

Δdu ≤ Δdv − Δd ≤ Δdv − dvd,

we have

Δ

Δ − d
≤ dv

du

with equality if and only if du = dv − d and dv = Δ. Hence,

1 ≤ Δ

Δ − d
≤ dv

du
≤ δ + D

δ
,

and Lemma 1 gives

f

(√
Δ

Δ − d

)
≥ f

(√
dv

du

)
≥ f

(√
δ + D

δ

)
. (6)

We obtain the inequalities in (5) by adding (6) for every uv ∈ E(G).
Therefore, the equality in the lower bound is attained if and only if dv = du + D

and du = δ for every uv ∈ E(G) with dv ≥ du ; the equality in the upper bound is
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attained if and only if du = dv − d and dv = Δ for every uv ∈ E(G) with dv ≥ du .
Hence, the equality in each inequality is attained if and only if G is either regular (if
D = 0) or bipartite with the two sets being respectively the set of vertices with degree
δ and degree Δ. �	

Let E0, . . . , Ek (with k = Δ − δ) be a partition of the edges of G given by the
gradient where e ∈ Ei if ∇e = i for each 0 ≤ i ≤ k. Let ei be the number of edges in
Ei .

Proposition 4 Let G be a nontrivial graph with minimum degree δ and maximum
degree Δ. Then

k∑

i=0

2ei
√

δ(δ + i)

2δ + i
≤ GA1(G) ≤

k∑

i=0

2ei
√

Δ(Δ − i)

2Δ − i
. (7)

The upper (respectively, lower) bound is attained if and only if G ∈ G0
1 (respectively,

G ∈ G0
2 ).

Proof Consider any edge uv ∈ Ei . By symmetry, we can assume that dv − du = i .
Since idv ≤ iΔ, we have

Δdu = Δ(dv − i) ≤ Δdv − idv.

Hence,

Δ

Δ − i
≤ dv

du

with equality if and only if dv = Δ. Since iδ ≤ idu ,

δdv = δ(du + i) ≤ δdu + idu,

and we have

dv

du
≤ δ + i

δ

with equality if and only if du = δ. Therefore,

1 ≤ Δ

Δ − i
≤ dv

du
≤ δ + i

δ
,

and Lemma 1 gives

f

(√
Δ

Δ − i

)
≥ f

(√
dv

du

)
≥ f

(√
δ + i

δ

)
. (8)

123



J Math Chem (2018) 56:1865–1883 1873

We obtain the inequalities in (7) by adding (8) for every uv ∈ E(G).
Therefore, the equality in the lower bound is attained if and only if du = δ for every

uv ∈ E(G) with dv ≥ du ; the equality in the upper bound is attained if and only if
dv = Δ for every uv ∈ E(G) with dv ≥ du . Hence, the upper (respectively, lower)
bound is attained if and only if G ∈ G0

1 (respectively, G ∈ G0
2 ). �	

Remark 2 Therefore, notice that GA1(G) = 2m
√

δΔ
δ+Δ

if and only if ∇uv = Δ − δ for
every edge uv. Furthermore, if δ > 0, this occurs if and only if the graph is either
regular or bipartite with the two sets being respectively the set of vertices with degree
δ and degree Δ.

3 Bounds involving other topological indices

In [17, Lemma 3] appears the following result.

Lemma 3 Let h be the function h(x, y) = 2xy
x+y with δ ≤ x, y ≤ Δ. Then δ ≤

h(x, y) ≤ Δ.The lower (respectively, upper) bound is attained if and only if x = y = δ

(respectively, x = y = Δ).

First, we obtain a lower bound of GA1(G) depending on n, m and δ.

Proposition 5 We have for any graph G with minimum degree δ, n vertices and m
edges

GA1(G) ≥ 2m
√

(n − 1)δ

n + δ − 1
,

and the equality is attained if and only if G is either a complete graph or a star graph.

Proof Recall that δ ≤ du ≤ n − 1 for every u ∈ V (G). By Corollary 1, taking a = δ

and b = n − 1, we have

GA1(G) =
∑

uv∈E(G)

2
√
dudv

du + dv

≥
∑

uv∈E(G)

2
√

(n − 1)δ

n + δ − 1
= 2m

√
(n − 1)δ

n + δ − 1
.

By Corollary 1, the equality holds for G if and only if every edge joins a vertex of
degree δ with a vertex of degree n − 1; if δ = n − 1, then this holds if and only if G
is a complete graph; if δ < n − 1, then this holds if and only if δ = 1 and G is a star
graph. �	

In what follows we will need Cassels inequality [21, Appendix 1]. Although it is a
well-known result, it is not easy to find the characterization of the cases of equality.
For the sake of completeness, we prove here a more general statement (following the
argument of Niculescu [10]) that allows to characterize the equality.

Lemma 4 Let (X, μ) be ameasure space and f, g : X → R non-negativemeasurable
functions. If ω f ≤ g ≤ Ω f μ-a.e. for positive constants 0 < ω ≤ Ω , then
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(∫

X
f 2 dμ

)1/2 (∫

X
g2 dμ

)1/2

≤ 1

2

(√
Ω

ω
+

√
ω

Ω

) ∫

X
f g dμ (9)

and the equality is attained if and only if we have ω = Ω or f = g = 0 μ-a.e.

Proof Recall that

1

ε
a2 + εb2 ≥ 2ab

and the equality holds if and only if a = εb. Therefore, the hypotheses imply

0 ≥
∫

X
(g − ω f )(g − Ω f ) dμ =

∫

X
g2 dμ − (Ω + ω)

∫

X
f g dμ + Ωω

∫

X
f 2 dμ

(√
Ω

ω
+

√
ω

Ω

)∫

X
f g dμ ≥ 1√

Ωω

∫

X
g2 dμ + √

Ωω

∫

X
f 2 dμ

≥ 2

(∫

X
g2 dμ

)1/2 (∫

X
f 2 dμ

)1/2

.

Furthermore, the equality in (9) holds if and only if (g − ω f )(g − Ω f ) = 0 μ-a.e.
and

∫
X g2 dμ = Ωω

∫
X f 2 dμ. If ω = Ω , then g = ω f and both equalities hold.

Assume now that ω < Ω . Since f, g ≥ 0 and

∫

X
g2 dμ = Ωω

∫

X
f 2 dμ ⇔

∫

X

(
g − √

Ωω f
)(
g + √

Ωω f
)
dμ = 0,

the equality
∫
X g2 dμ = Ωω

∫
X f 2 dμ is equivalent to g = √

Ωω f μ-a.e. Thus,

0 = (g − ω f )(g − Ω f ) = (√
Ωω − ω)

(√
Ωω − Ω

)
f 2

and we conclude that if ω < Ω , then the equality in (9) is attained if and only if
f = g = 0 μ-a.e. �	
We have the following direct consequence.

Lemma 5 If a j , b j ≥ 0 and ωb j ≤ a j ≤ Ωb j for 1 ≤ j ≤ k, then

⎛

⎝
k∑

j=1

a2j

⎞

⎠
1/2 ⎛

⎝
k∑

j=1

b2j

⎞

⎠
1/2

≤ 1

2

(√
Ω

ω
+

√
ω

Ω

)
k∑

j=1

a jb j .

If a j > 0 for some 1 ≤ j ≤ k, then the equality holds if and only if ω = Ω and
a j = ωb j for every 1 ≤ j ≤ k.
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Recall that the variable Zagreb index is defined in [8] as

Zα(G) =
∑

uv∈E(G)

(dudv)
α.

The variable Zagreb index was used in the structure-boiling point modeling of ben-
zenoid hydrocarbons. The obtained model is practically identical to the model based
on the variable vertex-connectivity index and this is due to close relationship between
the formulas for the two indices. Note that Z−1/2 is the usual Randić index, Z1 is the
second Zagreb index M2, Z−1 is the modified Zagreb index [11], etc.

Theorem 1 We have for any graph G with minimum degree δ, maximum degree Δ

and m edges, and α ∈ R

c1,αm2

Zα(G)
≤ GA1(G) ≤ c2,αm2

Zα(G)
,

with

c1,α :=
{

δ2α+1Δ−1, if α ≥ −1/2,
Δ2α, if α ≤ −1/2,

c2,α :=
{

Δ(Δ2α+δ2α)2

4δ2α+1 , if α ≥ −1/2,
(Δ2α+δ2α)2

4Δ2α , if α ≤ −1/2,

and each inequality is attained for some fixed α if and only if G is regular.

Proof Cauchy-Schwarz inequality gives

m2 =
⎛

⎝
∑

uv∈E(G)

(dudv)
α/2(dudv)

−α/2

⎞

⎠
2

≤
∑

uv∈E(G)

(dudv)
α

∑

uv∈E(G)

(dudv)
−α

= Zα(G)
∑

uv∈E(G)

(dudv)
−α.

We have

GA1(G) =
∑

uv∈E(G)

2
√
dudv

du + dv

≥ 1

Δ

∑

uv∈E(G)

(dudv)
α+1/2(dudv)

−α .

If α ≤ −1/2, then

GA1(G) ≥ 1

Δ

∑

uv∈E(G)

(dudv)
α+1/2(dudv)

−α ≥ Δ2α
∑

uv∈E(G)

(dudv)
−α

≥ Δ2αm2

Zα(G)
.
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If α ≥ −1/2, then

GA1(G) ≥ 1

Δ

∑

uv∈E(G)

(dudv)
α+1/2(dudv)

−α

≥ δ2α+1

Δ

∑

uv∈E(G)

(dudv)
−α

≥ δ2α+1m2

ΔZα(G)
.

Hence, we obtain

c1,αm2

Zα(G)
≤ GA1(G).

Since

δ2α ≤ (dudv)
α/2

(dudv)−α/2 = (dudv)
α ≤ Δ2α, if α ≥ 0,

Δ2α ≤ (dudv)
α/2

(dudv)−α/2 = (dudv)
α ≤ δ2α, if α ≤ 0,

Lemma 5 gives

m2 =
⎛

⎝
∑

uv∈E(G)

(dudv)
α/2(dudv)

−α/2

⎞

⎠
2

≥
∑

uv∈E(G)(dudv)
α

∑
uv∈E(G)(dudv)

−α

1
4

(
Δα

δα + δα

Δα

)2

= 4Δ2αδ2α

(Δ2α + δ2α)2
Zα(G)

∑

uv∈E(G)

(dudv)
−α.

If α ≤ −1/2, then

GA1(G) ≤ 1

δ

∑

uv∈E(G)

(dudv)
α+1/2(dudv)

−α ≤ δ2α
∑

uv∈E(G)

(dudv)
−α

≤ δ2α
(Δ2α + δ2α)2

4Δ2αδ2α

m2

Zα(G)
= (Δ2α + δ2α)2

4Δ2α

m2

Zα(G)
.

If α ≥ −1/2, then

GA1(G) ≤ 1

δ

∑

uv∈E(G)

(dudv)
α+1/2(dudv)

−α ≤ Δ2α+1

δ

∑

uv∈E(G)

(dudv)
−α

≤ Δ2α+1

δ

(Δ2α + δ2α)2

4Δ2αδ2α

m2

Zα(G)
= Δ(Δ2α + δ2α)2

4 δ2α+1

m2

Zα(G)
.
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Hence, we obtain

GA1(G) ≤ c2,αm2

Zα(G)
,

If the graph is regular, then c1,α = c2,α = Δ2α , the lower and upper bounds are the
same, and they are equal to GA1(G). If a bound is attained for some α, then we have
either du+dv

2 = Δ for every uv ∈ E(G) or du+dv

2 = δ for every uv ∈ E(G) and we
conclude that du = dv for every u, v ∈ V (G). �	
Corollary 5 We have for any graph G with minimum degree δ, maximum degree Δ

and m edges

δ3m2

ΔM2(G)
≤ GA1(G) ≤ Δ(Δ2 + δ2)2m2

4 δ3M2(G)
,

and each inequality is attained if and only if G is regular.

With motivation from the Randić, Zagreb and harmonic indices, the general sum-
connectivity index Hα was defined by Zhou and Trinajstić in [23] as

Hα(G) =
∑

uv∈E(G)

(du + dv)
α,

with α ∈ R. Note that H1 is the first Zagreb index M1, 2H−1 is the harmonic index
H , H−1/2 is the sum-connectivity index, etc.

Theorem 2 We have for any graph G with minimum degree δ andmaximum degreeΔ

4Δδ
√
M2(G)H−2(G)

Δ2 + δ2
≤ GA1(G) ≤ 2

√
M2(G)H−2(G) .

The equality in the lower bound is attained if and only if G is regular. The equality in
the upper bound is attained if and only if there exists a constant λ such that dudv(du +
dv)

2 = λ for every uv ∈ E(G).

Proof Cauchy-Schwarz inequality gives

GA1(G)2 =
⎛

⎝
∑

uv∈E(G)

2
√
dudv

du + dv

⎞

⎠
2

≤
∑

uv∈E(G)

4dudv

∑

uv∈E(G)

1

(du + dv)2

= 4M2(G)H−2(G).
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Since

4δ2 ≤ 2
√
dudv

(du + dv)−1 = 2
√
dudv (du + dv) ≤ 4Δ2,

Lemma 5 gives

GA1(G)2 =
⎛

⎝
∑

uv∈E(G)

2
√
dudv

du + dv

⎞

⎠
2

≥
∑

uv∈E(G) 4dudv

∑
uv∈E(G)

1
(du+dv)2

1
4

(
Δ
δ

+ δ
Δ

)2

= 16Δ2δ2M2(G)H−2(G)

(Δ2 + δ2)2
.

If the graph is regular, then the lower and upper bounds are the same, and they are
equal to GA1(G).

If the lower bound is attained, then Lemma 5 gives that 4δ2 = 4Δ2 andG is regular.
If the upper bound is attained, then Cauchy-Schwarz inequality gives that

2
√
dudv

(du + dv)−1 = 2
√
dudv (du + dv)

is constant, and so there exists a constant λ such that dudv(du + dv)
2 = λ for every

uv ∈ E(G). �	
We say that a graph is (α, β)-biregular if it is a bipartite graph for which any vertex

in one side of the given bipartition has degree α and any vertex in the other side of the
bipartition has degree β.

The following result characterizes in many cases the equality in the upper bound
in Theorem 2.

Proposition 6 Let G be a graph.

– If there exists a constant λ such that dudv(du + dv)
2 = λ for every uv ∈ E(G),

then each connected component of G is either regular or biregular.
– If G is a connected graph, then there exists a constant λ such that dudv(du+dv)

2 =
λ for every uv ∈ E(G) if and only if G is either regular or biregular.

Proof Assume that there exists a constant λ such that dudv(du + dv)
2 = λ for every

uv ∈ E(G). Since the function f : [0,∞) × [0,∞) → R defined as f (x, y) =
xy(x + y)2 is strictly increasing in y for each fixed x , given any vertex u ∈ V (G),
every neighbor of u has the same degree. Hence, each connected component of G is
either regular or biregular. Furthermore, if G is connected, then dudv(du + dv)

2 = λ

for every uv ∈ E(G) if and only if G is regular or biregular. �	
Example 1 It may be wondered if there exist two different pairs of natural numbers
a, b and c, d such that ab(a + b)2 = cd(c + d)2. The answer is affirmative and such
pairs of numbers can be obtained as follows.
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First let us choose two Pythagorean triples: α1, β1, γ1 and α2, β2, γ2 with α1β1 =
α2β2 (e.g., 12, 35, 37 and 20, 21, 29) and let a = γ2α

2
1, b = γ2β

2
1 , c = γ1α

2
2 and

d = γ1β
2
2 . Then, notice that

γ2α
2
1γ2β

2
1 (γ2α

2
1 + γ2β

2
1 )

2 = α2
1β

2
1γ

4
1 γ 4

2 = λ,

and

γ1α
2
2γ1β

2
2 (γ1α

2
2 + γ1β

2
2 )

2 = α2
2β

2
2γ

4
1 γ 4

2 = α2
1β

2
1γ

4
1 γ 4

2 = λ.

Therefore, the best characterization of the upper bound in Theorem 2 is the one in
Proposition 6.

In [17, Theorem 4] appears the inequality

GA1(G) ≤ √
M2(G)Z−1(G) .

Note that Theorem 2 improves this upper bound ofGA1(G) since 4dudv ≤ (du +dv)
2

gives

4H−2(G) =
∑

uv∈E(G)

4

(du + dv)2
≤

∑

uv∈E(G)

1

dudv

= Z−1(G),

and 2
√
H−2(G) ≤ √

Z−1(G).

Theorem 3 We have for any graph G with minimum degree δ, maximum degree Δ

and m edges

δ2m2

M2(G)
≤ GA1(G) ≤ Δ1/2(Δ + δ )3m2

8 δ3/2M2(G)
,

and each equality is attained if and only if G is regular.

Proof Lemma 3, Cauchy-Schwarz inequality and Corollary 1 give

(
δm

)2 ≤
⎛

⎝
∑

uv∈E(G)

2dudv

du + dv

⎞

⎠
2

≤
∑

uv∈E(G)

(
2
√
dudv

du + dv

)2 ∑

uv∈E(G)

(√
dudv

)2

≤
∑

uv∈E(G)

2
√
dudv

du + dv

∑

uv∈E(G)

dudv = GA1(G)M2(G).

Since

1

Δ
≤

2
√
dudv

du+dv√
dudv

= 2

du + dv

≤ 1

δ
,
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Lemmas 3, 5 and Corollary 1 give

(
Δm

)2 ≥
⎛

⎝
∑

uv∈E(G)

2dudv

du + dv

⎞

⎠
2

≥
∑

uv∈E(G)

(
2
√
dudv

du+dv

)2 ∑
uv∈E(G)

(√
dudv

)2

1
4

(√
Δ
δ

+
√

δ
Δ

)2

≥
2
√

Δδ
Δ+δ

∑
uv∈E(G)

2
√
dudv

du+dv

∑
uv∈E(G) dudv

1
4

(√
Δ
δ

+
√

δ
Δ

)2 = 8 (Δδ)3/2GA1(G)M2(G)

(Δ + δ )3
.

If the graph is regular, then the lower and upper bounds are the same, and they are
equal to GA1(G).

By Lemma 3, if a bound is attained, then we have either du = dv = δ for every
uv ∈ E(G) or du = dv = Δ for every uv ∈ E(G), and we conclude that du = dv for
every u, v ∈ V (G). �	

Note that Theorem 3 improves the bounds in Corollary 5, since

δ3

Δ
≤ δ2,

Δ1/2(Δ + δ )3

8 δ3/2
≤ Δ(Δ2 + δ2)2

4 δ3
,

where the second inequality follows from

(s − 1)(2s8 + 2s7 + 2s6 + s5 + 5s4 + 2s3 + 2s2 − s + 1) ≥ 0 for s ≥ 1,

2s9 − s6 + 4s5 − 3s4 − 3s2 + 2s − 1 ≥ 0 for s ≥ 1,

(s2 + 1)3 ≤ 2s(s4 + 1)2 for s ≥ 1,

(t + 1)3 ≤ 2
√
t (t2 + 1)2 for t ≥ 1,

δ3/2(Δ + δ )3 ≤ 2Δ1/2(Δ2 + δ2)2 taking t = Δ

δ
.

Theorem 4 We have for any graph G with minimum degree δ andmaximum degreeΔ

H(G)2

Z−1(G)
≤ GA1(G) ≤ (Δ + δ )3H(G)2

8 (Δδ)3/2Z−1(G)
,

and each inequality is attained if and only if G is regular.

Proof Cauchy-Schwarz inequality and Corollary 1 give

H(G)2 =
⎛

⎝
∑

uv∈E(G)

2

du + dv

⎞

⎠
2

≤
∑

uv∈E(G)

(
2
√
dudv

du + dv

)2 ∑

uv∈E(G)

(
1√
dudv

)2

≤
∑

uv∈E(G)

2
√
dudv

du + dv

∑

uv∈E(G)

1

dudv

= GA1(G)Z−1(G).
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Since Lemma 3 implies

δ ≤
2
√
dudv

du+dv

1√
dudv

= 2dudv

du + dv

≤ Δ,

Lemma 5 gives

H(G)2 =
⎛

⎝
∑

uv∈E(G)

2

du + dv

⎞

⎠
2

≥
∑

uv∈E(G)

(
2
√
dudv

du+dv

)2 ∑
uv∈E(G)

(
1√
dudv

)2

1
4

(√
Δ
δ

+
√

δ
Δ

)2

≥
2
√

Δδ
Δ+δ

∑
uv∈E(G)

2
√
dudv

du+dv

∑
uv∈E(G)

1
dudv

1
4

(√
Δ
δ

+
√

δ
Δ

)2 = 8 (Δδ)3/2GA1(G)Z−1(G)

(Δ + δ )3
.

If the graph is regular, then the lower and upper bounds are the same, and they are
equal to GA1(G).

By Lemma 5, if the upper bound is attained, then Δ = δ and G is regular.
If the lower bound is attained, then Corollary 1 gives du = dv for every uv ∈ E(G).

Cauchy-Schwarz inequality gives that there exists a constant λ such that

2
√
dudv

du + dv

= λ
1√
dudv

for every uv ∈ E(G). Hence, du = λ for every u ∈ V (G) and G is regular./

The forgotten topological index is defined as

F(G) =
∑

u∈V (G)

d3u =
∑

uv∈E(G)

(d2u + d2v )

(see [4]).

Theorem 5 We have for any graph G with minimum degree δ, maximum degree Δ

and m edges

2m − F(G)

2δ2
≤ GA1(G) ≤ 2m − F(G)

2Δ2

and each inequality is attained if and only if G is regular.

Proof The equality

2
√
dudv

du + dv

2
√
dudv

du + dv

+ 2(d2u + d2v )

(du + dv)2
= 2
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and Corollary 1 give

2
√
dudv

du + dv

+ d2u + d2v
2δ2

≥ 2,

GA1(G) + F(G)

2δ2
≥ 2m.

We also have

2
√
dudv

du + dv

+ d2u + d2v
2Δ2 ≤ 2,

GA1(G) + F(G)

2Δ2 ≤ 2m.

If the graph is regular, then the lower and upper bounds are the same, and they are
equal to GA1(G). If a bound is attained, then we have either du + dv = 2δ for every
uv ∈ E(G) or d2u + d2v = 2Δ2 for every uv ∈ E(G) and we conclude that du = dv

for every u, v ∈ V (G). �	

References

1. K.C. Das, On geometric–arithmetic index of graphs. MATCH Commun. Math. Comput. Chem. 64,
619–630 (2010)

2. K.C. Das, I. Gutman, B. Furtula, Survey on geometric–arithmetic indices of graphs.MATCHCommun.
Math. Comput. Chem. 65, 595–644 (2011)

3. K.C. Das, I. Gutman, B. Furtula, On first geometric-arithmetic index of graphs. Discrete Appl. Math.
159, 2030–2037 (2011)

4. B. Furtula, I. Gutman, A forgotten topological index. J. Math. Chem. 53(4), 1184–1190 (2015)
5. I. Gutman, B. Furtula (eds.), Recent Results in the Theory of Randić Index (Univ. Kragujevac, Kragu-
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