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Abstract In this paper, we study the flow of water inside a carbon nanotube of radius
20Å taking into account the molecular interactions between water and the nanotube,
and the slip boundary condition. Incompressible andNewtonian fluid is employed, and
the radial, axial and slip velocities are derived analytically for an impermeable wall.
Both radial and axial velocities are found to obey the prescribed boundary conditions,
and the axial velocity and the flux turn out to be approximately sevenfold larger when
the pressure generated by the tube entry is considered.

Keywords Mathematical modelling · The continuum approximation ·
Newtonian flow · Water · Carbon nanotube

1 Introduction

Nanotechnology has become indispensable in modern life due to the superior mechan-
ical, electronic, optical and magnetic properties of nanomaterials [1]. In particular, it
provides vital tools to desalinate and purify water, and this becomes increasingly
paramount due to the current economic growth and climate change. To address the
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undeniable need of pure water, various methodologies such as distillation, adsorption,
solar evaporation and reverse osmosis, to name a few, have been proposed to extract
pure water [2]. However, most of these techniques are energetically and operationally
expensive, and some of them are not capable of removing pollutants effectively [2].
Well aligned carbon nanotubes embedded inside membrane provide robust channels
for water desalination and purification [3] and they exhibit the following properties:
nanotubes with appropriate pore sizes constitute energy barriers at the tube’s entries so
as to reject salt ions and permitwater through the nanotubes [4–7]; it is possible tomod-
ify and functionalize nanotubes to selectively accept/reject ions mimicking biological
channels [4,8,9]; carbon nanotubes also show antifouling, self-cleaning and reusable
functionalities [2,10]; water permeability inside nanotubes is remarkably high due to
the frictionless/almost frictionless transport of water molecules [11,12], and the flow
rate in a carbon nanotube membrane is observed at several orders of magnitude larger
than that predicted by the conventional fluid theory or continuum hydrodynamics the-
ory [13]; least but not last, the velocity of individual molecules could reach as high
as 1000ms−1 inside small radii nanotubes [14]. Spinning carbon nanotubes have also
been investigated to achieve better desalination effect through the centrifugal force
[15]. Therefore, the combination of high water permeability and species selectivity
turn them into an excellent candidate for water-ion/pollutant separation.

Several attempts have been tried to describe the flow inside nanotube [11,12,16],
however they fail to take into account the molecular effects. For ultra-small radii
nanotube, even a single file transport of molecules is observed [6,17]. For nanotubes
with much larger radius, numerous studies have shown that the flow rate is far higher
than that predicted by the conventional Poiseuille flow model, even a slip boundary
condition is taken into account. We comment that a number of solutions have been
derived for Poiseuille flow inside both rectangular [18,19] and cylindrical porous
channels [20–22], but until most recently, no theory has successfully addressed such
high flow rate at the nanoscale.

Here, we investigatewater flow rate inside carbon nanotube of radius 20Å.We com-
ment that water flow inside nanotubes of extra-small radii is not in our interest. For
such nanotube, Navier–Stokes (NS) equation appears to be the best approximation to
depict the fluid flow inside the tube [16]. Even fluid density and viscosity are expected
to be varied inside nanotube [23], Newtonian fluid is assumed here so as to minimize
the unnecessary mathematical complexity and test major molecular effects. However,
our numerical solution still reveals a boundary layer near the tube wall (see Fig. 7).
Apart from adopting slip boundary condition [see Eq. (2c)], the molecular interac-
tion between water and nanotube is also considered to better capture the nano effect
arising at the nanotube. Such molecular interaction is modeled using the continuum
approximation [24,25], which has shown tremendous success in various problems
such as particle-laden flow inside nanomaterials [26], ultra-filtration and desalination
[4,5,27,28], and hydrogen yield [9] and storage using nanomaterials [29].We find that
the resultant axial and radial velocity satisfies the prescribed boundary conditions and
the flow rate is lifted almost sevenfold when the molecular interaction is incorporated,
which may partially explain such a high nano flow.
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2 Theory

In this section, we derive the basic theory for the present paper. In the first subsection,
radial and axial velocities are determined, followed by the derivation of the pressure
and the radial force, induced by carbon nanotube. Then, we incorporate the pressure
driven by tube entry and radial force into the pressure and body acceleration terms of
theNavier–Stokes equation, respectively to describe the fluid flow inside the nanotube.

2.1 Axial and radial velocities

Suppose water pass through a carbon nanotube with the radial velocity u and the
translation velocity v (see Fig. 1). The stationary Navier–Stokes equation and the
incompressible condition read

u
∂u

∂r
+ v

∂u

∂z
= − 1

ρ

∂P

∂r
+ μ

ρ

(
∇2u − u

r2

)
+ gr , (1a)

u
∂v

∂r
+ v

∂v

∂z
= − 1

ρ

∂P

∂z
+ μ

ρ
∇2v, (1b)

∂u

∂r
+ u

r
+ ∂v

∂z
= 0, (1c)

where ρ, μ, P and gr denote the water density, viscosity, pressure and body accel-
eration in r -direction, respectively. We comment that gravitational force is ignored
here and we will show later that the body force induced by the nanotube acts only in
the r -direction. Linear slip boundary condition is assumed for v, and the boundary
conditions for both u and v are given, respectively by

u(a, z) = 0, (2a)

u(0, z) = 0, (2b)

v(a, z) = �
∂v

∂r
|r=a, (2c)

where a and � denote the radius of the tube and the slip length, respectively. Upon
assuming u is homogeneous along z and depends only on r , using Eq. (1c) gives
v = v1(r)z + v0(r) for some functions v0(r) and v1(r). Assuming the pressure P is

Fig. 1 Geometric setup for this
problem
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only a function of z, using v = v1(r)z + v0(r), Eqs. (1a, 1b) become, respectively

− ρGr = μ

(
du

dr
+ u

r

)
− ρ

2
u2, (3)

u
∂v

∂r
+ v

∂v

∂z
= −1

ρ

dP

dz
+ μ

ρ

(
∂2v

∂r2
+ 1

r

∂v

∂r

)
, (4)

where we assume that the anti-derivative of gr exists and denote Gr . Now, we express
u and v in terms of the stream function ψ , gives

u = 1

r

∂ψ

∂z
v = −1

r

∂ψ

∂r
. (5)

Since u is a function of r , from Eq. (5), ψ can be written as

ψ(r, z) = z f (r) + h(r), (6)

for some functions f (r) and h(r). Due to the symmetry of the present problem, we
adopt the change of variables, i.e. ξ = a2 − r2, where ξ ∈ [0, a2]. There are two
reasons that we make this transformation. Firstly, ξ appears in every solution form of
laminar flow. Secondly, it turns the “radius” from the denominator into the numerator,
which is much easier to deal with. Using Eq. (5), u and v in terms of the new variable
ξ become, respectively

u(ξ) = F(ξ)√
a2 − ξ

, v(ξ, z) = 2[zF ′(ξ) + H ′(ξ)], (7)

where F(ξ) = f (r(ξ)) and H(ξ) = h(r(ξ)), and ξ ∈ [0, a2]. In addition, ′ refers
to the derivative with respect to ξ . We still need to determine both F(ξ) and H(ξ) in
order to obtain u and v.

Upon substituting the new form of u and v into Eqs. (3) and (4), we turn both
equations into ordinary differential equations as follows

− ρGr (ξ) = −2μF ′ − ρ

2(a2 − ξ)
F2, (8)

1

ρ

dP

dz
=

{
8ν[(a2 − ξ)F ′′′ − F ′′]

+ 4(FF ′′ − F ′2)
}
z +

{
8ν[(a2 − ξ)H ′′′ − H ′′] + 4(FH ′′ − F ′H ′)

}
,

= c1z + c2, (9)

where, ν = μ/ρ, and c1 and c2 define integral equations, which can be expressed,
respectively
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−c1
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4
FF ′

}
, (10)

−c2
4

= F ′H ′

2
− d

dξ

{
ν

2
(a2 − ξ)H ′′ + FH ′

4

}
, (11)

where c1 and c2 define the “conservation rule” for F , and (F and H ), respectively.
We will show later in our case that c1 = 0 and c2 defines the pressure drop across the
nanotube divided by the fluid density [see Eq. (9) by letting c1 = 0].

Now, we are equipped with sufficient materials to derive the analytical solution for
u and v. Observing from Eq. (7), v diverges when z → ∞. To resolve this problem,
we force F ′ = 0 (We comment that in general F ′ �= 0 if water is allowed to enter or
leave from the tube side but we assume no leak in this paper). Using Eqs. (7) and (8),
we obtain

F(ξ) =
√
2(a2 − ξ)Gr (ξ) and u(ξ) = √

2Gr (ξ), (12)

where F(ξ) is a constant if Gr (ξ) follows the form of 1/(a2 − ξ). Here, we relax this
form as Gr (ξ) might follow other power laws and assume that F ′ is still zero. Now,
we have to check if u satisfies the prescribed boundary conditions. On the center of the
tube, as the van der Waals forces vanish, Gr (a2) → 0 and hence Eq. (2b) is satisfied.
Now, consider u near the tube wall. Since the net radial force in the vicinity of the
wall is zero, we have

u(0) = √
2Gr (0) = 0. (13)

Therefore, the radial velocity satisfies both boundary conditions Eqs. (2a, 2b).
Given F ′ = 0 for the impermeable wall, v(ξ) reduces to v(ξ) = 2H ′(ξ) and

we remain to determine H ′(ξ), which can be solved using the integral equation, i.e.
Eq. (11). Upon assuming F ′ = 0 and K = H ′. Integrating both sides of Eq. (11) by
ξ leads to

ν(a2 − ξ)

2
K ′(ξ) + F(ξ)

4
K (ξ) = 1

4ρ

dP

dz
ξ + c3, (14)

where c3 is an integration constant, which can be determined using the final slip
boundary condition, i.e. Eq. (2c). From Eq. (2c), we deduce

K ′(0) = −K (0)

2�a
. (15)

In conjunction with Eq. (14), c3 becomes

c3 = −aν

4�
K (0). (16)

where K (0) = v(0)/2 and v(0) denotes the axial velocity at the wall to be determined.
Upon approximating dP/dz by the pressure difference across the tube due to both
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mechanical pressure and the pressure driven by the tube entry, divided by the tube
length, i.e. �P/λ, where λ is the tube length. After some simple calculus, Eq. (14)
further reduces to

K ′(ξ) + F(ξ)

2ν(a2 − ξ)
K (ξ) = �P

2μλ(a2 − ξ)
ξ + L(ξ), (17)

where

L(ξ) = − a

2�(a2 − ξ)
K (0).

Equation (17) is a first-order ordinary differential equation, which can be solved using
the integrating factor technique. Assuming

I (ξ) = exp

{∫
F(ξ)

2ν(a2 − ξ)
dξ

}
,

we can deduce both radial and axial velocities, respectively as

u(ξ) = √
2Gr (ξ),

v(ξ) =
(

2

I (ξ)

) ∫
I (ξ)

{
�P

2μλ(a2 − ξ)
ξ + L(ξ)

}
dξ + c, (18)

where c is another integration constant to be determined. Suppose the tube radius is
small, one can deduce that I (ξ) ≈ 1. In other words, v is weakly coupled with u and
v(ξ) further reduces to

v(ξ) ≈ −�P

μλ
ξ +

(
avwall

2�
− �Pa2

μλ

)
ln(a2 − ξ) + c, (19)

where v(ξ = 0) = vwall denotes the slip velocity at the wall. To avoid the singularity
arising at the center, i.e. ξ = a2, we let the mid-term of Eq. (19) equal zero and the
slip velocity is found to be

vwall = 2a��P

μλ
, (20)

where vwall depends linearly with the slip length �. Upon using v(ξ = 0) = vwall

again from Eq. (19), the axial velocity in r coordinate becomes

v(r) = −�P

μλ
(a2 − r2) + 2a��P

μλ
, (21)

which is a laminar flow equipped with the slip boundary condition and satisfies the slip
boundary condition, i.e. Eq. (2c). In addition, we have successfully used I (ξ) ≈ 1 to
linearize the NS equation and the axial velocity does not depend on the radial velocity,
which makes sense when the radius of nanotube is extremely small.
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2.2 Molecular forces driven by nanotube

In this subsection, we deduce the pressure Pz(z) and the radial acceleration gr (r),
driven by molecular interactions between water and nanotube. It is evident that when
water molecule approaches the proximity of nanotube, it experiences a suck in force
[24,25]. According to [9,27], the total force acting on a water molecule intruding into
the nanotube, Ftot is given by

Ftot = FO−T + FH1−T + FH2−T + Fhydra + Fapp, (22)

where FO−T , FH1−T , FH2−T denote themolecular force for oxygen-nanotube, the first
hydrogen on water molecule-nanotube, the second hydrogen-nanotube, respectively.
In addition, Fhydra and Fapp denote the hydraulic force and the applied force, where
the hydraulic force could be interpolated usingmolecular dynamics simulations. Here,
we adopt the alternative approach proposed by Cox et al. [24,25], where they use the
continuum approximation to approximate such forces, and the analytical form for
Eq. (22) can be found in [4]. Due to the rapid rotation of water molecules under finite
temperature, Boltzmann’s statistics will also be used to obtain the ensemble force,
which is given by

Fz(z) := F Avg =
∑

j

{
Ftot
j exp(−βV tot

j )
}

∑
j exp(−βV tot

j )
, (23)

where j and V tot denote the j-orientation and the total energy, which can be obtained
by integrating the total force, Ftot , respectively. On the other hand, following the
account given by Chan et al. [30], upon assuming the water molecules as point masses
and describing the interaction between molecules by Lennard-Jones potential, pertur-
bation is used to approximate the radial acceleration gr by

gr = m−1
∫ π

−π

∫ ∞

−∞

{
24ε

σ

[
2

(
σ

ρ

)13

−
(

σ

ρ

)7
]}

adzdθ, (24)

where ρ,m, ε and σ denote the distance between the interacting molecules, mass of a
single water molecule, the well depth and the van der Waals diameter, respectively. In
addition, z and θ denote the usual height and azimuthal coordinates for the cylindrical
coordinate system. This radial acceleration acting on all water inside the nanotube,
gives

gr = 24m−1ε
{
2σ 12 I13 − σ 6 I7

}
, (25)

where ρ = (a2 + r2 − 2ar cos θ + z2)1/2 and r is the radial coordinate. In is given
by

123



J Math Chem (2018) 56:158–169 165

In =
∫ π

−π

∫ ∞

−∞
a

ρn/2 dθdz

= 4πa

(a − r)n−1

{∫ π/2

0
cosn−2 θdθ

}
F

(
n − 1

2
,
1

2
; 1; −4ar

(a − r)2

)
,

where F is usual hypergeometric function. In addition, Gr (r) can be obtained by
integrating gr with respect to r .

3 Numerical results and discussion

In this section, we determine several numerical results for the present paper and make
somediscussion.Water experiences a suck in forcewhen it approaches the proximity of
nanotube entry.UsingEq. (23), the axialmolecular force for awatermolecule intruding
into a carbon nanotube of radii 3.8, 4, 5, 10 and 20 Å, i.e. is given, respectively in
Fig. 2, where the parameters adopted for the present paper can be obtained from [5].

This axial force forms an impulse at the tube entry so that it can be incorporated
into the pressure term of Eqs. (1a, 1b), where the positive and negative forces represent
the repulsive and attractive forces, respectively. The sum of the pressure driven by the
nanotube entry, i.e. Ftot/(πa2) and the mechanical pressure drop �Pmech over the
tube constitute the total pressure drop, �P in Eq. (17). For the nanotube of radius
3.8Å, both attractive and repulsive forces coexist in the proximity of the nanotube
entry. Chan and Hill [5] show that the water molecule could get into such nanotube
without applying any external force. For nanotubes of radius larger than 3.4Å [5],
water will spontaneously tunnel through the nanotube and the strength of the suck in
force decreases when the tube radius increases. We will show later that such force will
enhance the axial velocity of water inside the nanotube.

Once water gets into the nanotube, it will experience the radial force generated by
the nanotube, which is given in Eq. (25). Numerical result of the radial force, i.e.mgr ,
where m denotes the mass of a water molecule, driven by nanotubes of radius 4 and
20Å is given in Fig. 3 for comparison.
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Fig. 2 Total axial molecular force for water molecule intruding into nanotube of radius a
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Fig. 3 (Left) radial force (mgr , wherem is the mass of a water molecule) for nanotube of radius 4Å; (right)
radial force for nanotube of radius 20Å

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

r (Armstrong)

u 
(m

s−1
)

Fig. 4 Radial velocity for nanotube of radius 20Å

The radial force acts on all water inside the body of the nanotube and therefore
it can be incorporated into the body acceleration of Eq. (1a). For nanotube of radius
4Å, the maximum radial force occurs at center. This violates the prescribed boundary
condition where u(r = 0) = 0 [see Eqs. (2) and (5)]. However, in such a small
radii nanotube, continuum assumption is broken and water molecules will feature an
intriguing single-file transport [6]. On the other hand, for nanotube of radius 20 Å, the
radial force is zero at nanotube center and wall vicinity, which satisfies the boundary
conditions as stated in Eqs. (2a, 2b). We comment that water molecules are unable to
reach the nanotube wall due to the strong repulsive forces generated by the wall of the
nanotube.

To determine flow fields inside nanotubes of relatively large radii, we adopt the
following parameters as given in Cox and Hill [16]: tube radius (a = 20Å), tube
length (λ = 1 nm), viscosity (μ = 10−3 Pa s), density (103 kgm−3), slip length (3nm)
and mechanical pressure drop across the tube �Pmech = 105 Pa. The radial velocity
is determined using Eq. (18), which is shown in Fig. 4.

Maximum radial velocity occurs at r = 16Å and reaches minimum at both the
tube center and wall, which correlates with the radial force and satisfies the prescribed
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Fig. 5 Axial velocity without consideration of suck in force, where the arrows denote vector fields
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Fig. 6 Axial velocity with and without consideration of suck in force

boundary conditions, i.e. Eqs. (2a, 2b). Using Eqs. (19) or (21), the numerical result
for the axial velocity without the consideration of the suck in force is given in Fig. 5

The axial velocity features the usual laminar flow with the slip boundary condition.
The maximum velocity reaches 0.8 ms−1 at the center of the tube and the slip velocity
at the boundary is 0.4 ms−1. Equation (21) turns out to be an excellent approximation
to v as the integration factor, I (ξ) is found to be approximately equal to one. To take
into account of the suck in effect, the pressure driven by the tube entry is incorporated
and the axial velocity for both with and without consideration of the suck in force is
given in Fig. 6 for comparison.

Due to the suck in force occurring at the tube entry, the axial velocity is lifted and the
maximumvelocity reaches 5.2ms−1 at the tube center,which is almost sevenfold larger
than that without the suck in force. Laminar flow with the slip boundary condition still
holds and the slip velocity is raised to 2.6 ms−1. Due to the significantly larger suck
in force for nanotube with smaller radii (see Fig. 2), we expect that the axial velocity
is lifted even higher for nanotubes with radius smaller than 20Å but not too small,
where the continuum assumption is violated. Now, both axial and radial velocities
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Fig. 7 Velocity fields inside the nanotube of length 1nm

are considered and shown in terms of vector fields in Eq. (7). Axial velocity attains
maximum at r = 0 and decreases with r . The radial velocity is almost zero at r = 0
and increases with r and then approaches zero in the vicinity of the wall. Even no
boundary layer is assumed here, Fig. 7 features a distinctive boundary layer, in which
water are more comfortably to be situated.

Least but not last, the flux is given by J = ρ(πa2)−1
∫
U · dS, where U and

dS denote the total velocity and the surface element, respectively. The ratio of flux
with and without the consideration of the suck in force is given by (3894.5kgm−2

s−1)/(600kgm−2 s −1) = 6.5, which again shows an increase in flux due to the suck
in force.

4 Conclusion

In conclusion, Newtonian fluid with the slip boundary condition is used to simulate
the fluidic flow inside carbon nanotube with impermeable wall. Molecular effect is
considered, and both the radial and axial velocities are derived analytically. While the
velocity fields satisfy the prescribed boundary conditions, the axial velocity and the
flux is raised almost sevenfold due to the suck in force generated at the tube entry.
The current result may resolve the mystery of unexpectedly high flow rate occurring
inside nanotubes.
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