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Abstract In this paper, a dynamic problem which models the evolution of the con-
centration of surfactants is analyzed from the numerical point of view. Both bulk and
surface diffusions are taken into account into the model, and the relationship between
both concentrations, in the bulk and at the surface, is considered by using the well-
knownLangmuir–Hinshelwood equation. Two convective terms are also included. The
variational formulation is then written as a coupled system of parabolic partial differ-
ential equations, for which an existence and uniqueness result is stated in an earlier
paper (Fernández et al. in SIAM J Math Anal 48(5):3065–3089, 2016). Then, fully
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discrete approximations are introduced by using the classical finite element method to
approximate the spatial variable and the implicit Euler scheme to discretize the time
derivatives. An a priori error estimates result is proved, from which the linear conver-
gence of the approximation is derived under suitable additional regularity conditions.
Finally, some numerical simulations are presented in order to show the accuracy of
the algorithm and the behaviour of the solution in real situations.

Keywords Adsorption dynamic model · Surfactants · Langmuir isotherm · Surface
diffusion · A priori error estimates · Numerical simulations

1 Introduction

The effect of surfactants is a very important issue in many real world applications, in
which the surface tension plays a significant role. For instance, some examples could
be the control of the droplet size when forming emulsions, foams, suspensions and
pharmaceuticals, the inkjet printing or treatments for decompression illness caused
by gas bubbles entering the blood stream during surgery (see, e.g., [19]). In these
processes, the new formed surface in the surfactant solution is generated due to the
incorporation of molecules, reducing the surface tension, and depending on many
features as the salinity, the temperature, the type of surfactant, etc. In this paper, we
assume that this process is governed by a mixed kinetic-diffusion model, that is, a
kinetic relation between the volumetric and surface concentrations which is written
in terms of a parabolic partial differential equation defined on a part of the boundary
domain.

In the recent years, some papers have been published dealingwith related problems:
the linear Henry isotherm [12], the mixed kinetic-diffusion case [13] or the Langmuir–
Hinshelwood equation [10]. However, in all these studies a great simplification was
assumed, reducing the problem to a one-dimensional version, because we considered
themoleculesmoving in a vertical direction and no diffusion on the surface. Therefore,
in this new model, following other authors (see, e.g., [1,2,17]), we consider that the
problem is either two- or three-dimensional and that there is diffusion of the surface
concentration.

Hence, in this paper we continue the research done in [11], where we provided
results on the uniqueweak solvability of the systemandnonnegativity of its solution, by
using the truncation method combined with the fixed point approach and the theory of
time-dependent partial differential equations onmanifolds.Our aimnow is to introduce
fully discrete approximations of the problem, to obtain a priori error estimates and to
show some numerical simulations in two and three dimensions.

The paper is outlined as follows. The mathematical model is described in Sect.
2 following [11], deriving its variational formulation. An existence and uniqueness
result, proved in [11] is also stated. Then, in Sect. 3 a numerical scheme is introduced,
based on the finite element method to approximate the spatial domain and the forward
Euler scheme to discretize de time derivatives. A priori error estimates are deduced
for the approximative solutions and, under suitable regularity assumptions, the linear
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convergence of the algorithm is obtained. Finally, some two- and three-dimensional
numerical simulations are presented in Sect. 4.

2 Mathematical model

Let Ω be an open and bounded domain in R
d+1 with d = 1, 2. The boundary ∂Ω

of Ω is assumed to be Lipschitz continuous, and it consists of three mutually disjoint
partsΓD ,ΓN andΓS such that ∂Ω = Γ D∪Γ N ∪Γ S . We assume thatΓD andΓS have
nonzero d-dimensional Hausdorff measure, and that ΓS is a compactC∞-Riemannian
manifold with a Lipschitz boundary (see p. 166 in [4]). The outward-pointing unit
normal vector fieldμ along ∂ΓS exists almost everywhere with respect to the boundary
measure (see the arguments in theProposition15.33of [18] and in the proof ofTheorem
11 of [4]).

For a function g, being defined and smooth in a neighbourhood of ΓS , the surface
(or tangent) gradient on ΓS is given by

∇S g = Dg − (ν · Dg) ν,

where Dg(y) is the gradient of g at point y and ν stands for the outward-pointing unit
normal vector along ΓS . Thus, the surface gradient at a point y ∈ ΓS is the projection
of the gradient at y onto the tangent plane to ΓS at y. We refer the reader to [14,
p. 388], for the definition of hypersurfaces in R

d+1 and surface gradients on them.
Furthermore, denoting by (D1g, . . . , Dd+1g) the components of the surface gradient,
the Laplace–Beltrami operator is defined by the surface divergence of the surface
gradient, that is,

ΔSg := ∇S · ∇S g =
d+1∑

i=1

Di Di g.

Now, due to some mathematical reasons we need to introduce the truncation oper-
ator R : R → R given by

R(u) = u+ − (u − ξm)+, (1)

where r+ = max{0, r} denotes the positive part of r . Moreover, ξm is a positive
constant that we describe later.

Here, we are interested in the numerical analysis of the following problem which
models the evolution of concentration of surfactant (see [1]):

c′ − D Δc + u · ∇c = 0 in Ω × (0, T ), (2)

c = cb on ΓD × (0, T ), (3)

D
∂c

∂ν
= 0 on ΓN × (0, T ), (4)

D
∂c

∂ν
= −SΓ on ΓS × (0, T ), (5)

c(x, 0) = c0(x) for a.e. x ∈ Ω, (6)
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ξ ′ − DS ΔSξ + uτ · ∇Sξ + ξ(∇S · u) = SΓ on ΓS × (0, T ), (7)

DS ∇Sξ · μ = 0 on ∂ΓS × (0, T ), (8)

ξ(x, 0) = ξ0(x) for a.e. x ∈ ΓS, (9)

with the source term in (5) and (7) following the Langmuir–Hinshelwood kinetics and
given by (see [1])

SΓ (x, t) = kaLc(x, t)
(
1 − R(ξ(x, t))

ξm

)
− kdLξ(x, t). (10)

In the previous coupled system of equations, the unknowns, represented by c(x, t)
and ξ(x, t), stand for the volumetric and surface surfactant concentrations, respectively,
at point x and time t ∈ (0, T ), T > 0 being the final time. Besides, a prime over a
variable represents the time derivative, cb denotes the bulk concentration, the positive
constants D and DS are the bulk and the surface diffusion coefficients, respectively, c0
is a function defined in Ω , which gives the initial concentration of surfactant, and ξ0
is a function defined on ΓS which denotes the initial surface concentration. Note that
Eq. (7) allows diffusion along the surface ΓS , and Eq. (10) describes the adsorption-
desorption transport of surfactant molecules between the bulk phase and the surface,
as stated in [1,2]. The convective terms in (2) and (7) have been included here for the
sake of completeness, where u represents the velocity of the bulk molecules and uτ

its tangential component given by uτ = u − (u · ν)ν. The positive constants kaL and
kdL denote the adsorption and desorption rate constants, respectively, and ξm > 0 is
the maximum surface coverage.

Remark 1 We note that in Eq. (10) we used the truncation function R only for mathe-
matical reasons, in order to assure that function SΓ is Lipschitzwith respect to variables
c and ξ . In [11] we also analyzed the problems with and without this truncation, giving
some relations between theirs respective solutions.

We turn now to the weak formulation of problem (2)–(9). Let us consider the space

V =
{
v ∈ H1(Ω); v|ΓD = 0

}
,

endowed with the inner product and the associated norm given by

((u, v)) =
∫

Ω

∇u · ∇v dx, ‖v‖V = ((v, v))1/2.

We denote by V ′ the dual space to V and by 〈·, ·〉 the scalar product for the duality
V ′, V . Moreover, we recall the inner product in H = L2(Ω) given by

(u, v)H =
∫

Ω

uv dx,
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with the associated norm ‖v‖H = (v, v)
1/2
H . Furthermore, we consider the Hilbert

space

W(0, T ) = {v ∈ L2(0, T ; V ); v′ ∈ L2(0, T ; V ′)},

the time derivative being understood in the distributional sense and endowed with the
norm

‖v‖2W(0,T ) = ‖v‖2L2(0,T ;V )
+ ‖v′‖2L2(0,T ;V ′).

It is well known (cf. e.g. [20]) that W(0, T ) ⊂ L2(0, T ; V ) ⊂ L2(0, T ; H) ⊂
L2(0, T ; V ′) andW(0, T ) ⊂ C([0, T ]; H),where all the embeddings are continuous.
Here, C([0, T ]; H) stands for the space of continuous functions from [0, T ] to H .

On the other hand, on the boundary ΓS we consider the space X = L2(ΓS) with
the inner product and norm given by

(u, v)X =
∫

ΓS

uv dσ, ‖v‖X = (v, v)
1/2
X ,

dσ being the surface element on ΓS (see [14], page 389). Regarding Sobolev spaces
on surfaces we also consider the space

H1(ΓS) = {
f ∈ X; , Di f ∈ X, i = 1, . . . , d + 1

}
,

endowed with the inner product and its associated norm given by (see [9])

(u, v)H1(ΓS)
=

∫

ΓS

uv dσ +
∫

ΓS

∇Su · ∇Sv dσ, ‖v‖H1(ΓS)
= (v, v)

1/2
H1(ΓS)

.

Let γ : V → X denote the trace operator on ΓS . From the continuity of the trace
operator (cf Theorem 3.9.34 in [8]), it follows that

‖γ v‖X ≤ K ‖v‖V for all v ∈ V with K = ‖γ ‖L(V,X). (11)

We denote by H1(ΓS)
′ the dual space to H1(ΓS). SinceΓS is a compact d-dimensional

C0,1-manifold we consider the Gelfand triple (see [21, p. 267]):

H1(ΓS) ↪→ X ↪→ H1(ΓS)
′, (12)

and we define the Banach space

WS(0, T ) = {v ∈ L2(0, T ; H1(ΓS)); v′ ∈ L2(0, T ; H1(ΓS)
′)}.

Thus, the space WS(0, T ) is contained in C([0, T ]; X) (see [20], page 106).
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We note that truncation operator R has the following properties whichwill be useful
in the next section:

R is 1-Lipschitz continuous,

0 ≤ R(η(x)) ≤ ξm for all η ∈ X and a.e. x ∈ ΓS .

Finally, for the sake of simplicity in the writing, we assume that cb = 0 in the rest
of the paper. It is straightforward to extend the analysis presented in the next section
to more general situations.

Using Green’s formula, boundary conditions (3), (4), (5) and (8), and Eq. (10), we
obtain the following weak formulation of problem (2)–(9).

Problem P Find c ∈ W(0, T ) and ξ ∈ WS(0, T ) such that c(0) = c0, ξ(0) = ξ0 and,
for a.e. t ∈ (0, T ),

〈c′(t), v〉V ′×V + D((c(t), v)) + kaL

(
γ c

(
1 − R(ξ(t))

ξm

)
, γ v

)

X

+ (u(t) · ∇c(t), v)H = kdL(ξ(t), γ v )X ∀v ∈ V, (13)

〈ξ ′(t), w〉H1(ΓS)
′×H1(ΓS)

+ DS

∫

ΓS

∇Sξ(t) · ∇Sw dσ + kdL(ξ(t), w)X

= kaL

(
γ c(t)

(
1 − R(ξ(t))

ξm

)
, w

)

X

− (uτ (t) · ∇Sξ(t) + ξ(t)∇S · u(t), w )X ∀w ∈ H1(ΓS), (14)

where we remark that we suppressed the dependence on the spatial variable for the
sake of clarity.

We note that the initial conditions in Problem P make sense since W(0, T ) ⊂
C([0, T ]; H) and WS(0, T ) ⊂ C([0, T ]; X).

The following is the main result concerning Problem P (see [11] for details).

Theorem 1 Assume that D, DS, kdL , kaL and ξm are positive constants, c0 ∈ H,
ξ0 ∈ X and u ∈ L∞(0, T ; L∞(Ω;Rd+1)) with ∇S · u ∈ L∞(0, T ; L∞(ΓS)) and
uτ ∈ L∞(0, T ; L∞(ΓS;Rd+1)). Then Problem P has a unique solution c ∈ W(0, T )

and ξ ∈ WS(0, T ).

The proof of Theorem 1 is carried out in [11] and it is based on the study of
two intermediate problems, followed by the application of the Schauder fixed-point
theorem and Gronwall’s inequality.

3 Fully discrete approximation: a priori error estimates

In this section, we now introduce a finite element algorithm to approximate solutions
to Problem P and we detail an a priori error analysis.
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The discretization of Problem P is done as follows. First, we assume that Ω is a
polyhedral domain and, to approximate the variational space V , we consider a finite
dimensional space V h ⊂ V given by

V h =
{
vh ∈ C(Ω); vh|K ∈ P1(K ) ∀K ∈ T h, vh = 0 on ΓD

}
, (15)

where P1(K ) represents the space of polynomials of global degree less or equal to one
in K and we denote by (T h)h>0 a regular family of triangulations of Ω (in the sense
of [7]), compatible with the partition of the boundary ∂Ω into ΓD , ΓN and ΓS ; i.e.
the finite element space V h is composed of continuous and piecewise affine functions.
Let hK be the diameter of an element K ∈ T h and let h = max

K∈T h
hK denote the

spatial discretization parameter. Moreover, let (T̃ h)h>0 be the triangulation induced
by (T h)h>0 onto ΓS . Then, we construct the finite element space Xh , approximating
the Sobolev space H1(ΓS), in the form:

Xh =
{
wh ∈ C(ΓS);wh|K̃ ∈ P1(K̃ ) ∀K̃ ∈ T̃ h

}
, (16)

where P1(K̃ ) represents the space of polynomials of global degree less or equal to
one in K̃ .

Finally, we assume that the discrete initial conditions, denoted by ch0 and ξ h0 , are
given by

ch0 = PV h c0, ξ h0 = PXh ξ0, (17)

where PV h and PXh are the classical finite element interpolation operators over the
finite element spaces V h and Xh , respectively (see, for instance, [7]).

To discretize the time derivatives, we consider a uniform partition of the time
interval [0, T ], denoted by 0 = t0 < t1 < · · · < tN = T , and let k be the time step
size, k = T/N . For a continuous function f (t), let fn = f (tn) and, for a sequence
{wn}Nn=0, we let δwn = (wn − wn−1)/k be its corresponding divided differences.

Finally, in order to simplify the writing, we assume, without loss of generality, that
constants D, DS, kaL , kdL , ξm are equal to 1 and we recall that cb was assumed to be
0.

Therefore, using a combination of the implicit and explicit Euler schemes,we obtain
the following fully discrete approximation of Problem P.

Problem Ph Find chk = {chkn }Nn=0 ⊂ V h and ξ hk = {ξ hkn }Nn=0 ⊂ Xh such that
chk0 = ch0 , ξ

hk
0 = ξ h0 and, for n = 1, . . . , N ,

(
δchkn , vh

)

H
+

((
chkn , vh

))
+

(
un · ∇chkn , vh

)

H
+

(
γ chkn

(
1 − R

(
ξhkn−1

))
, γ vh

)

X

=
(
ξhkn−1, γ vh

)

X
, ∀vh ∈ V h , (18)
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(
δξhkn , wh

)

X
+

∫

ΓS

∇Sξ
hk
n · ∇Sw

h dσ +
(
ξhkn , wh

)

X
=

(
γ chkn

(
1 − R

(
ξhkn−1

))
, wh

)

X

−
(
(uτ )n · ∇Sξ

hk
n + ξhkn ∇S · un, wh

)

X
, ∀wh ∈ Xh . (19)

We note that it is straightforward to prove the coerciveness of the bilinear forms to
obtain the existence of a unique solution to Problem Ph . Thus, we have the following.

Theorem 2 Let the assumptions of Theorem 1 hold. Then Problem Ph has a solution
(chk, ξ hk) ⊂ V h × Xh .

In this section, assuming that ΓS is C∞ (i.e. a straight line if d = 1 or a planar
section if d = 2), our aim is to obtain a priori error estimates on the numerical errors
cn − chkn and ξn − ξ hkn . Then, we assume the following additional regularity on the
continuous solution:

c ∈ C1([0, T ]; H) ∩ C([0, T ]; V ∩ L∞(Γ S)),

ξ ∈ C1([0, T ]; X) ∩ C([0, T ]; H1(ΓS)). (20)

Keeping in mind the additional regularity (20), we write variational equation (13),
at time t = tn and for v = vh ∈ V h ⊂ V , to obtain

(
c′
n, v

h
)

H
+

((
cn, v

h
))

+
(
un · ∇cn, v

h
)

H
+

(
γ cn (1 − R (ξn)) , γ vh

)

X

=
(
ξn, γ vh

)

X
. (21)

Therefore, subtracting Eqs. (21) and (18) it follows that, for all vh ∈ V h ,

(
c′
n − δchkn , vh

)

H
+

((
cn − chkn , vh

))
+

(
un · ∇

(
cn − chkn

)
, vh

)

H

+
(
γ cn (1 − R (ξn)) − γ chkn

(
1 − R

(
ξ hkn−1

))
, γ vh

)

X
=

(
ξn − ξ hkn−1, γ vh

)

X
,

and so,

(
c′
n − δchkn , cn − chkn

)

H
+

((
cn − chkn , cn − chkn

))

+
(
un · ∇

(
cn − chkn

)
, cn − chkn

)

H

+
(
γ cn (1 − R (ξn)) − γ chkn

(
1 − R

(
ξ hkn−1

))
, γ

(
cn − chkn

))

X

−
(
ξn − ξ hkn−1, γ

(
cn − chkn

) )

X

=
(
c′
n − δchkn , cn − vh

)

H

+
((

cn − chkn , cn − vh
))

+
(
un · ∇

(
cn − chkn

)
, cn − vh

)

H
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+
(
γ cn (1 − R (ξn)) − γ chkn

(
1 − R

(
ξ hkn−1

))
, γ

(
cn − vh

))

X

−
(
ξn − ξ hkn−1, γ

(
cn − vh

) )

X
.

Now, keeping in mind the following estimates and properties

(
c′
n − δchkn , v

)

H
= (

c′
n − δcn, v

)
H +

(
δcn − δchkn , v

)

H
,

∣∣(c′
n − δcn, v

)
H

∣∣ ≤ C
∥∥c′

n − δcn
∥∥2
H + ε ‖v‖2H ,

(
δcn − δchkn , cn − chkn

)

H
≥ 1

2k

( ∥∥∥cn − chkn

∥∥∥
2

H
−

∥∥∥cn−1 − chkn−1

∥∥∥
2

H

)
,

∣∣∣
(
un · ∇

(
cn − chkn

)
, v

)∣∣∣ ≤ ε

∥∥∥cn − chkn

∥∥∥
2

V
+ C ‖v‖2H ,

∣∣∣
(
γ cn (1 − R (ξn)) − γ chkn

(
1 − R

(
ξ hkn−1

))
, γ v

)

X

∣∣∣

=
∣∣∣
((

γ cn − γ chkn
) (

1 − R
(
ξ hkn−1

))
− γ cn

(
R (ξn) − R

(
ξ hkn−1

))
, γ v

)

X

∣∣∣

≤ C

(∥∥∥γ
(
cn − chkn

)∥∥∥
2

X
+

∥∥∥ξn − ξ hkn−1

∥∥∥
2

X
+ ‖v‖2X

)
,

((
1 − R

(
ξ hkn−1

))
γ

(
cn − chkn

)
, γ

(
cn − chkn

))

X
≥ 0,

(
ξn − ξ hkn−1, γ v

)

X
≤ C

(∥∥∥ξn − ξ hkn−1

∥∥∥
2

X
+ ‖γ v‖2X

)
,

‖γ v‖2X ≤ ‖v‖2V ,

where ε is a positive parameter assumed to be small, C , here and in what follows,
is a positive constant which is independent of the discretization parameters h and k,
but possibly depending on the continuous solution c and ξ , and we denote δcn =
(cn − cn−1)/k. After easy algebra we obtain the following

∥∥∥cn − chkn

∥∥∥
2

H
+ Ck

∥∥∥cn − chkn

∥∥∥
2

V
≤ Ck

( ∥∥∥cn − vh
∥∥∥
2

V
+

∥∥∥ξn − ξ hkn−1

∥∥∥
2

X

+ ∥∥c′
n − δcn

∥∥2
H +

∥∥∥cn − chkn

∥∥∥
2

H
+

(
δcn − δchkn , cn − vh

)

H

)

+
∥∥∥cn−1 − chkn−1

∥∥∥
2

H
, ∀vh ∈ V h .

Therefore, by induction we find that, for all {vhj }nj=1 ⊂ V h ,

∥∥∥cn − chkn

∥∥∥
2

H
+ Ck

n∑

j=1

∥∥∥c j − chkj

∥∥∥
2

V
≤ Ck

n∑

j=1

( ∥∥∥c j − vhj

∥∥∥
2

V
+

∥∥∥ξ j − ξ hkj

∥∥∥
2

X
+ k2

+
∥∥∥c′

j − δc j
∥∥∥
2

H
+

∥∥∥c j − chkj

∥∥∥
2

H
+

(
δc j − δchkj , c j − vhj

)

H

)
+

∥∥∥c0 − ch0

∥∥∥
2

H
.

(22)
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Now, keeping in mind again the additional regularity (20), we write variational equa-
tion (14), at time t = tn and for w = wh ∈ Xh ⊂ H1(ΓS), to obtain

(
ξ ′
n, w

h
)

X
+

∫

ΓS

∇Sξn · ∇Sw
h dσ +

(
ξn, wh

)

X
=

(
γ cn (1 − R (ξn)) , wh

)

X

−
(
(uτ )n · ∇Sξn + (∇S · un) ξn, w

h
)

X
, ∀wh ∈ Xh . (23)

Subtracting variational equations (23) and (19) we have

(
ξ ′
n − δξ hkn , wh

)

X
+

∫

ΓS

∇S

(
ξn − ξ hkn

)
· ∇Sw

h dσ +
(
ξn − ξ hkn , wh

)

X

=
(
γ cn (1 − R (ξn)) − γ chkn

(
1 − R

(
ξ hkn−1

))
, wh

)

X

−
(
(uτ )n · ∇S

(
ξn − ξ hkn

)
+

(
ξn − ξ hkn

)
∇S · un, wh

)

X
, ∀wh ∈ Xh,

and thus,

(
ξ ′
n − δξhkn , ξn − ξhkn

)

X
+

∫

ΓS

∇S

(
ξn − ξhkn

)
· ∇S

(
ξn − ξhkn

)
dσ

+
(
ξn − ξhkn , ξn − ξhkn

)

X
−

(
γ cn (1 − R (ξn)) − γ chkn

(
1 − R

(
ξhkn−1

))
, ξn − ξhkn

)

X

+
(
(uτ )n ∇S

(
ξn − ξhkn

)
+

(
ξn − ξhkn

)
∇S · un, ξn − ξhkn

)

X

=
(
ξ ′
n − δξhkn , ξn − wh

)

X
+

∫

ΓS

∇S

(
ξn − ξhkn

)
· ∇S

(
ξn − wh

)
dσ

+
(
ξn − ξhkn , ξn − wh

)

X
−

(
γ cn (1 − R (ξn)) − γ chkn

(
1 − R

(
ξhkn−1

))
, ξn − wh

)

X

+
(
(uτ )n ∇S

(
ξn − ξhkn

)
+

(
ξn − ξhkn

)
∇S · un, ξn − wh

)

X
, ∀wh ∈ Xh .

Now, taking into account the following estimates and properties

(
ξ ′
n − δξ hkn , w

)

X
= (

ξ ′
n − δξn, w

)
X +

(
δξn − δξ hkn , w

)

X
,

∣∣(ξ ′
n − δξn, w

)
X

∣∣ ≤ C
∥∥ξ ′

n − δξn
∥∥2
X + ε‖w‖2X ,

(
δξn − δξ hkn , ξn − ξ hkn

)

X
≥ 1

2k

( ∥∥∥ξn − ξ hkn

∥∥∥
2

X
−

∥∥∥ξn−1 − ξ hkn−1

∥∥∥
2

X

)
,

∣∣∣(∇S · un)
(
ξn − ξ hkn

)
, w

)

X

)∣∣∣ ≤ C

(∥∥∥ξn − ξ hkn

∥∥∥
2

X
+ ‖w‖2X

)
,

∣∣∣
(
γ cn(1 − R(ξn)) − γ chkn

(
1 − R

(
ξ hkn−1

))
, w

)

X

∣∣∣

=
∣∣∣
((

γ cn − γ chkn
) (

1 − R
(
ξ hkn−1

))
− γ cn

(
R(ξn) − R

(
ξ hkn−1

))
, w

)

X

∣∣∣

≤ C

(∥∥∥γ
(
cn − chkn

)∥∥∥
2

X
+

∥∥∥ξn − ξ hkn−1

∥∥∥
2

X
+ ‖w‖2X

)
,
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(
ξn − ξ hkn , w

)

X
≤ C

(∥∥∥ξn − ξ hkn

∥∥∥
2

X
+ ‖w‖2X

)
,

∣∣∣
(
(uτ )n · ∇S

(
ξn − ξ hkn

)
, w

)

X

∣∣∣ ≤ ε

∥∥∥∇S

(
ξn − ξ hkn

)∥∥∥
2

[L2(ΓS)]d
+ C ‖w‖2X ,

where ε is again a positive parameter assumed to be small and we denote δξn =
(ξn − ξn−1)/k, after easy algebra it follows that

∥∥∥ξn − ξhkn

∥∥∥
2

X
+ Ck

∥∥∥∇S

(
ξn − ξhkn

)∥∥∥
2

[L2(ΓS)]d
≤ Ck

( ∥∥∥ξn − wh
∥∥∥
2

H1(ΓS)
+

∥∥∥ξn − ξhkn

∥∥∥
2

X

+
∥∥∥ξn − ξhkn−1

∥∥∥
2

X
+ ∥∥ξ ′

n − δξn
∥∥2
X +

∥∥∥cn − chkn

∥∥∥
2

V
+

(
δξn − δξhkn , ξn − wh

)

X

)

+
∥∥∥ξn−1 − ξhkn−1

∥∥∥
2

X
, ∀wh ∈ Xh .

Thus, again by induction we obtain the following estimates for the surface concentra-
tion,

∥∥∥ξn − ξhkn

∥∥∥
2

X
+ Ck

n∑

j=1

∥∥∥∇S

(
ξ j − ξhkj

)∥∥∥
2

[L2(ΓS)]d
≤ Ck

n∑

j=1

( ∥∥∥ξ j − wh
j

∥∥∥
2

H1(ΓS)
+ k2

+
∥∥∥ξ j − ξhkj

∥∥∥
2

X
+

∥∥∥ξ ′
j − δξ j

∥∥∥
2

X
+

∥∥∥c j − chkj

∥∥∥
2

V
+

(
δξ j − δξhkj , ξ j − wh

j

)

X

)

+
∥∥∥ξ0 − ξh0

∥∥∥
2

X
, ∀

{
wh

j

}n
j=1

⊂ Xh . (24)

Combining now estimates (22) and (24) we have, for all {vhj }nj=1 ⊂ V h and

{wh
j }nj=1 ⊂ Xh ,

∥∥∥cn − chkn

∥∥∥
2

H
+

∥∥∥ξn − ξ hkn

∥∥∥
2

X
+ Ck

n∑

j=1

[ ∥∥∥c j − chkj

∥∥∥
2

V
+

∥∥∥∇S(ξ j − ξ hkj )

∥∥∥
2

[L2(ΓS)]d
]

≤ Ck
n∑

j=1

( ∥∥∥c j − vhj

∥∥∥
2

V
+

∥∥∥ξ j − ξ hkj

∥∥∥
2

X
+

∥∥∥c′
j − δc j

∥∥∥
2

H
+

∥∥∥c j − chkj

∥∥∥
2

H
+ k2

+
(
δc j − δchkj , c j − vhj

)

H
+

∥∥∥ξ j − wh
j

∥∥∥
2

H1(ΓS)
+

∥∥∥ξ j − ξ hkj

∥∥∥
2

X
+

∥∥∥ξ ′
j − δξ j

∥∥∥
2

X

+
(
δξ j − δξ hkj , ξ j − wh

j

)

X

)
+

∥∥∥c0 − ch0

∥∥∥
2

H
+

∥∥∥ξ0 − ξ h0

∥∥∥
2

X
.

Finally, taking into account that

n∑

j=1

k
(
δc j − δchkj , c j − vhj

)

H
=

(
cn − chkn , cn − vhn

)

H
+

(
ch0 − c0, c1 − vh1

)

H

+
n−1∑

j=1

(
c j − chkj , c j − vhj −

(
c j+1 − vhj+1

))

H
,
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n∑

j=1

k
(
δξ j − δξ hkj , ξ j − wh

j

)

X
=

(
ξn − ξ hkn , ξn − wh

n

)

X
+

(
ξ h0 − ξ0, ξ1 − wh

1

)

X

+
n−1∑

j=1

(
ξ j − ξ hkj , ξ j − wh

j −
(
ξ j+1 − wh

j+1

))

X
,

applying a discrete version of Gronwall’s inequality (see, e.g., [5]), we obtain the
following a priori error estimates result.

Theorem 3 Let the assumptions of Theorem 1 and the additional regularities (20)
hold. If we denote by (c, ξ) and (chk, ξ hk) the respective solutions to problems P and
Ph, respectively, then the following estimates are obtained, for all vh = {vhkn }Nn=0 ⊂
V h and wh = {whk

n }Nn=0 ⊂ Xh,

max
0≤n≤N

[ ∥∥∥cn − chkn

∥∥∥
2

H
+

∥∥∥ξn − ξ hkn

∥∥∥
2

X

]

+ k
N∑

j=1

(∥∥∥c j − chkj

∥∥∥
2

V
+

∥∥∥∇S

(
ξ j − ξ hkj

)∥∥∥
2

[L2(ΓS)]d

)

≤ Ck
N∑

j=1

( ∥∥∥c j − vhj

∥∥∥
2

V
+

∥∥∥c′
j − δc j

∥∥∥
2

H
+

∥∥∥ξ j − wh
j

∥∥∥
2

H1(ΓS)
+

∥∥∥ξ ′
j − δξ j

∥∥∥
2

X

)

+Ck2 + Ck−1
N−1∑

j=1

∥∥∥c j − vhj −
(
c j+1 − vhj+1

)∥∥∥
2

H
+ C max

0≤n≤N

∥∥∥cn − vhn

∥∥∥
2

H

+Ck−1
N−1∑

j=1

∥∥∥ξ j − wh
j −

(
ξ j+1 − wh

j+1

)∥∥∥
2

X
+ C max

0≤n≤N

∥∥∥ξn − wh
n

∥∥∥
2

X

+C
∥∥∥c0 − ch0

∥∥∥
2

H
+ C

∥∥∥ξ0 − ξ h0

∥∥∥
2

X
. (25)

Estimates (25) are the basis for the analysis of the convergence rate. Hence, as an
example, assume the following additional regularity conditions on the continuous
solution:

c ∈ C([0, T ]; H2(Ω)) ∩ H2(0, T ; H) ∩ H1(0, T ; V ),

ξ ∈ C([0, T ]; H2(ΓS)) ∩ H2(0, T ; X) ∩ H1(0, T ; H1(ΓS)). (26)

From these regularities, taking into account the approximation properties of the finite
element interpolation operators we easily obtain that (see [7])

∥∥∥c0 − ch0

∥∥∥
2

H
+

∥∥∥ξ0 − ξ h0

∥∥∥
2

X
≤ Ch2.

We have the following.
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Corollary 1 Let the assumptions of Theorem 3 and the additional regularities (26)
hold. Then, the numerical approximation of Problem P by Problem Ph is linearly
convergent; that is, there exists a positive constant C, independent of the discretization
parameters h and k, such that

max
0≤n≤N

[ ∥∥∥cn − chkn

∥∥∥
H

+
∥∥∥ξn − ξ hkn

∥∥∥
X

]
≤ C(h + k).

The proof of Corollary 1 is done by using the classical properties on the approximation
by the finite element spaces and the finite element interpolation operators PVh and PXh

(see again [7]), and taking into account that (see [3,5] for details),

k−1
N−1∑

j=1

( ∥∥∥c j − vhj −
(
c j+1 − vhj+1

)∥∥∥
2

H
+

∥∥∥ξ j − wh
j −

(
ξ j+1 − wh

j+1

)∥∥∥
2

X

)

≤ Ch2
(
‖c‖2H1(0,T ;V )

+ ‖ξ‖2H1(0,T ;H1(ΓS))

)
,

k
N∑

j=1

( ∥∥∥c′
j − δc j

∥∥∥
2

H
+

∥∥∥ξ ′
j − δξ j

∥∥∥
2

X

)
≤ Ck2

(
‖c‖2H2(0,T ;H)

+ ‖ξ‖2H2(0,T ;X)

)
.

4 Numerical results

In order to verify the behaviour of the numerical method described in the previous
section, some numerical experiments have been performed both in two- and three-
dimensional problems.

4.1 Numerical scheme

Given the solution chkn−1 and ξ hkn−1 at time tn−1, the discrete volumetric surfactant
concentration chkn is obtained from the following discrete linear variational equation,
for all vh ∈ V h ,

(
chkn , vh

)

H
+ kD

((
chkn , vh

))
+ k kaL

(
γ chkn

(
1 − R(ξ hkn−1)

ξm

)
, γ vh

)

X

+ k
(
un · ∇chkn , vh

)
=

(
chkn−1, v

h
)

H
+ k kdL

(
ξ hkn−1, γ vh

)

X
.

Later, we get the discrete surface concentration ξhkn from the discrete linear variational
equation, for all wh ∈ Xh ,

(
ξ hkn , wh

)

X
+ kDS

∫

ΓS

∇Sξ
hk
n · ∇Sw

h dσ + k
(
(uτ )n · ∇Sξ

hk
n + ξ hkn ∇S · un, wh

)

X
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+ k kdL

(
ξ hkn , wh

)

X
=

(
ξ hkn−1, w

h
)

X
+ k kaL

(
γ chkn

(
1 − R

(
ξ hkn−1

)

ξm

)
, wh

)

X

.

We note that both numerical problems lead to linear non-symmetric systems and
so, the classical LU method was applied for their solution.

The numerical scheme was implemented using FreeFEM++ (see [15] for details)
on a Intel Core i5-3337U@ 1.80 GHz and a typical 3d run (100 step times and 10,000
nodes) took about 22 s of CPU time.

4.2 A first example: numerical convergence on a 2d domain

Our aim here is to show the numerical convergence of the finite element scheme.
Therefore, a sequence of uniform partitions of both the time interval and the domain
Ω = [0, 1]×[0, 1] into 2(nd)2 triangles, has been performed (the finite element mesh
corresponding to nd = 8 is plotted on the right-hand side of Fig. 1). ΓS = [0, 1]× {1}
has been selected as the surface of diffusion, and so we have (nd + 1)2 and nd + 1
degrees of freedom for the volumetric and surface surfactant concentration problems,
respectively.

The solutions obtained with nd = 1024 and k = 0.0005 have been considered as
the “exact solutions”, while the numerical errors are given by

Ehk = max
0≤n≤N

(∥∥∥cn − chkn

∥∥∥
H

+
∥∥∥ξn − ξ hkn

∥∥∥
X

)
.

The physical setting of the example is depicted in Fig. 1 (left-hand side), and the
following data have been employed in the simulations:

T = 1 s, cb = 3, D = 1, DS = 1, kaL = 1, kdL = 1, ξm = 1,

u = 0, c0(x, y) = 3(1 − y) and ξ0(x) = 0 for x, y ∈ [0, 1].

Fig. 1 Example 1: physical setting and mesh example for nd = 8.

123



134 J Math Chem (2018) 56:120–139

Table 1 Example 1: numerical errors (×102) for some nd and k

nd k

0.001 0.002 0.005 0.01 0.02 0.05 0.1

8 0.009968 0.026507 0.076216 0.158685 0.321974 0.799018 1.554957

16 0.008719 0.025334 0.075073 0.157521 0.320742 0.797565 1.553153

32 0.008419 0.025043 0.074781 0.157220 0.320422 0.797190 1.552692

64 0.008345 0.024970 0.074707 0.157145 0.320341 0.797094 1.552575

128 0.008327 0.024952 0.074688 0.157125 0.320320 0.797070 1.552550

256 0.008323 0.024947 0.074683 0.157121 0.320315 0.797064 1.552536

512 0.008321 0.024946 0.074682 0.157119 0.320314 0.797063 1.552536

Fig. 2 Example 1: asymptotic behaviour of the numerical scheme

In Table 1 the numerical errors obtained for some nd and k are shown. The evolution
of the error versus the parameter k + h is plotted in Fig. 2 (here, h =

√
2

nd ). The linear
convergence of the algorithm, stated in Corollary 1, seems to be achieved.

4.3 Second example: a 3d example

As a second test, the prism [0, 10−5] × [0, 10−5] × [0, 10−4] is considered as the
physical domain, with ΓD as the lower boundary (ΓD = [0, 10−5] × [0, 10−5] × {0})
and ΓS as the upper one (ΓS = [0, 10−5] × [0, 10−5] × {10−4}).

Taking the value of the different parameters from [6], a solution of propanol is
considered, and we employ the following data:

cb = 333 mol/m3, D = 5.2 × 10−10 m3/s, DS = 5.2 × 10−10 m2/s,

kaL = 7.8 × 10−6 m/s, kdL = 199.74392 s−1, ξm = 7.1 × 10−6,
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u(x) = 100(yz, xz, xy), c0(x) = cb(10
4 − z) × 10−4 mol/m3 for all x = (x, y, z) ∈ Ω,

ξ0(x) = 0 mol/m2 for all x ∈ ΓS .

Using an structuredmeshwith 6561 nodes (h ≈ 1.77×10−6) and a time discretization
parameter of k = 10−3,we leave the solution evolve for T = 10 s. In the left-hand side
of Fig. 3 the isolines of the volumetric concentration of surfactant are depicted at final
time, while in the right-hand side the evolution in time of the surface concentration at
the center point is shown.

We note that with the data of the previous simulation, by using the initial condition
of c0(x) = cb for all x ∈ Ω, no velocity in the bulk (u = 0), and a value of k = 10−5 s
(for a total time of T = 0.1 s), the results of the simulation match with those obtained
in [10] with a one-dimensional model, coinciding the experimental data from [16] for
the superficial tension γ, which is given by

γ (t) = γ0 − n R θ ξm log

(
ξm

ξm − ξ(t))

)
,

where γ0 = 0.0725 N/m denotes the surface tension of pure water, θ = 293 K the
temperature, R = 8.31 J/(Kmol) is the gas constant and n is a constant which is equal
to one for a non-ionic surfactant. It can be observed in Fig. 4 the evolution in time, in
the center of the upper surface, at point x = (5 × 10−6, 5 × 10−6, 10−4), of both the
volumetric concentration and the superficial tension, the last one in logarithmic scale.

Fig. 3 Example 2: final volumetric concentration (mol/m3) and evolution in time of the surface concen-
tration (mol/m2) at the center point, respectively
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Fig. 4 Example 2: evolution in time of the volumetric surfactant concentration and the superficial tension

4.4 Third example: diffusion effect

As a final test, the domain Ω = [0, 10−4] × [0, 10−4] × [0, 5 × 10−5] has been
considered, ΓS being the whole upper boundary (ΓS = [0, 10−4] × [0, 10−4] × {5 ×
10−5}), and ΓD the central region of the lower boundary (ΓD = [2.5 × 10−5, 7.5 ×
10−5] × [2.5 × 10−5, 7.5 × 10−5] × {0}).

By using the same data for propanol employed in the previous example, now the
conditions of this simulation correspond with the following data:

T = 0.5 s, cb = 1 mol/m3, u = 0, ξ0 = 0 mol/m2.

Moreover, the initial condition for the volumetric concentration of surfactant is given
as the value of cb on the vertical part of the boundary ΓD, vanishing in the rest of the
domain, that is,

c0(x, y, z) =
{
cb if (x, y) ∈ [2.5 × 10−5, 7.5 × 10−5] × [2.5 × 10−5, 7.5 × 10−5],
0 elsewhere.

In Fig. 5 the evolution in time of the volumetric concentration at the upper central
node (5 × 10−5, 5 × 10−5, 5 × 10−5) is plotted. We can see an initial decay and
recovery of the volumetric concentration, due to the equilibrium with the surface
concentration, while after about 0.1 s, there is a maintained decay due to the diffusion
of the surfactant.

In Fig. 6 (left-hand side) the evolution in time of the surface concentration at
the same upper central node is plotted for different values of the surface diffusion
coefficient DS (related to the volumetric diffusion coefficient D and even a zero
value). The evolution in time of the surface concentration shows an initial raising
until the equilibrium with the surface concentration, and later another decay of the
concentration, due to the equilibrium with a volumetric concentration which also
decreases caused by the diffusion effect. We note that the results are rather similar for
all these values of the coefficient and only if we apply a zoom at time t = 0.1 s small
differences can be observed (right-hand side). A possible explanation of this behaviour
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Fig. 5 Example 3: evolution in time of volumetric concentration at the middle point (mol/m3)

Fig. 6 Example 3: evolution in time of surface concentration (mol/m3) for different values of the surface
diffusion coefficient (left) and zoom at time t = 0.1 s (right)

Fig. 7 Example 3: initial and final volumetric surfactant concentrations (mol/m3), respectively
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Fig. 8 Example 3: final surface surfactant concentration on ΓS (×107) (mol/m2)

is that the surface concentration depends more on the volumetric concentration than
on the surface diffusion.

Finally, in Fig. 7 both the initial conditions and the final volumetric concentrations
are shown from a top view, while in Fig. 8 the diffusion of the surface concentration
on ΓS is presented. We can clearly observe the diffusion effect in both concentrations.

5 Conclusions

In this work we considered a new multidimensional mixed-kinetic adsorption model
for the evolution of the surfactant concentrations. The model was written as a coupled
system of nonlinear parabolic partial differential equations: a convective diffusion
equation for the bulk surfactant concentration in the domain and a surface diffusion
equation for its surface concentration on a manifold. The corresponding variational
formulation was derived, for which a fully discrete approximation was introduced by
using the finite element method and the implicit Euler scheme. A priori error estimates
were proved, and the linear convergence of the algorithm was deduced under suitable
additional regularity conditions. Finally, some numerical simulations were performed
to show the accuracy of the approximation and the behaviour of the solutions.

We would like to remark that this work is a first step to use this model in more
realistic situations. In particular, as a future work we plan to extend the algorithm we
implemented here to the case of non-planar manifolds, as it occurs for instance in the
bubbles.
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