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Abstract Unconventional basis functions, constructed from exponential type orbitals
(ETOs) with hyperbolic cosine functions, are applied to Roothaan-Hartree-Fock cal-
culations of atoms within the minimal basis sets framework. The most popular ETOs,
Slater type orbitals, B functions and ψ(α∗) functions with α∗ = 2, and two types of
hyperbolic cosine functions, cosh(βr) and cosh(βr + γ ), are used in this work. The
performance of the present basis functions is investigated and compared to the con-
ventional double-zeta Slater-type basis set and numerical Hartree-Fock results. The
improvement in the atomic energies clearly demonstrates how the accuracy increases
whenwemove fromETO toETOwith hyperbolic cosine basis functions. The resulting
improved minimal basis sets can also be useful in molecular calculations.

Keywords Hyperbolic cosine function ·Exponential type orbital ·Roothaan-Hartree-
Fock calculation

1 Introduction

It is well known that Roothaan-Hartree-Fock (RHF) approximation [1,2] is widely
used in electronic structure calculations of atoms and molecules. Since the determi-
nation of the physical properties of atomic and molecular systems requires the use
of reliable basis sets, the selection of appropriate basis functions is of fundamental
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importance for both the accuracy and computational cost. Exponential type orbitals
(ETOs) describe correctly the asymptotic behaviour of the exact electronic wave func-
tion, namely, the cusps at the nuclei [3] and exponential decay at large distances [4].
Therefore, ETOs would be desirable as basis functions. Some of the ETOs receive
much attention in RHF method because of their useful properties:

The Slater type orbitals with integer principal quantum number n (ISTOs) are the
simplest and commonly used basis functions in atomic calculations [5–8] and are
defined as [9,10]

χnlm(ζ ; �r) = (2ζ )n+(1/2)

[(2n)!]1/2 rn−1e−ζr Slm(θ, ϕ), (1)

where Slm(θ, ϕ) denotes complex or real spherical harmonic and ζ is the orbital
exponent.

The B functions (BTOs) are also used in atomic andmolecular calculations [11–13]
due to their remarkably simple Fourier transforms and are given by [14]

Bnlm(ζ ; �r) = (ζr)l

2n+l(n + l)! k̂n−1/2(ζr)Slm(θ, ϕ), (2)

where k̂ν(x) is the reduced Bessel function.
Alternative to these ETOs, the complete orthonormal sets of ψ(α∗) functions intro-

duced by Guseinov [15,16] are defined as

ψ
(α∗)
nlm (ζ ; �r) =

[
(2ζ )3(n − l − 1)!
(2n)α

∗
�(q∗ + 1)

] 1
2

e−x/2xl L(p∗)
n−l−1(x)Slm(θ, ϕ), (3)

where L p
q (x) and�(x) are the generalized Laguerre polynomials and gamma function,

respectively and p = 2l + 2 − α∗, q = n + l + 1 − α∗, −∞ < α∗ < 3, x = 2ζr .
The ψ(α∗) functions are a general form of the complete orthonormal sets of ETOs
involving Laguerre polynomials such as Coulomb-Sturmian (α∗ = 1) and Lambda
(α∗ = 0) functions, and have been applied to atomic self consistent field calculations
within the minimal basis sets approximation [17].

Despite the aforementioned benefits of ETOs, their use in molecular calculations
is restricted due to the difficulties in the evaluation of molecular integrals [18]. There-
fore, the developments in the construction of economic and efficient basis sets of
ETOs are important for their application to electronic structure-property studies. In
this context, in the last few decades, hyperbolic cosine cosh(β r) (HC) and modified
hyperbolic cosine cosh(β r + γ ) (MHC) functions have been incorporated into non-
integer n-Slater type orbitals (NISTOs). It has been reported that the NISTO with
HC function (NISTO-HC) [19] and NISTO with MHC function (NISTO-MHC) [20]
have provided remarkably improvement in atomic RHF energies within the minimal
basis sets framework. Similarly, in recent works, the HC and MHC functions have
also been combined with ψ(α∗) functions [21] and generalized ETOs [22–24] in order
to increase the basis set quality.
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It should be noted that the use of HC and MHC functions splits exponential part of
an ETO into equally and different-weighted two components, respectively:

e−ζr cosh(βr) = 1

2
(e−(ζ+β)r + e−(ζ−β)r ), (4)

e−ζr cosh(βr + γ ) = 1

2
(e−γ e−(ζ+β)r + eγ e−(ζ−β)r ). (5)

Here ζ , β and γ are the variational parameters with a constraint ζ > β ≥ 0, γ can
be either positive, zero or negative. Thus, ETO with HC type basis functions provide
a double-zeta effect with a single basis function using fewer number of variational
parameters.

The purpose of this paper is to combine HC and MHC functions with frequently
used ETOs and compare the performances of ETO with HC type basis functions to
each other using the same number of variational parameters. For this purpose, we use
ISTO, BTO and ψ(2) functions (We select α∗ = 2 case for ψ(α∗) functions because
ψ(2) gives the best energy values for atoms among the ψ(α∗) functions with fixed
integer parameter α∗ [17]). We define ETO-HC and ETO-MHC functions in this work
as follows:

Hφ
nlm(ζ, β; �r) = Nφ(ζ, β)φnlm(ζ ; �r) cosh(βr), (6)

Mφ
nlm(ζ, β, γ ; �r) = Nφ(ζ, β, γ )φnlm(ζ ; �r) cosh(βr + γ ), (7)

where Nφ(ζ, β) and Nφ(ζ, β, γ ) are the normalization constants depend on the chosen
ETO. Using Eq. (6), one can construct BTO-HC, ISTO-HC and ψ(2) −HC functions
for φnlm(ζ ; �r) = Bnlm(ζ ; �r), φnlm(ζ ; �r) = χnlm(ζ ; �r) and φnlm(ζ ; �r) = ψ

(2)
nlm(ζ ; �r),

respectively. Analogously, BTO-MHC, ISTO-MHC and ψ(2) − MHC functions can
be obtained from Eq. (7).

In order to demonstrate the efficiency of ETO-HC and ETO-MHC functions
(ETO ≡ BTO, ISTO and ψ(2)), we have performed RHF calculations with these
functions for the ground states of some closed and open shell neutral atoms up to
atomic number Z = 20. The computational method is described in the next section.
Hartree atomic units are used throughout this work.

2 Computational method

All the one- and two-electron integrals required in this work were expressed by
linear combinations of basic atomic integrals. The new integral package was incor-
porated into our atomic RHF program [17,25,26] which is written in Mathematica
programming language [27]. The nonlinear parameters {ζ, β, γ } in basis functions
were variationally optimized by using themethods exist inMathematica programming
language such asNewton, quasi-Newton, conjugate gradient and principal axis. To find
the best minimum energy values and to avoid local minimums, we have performed
optimization process several times using different starting points for all nonlinear
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parameters and applying above mentioned methods. It should be noted that optimiza-
tion process of Mg, Ar and Ca atoms with ψ(2) − HC functions could not be fully
completed because total energies of these atoms depend on ζ −β differences of some
basis functions and increase continuously with increasing ζ and β parameters. There-
fore, in these cases, we imposed the restriction 0 ≤ β < ζ < 2Z which is the most
suitable interval according to our analysis. It should be noted that we have not observed
any simple relationship or regularity for the optimized nonlinear parameters ζ , β and
γ of all the species examined.

For the reliable comparison of the results obtained with different basis functions,
the conventional principal quantum numbers were used in atomic basis sets. In all
our final wavefunctions, the virial ratios are in agreement to within seven decimal
figures of the exact value (-2) and this indicates that our nonlinear optimizations are
sufficiently accurate.

3 Results and discussion

By the use of ETO-HC and ETO-MHC basis functions (ETO ≡ BTO, ISTO and
ψ(2)), we have carried out RHF calculations for some atoms with atomic number
Z ≤ 20 within the minimal basis sets framework.

The ETO-HC and ETO-MHC energies are given in Table 1. The conventional
double-zeta ISTO basis set (ISTO-CDZ) energies [28] are also tabulated in this table
for comparative purposes. Among the ETO-HC functions, theψ(2)−HCgives the best
results for light atoms. However, as one moves to heavier atoms, the performance of
the ISTO-HC basis sets is better than the others.We can easily see fromTable 1 that the
ETO-MHC energies remarkably lower than the ETO-HC ones for all the ETOs. This
is because of additional variational parameter γ which removes the equally-weight
restriction existing in the ETO-HC functions. The ETO-MHC results can also be
compared with the ISTO-CDZ energies to show the accuracy of these basis functions.
The ψ(2) − MHC basis sets for first row atoms give slightly more accurate energy
values than their corresponding ISTO-CDZ basis sets. On the other hand, ISTO-MHC
basis sets give closer results to ISTO-CDZ values than ψ(2) − MHC and BTO-MHC
basis sets for remaining atoms. Thus, when we compare the ETO-MHC basis set
qualities with each other, a similar trend is observed as in the case of ETO-HC results.

Figure 1 shows the energy errors (E) of the ETO-HC and ETO-MHC basis sets,
relative to the numerical Hartree–Fock (NHF) values [7].We note that the error plots of
ψ(2) - and ISTO-based basis sets are similar to those of theirψ(α∗) - and NISTO-based
analogues, respectively [19–21]. In general, the energy errors do not increase smoothly
with an increasing atomic number Z. The ETO-HC error curves have a common peak
at Ne (Z = 10). The maximum energy errors are found at Ne atom as 0.2346, 0.2327
and 0.2085 hartrees for BTO-HC, ISTO-HC and ψ(2) − HC basis sets, respectively.
As can be seen from Fig. 1, the ETO-MHC basis sets remarkably reduce the energy
errors. For example, the errors for Ne atom are reduced to 0.0227, 0.0414 and 0.0118
hartrees by BTO-MHC, ISTO-MHC and ψ(2) − MHC basis sets, respectively.

In order to compare the contributions of HC and MHC functions to parent ETOs in
atomic energy calculations, the differences between the results of ETO and ETO-HC
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Fig. 1 The EETO-HC and EETO-MHC energy errors E relative to the ENHF values (in a. u.).

Table 2 The energy differences of ETO-HC and ETO-MHC basis sets with respect to ETO (ETO ≡ BTO,
ISTO and ψ(2)) basis sets* (EHC

X = EX − EX−HC and EMHC
X = EX − EX−MHC , in a. u.)

Atom EHC
BT O EHC

I ST O EHC
ψ(2) EMHC

BT O EMHC
I ST O EMHC

ψ(2)

He(1S) 0.01377695 0.01377695 0.01377695 0.01401638 0.01401638 0.01401638

Be(1S) 0.03152995 0.01160579 0.01998841 0.03697659 0.01346563 0.02091808

B(2P) 0.05111310 0.02141930 0.03510988 0.06072661 0.02509581 0.03783346

C(3P) 0.08854156 0.04774064 0.06892045 0.10587201 0.05678940 0.07748475

N(4S) 0.15011751 0.09677923 0.12746221 0.18160480 0.11748096 0.14859440

O(3P) 0.25839765 0.18997760 0.23087452 0.32961541 0.24730244 0.28989694

F(2P) 0.40790442 0.32299598 0.37613361 0.53868905 0.43659792 0.49311643

Ne(1S) 0.60508546 0.50225185 0.56962633 0.81703775 0.69352338 0.76637572

Mg(1S) 0.81222016 0.59984784 0.81412988 0.96404001 0.74553086 0.91016936

Ar(1S) 1.59161542 0.93059876 1.85233607 1.63885193 1.03231258 1.96025206

Ca(1S) 1.92526146 1.02398032 2.08810468 1.96876951 1.11406709 2.17125200

* The ISTO energies were taken from [5]. The BTO energies were taken from [11]. The ψ(2) energies were
taken from [17]

basis sets, and the results of ETO and ETO-MHC basis sets are listed in Table 2.
Addition of both HC and MHC functions significantly improve the basis function
quality of all the ETOs examined in this work. Efficiency of the ETO-HC and ETO-
MHC functions relative to the parent ETO increases with an increasing atomic number
Z. We note from Table 2 that the energy differences between ETO and ETO-HC basis
sets are larger than between ETO-HC and ETO-MHC basis sets. These results indicate
that the parameter β has more effect than the parameter γ on the basis function quality.
It is also seen that the accuracy improvement in the ISTO is smaller than the BTO
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and ψ(2)function. This is contrary to the performances of the examined ETOs within
the minimal basis framework. The ISTO gives better results in atomic calculations but
incorporated HC and MHC functions bring closer the quality of these ETOs to each
other.

Due to thefixed integer parameterα = 2, theψ(2)−HCandψ(2)−MHCenergies do
not reach the ψ(α∗)-HC and ψ(α∗)-MHC ones [21], respectively. Similarly, ISTO-HC
and ISTO-MHC yield higher energy values than NISTO-HC [19] and NISTO-MHC
[20], respectively. The energy differences between ISTO- and NISTO-based basis
sets are larger than between ψ(2) - and ψ(α∗) -based basis sets. Because the parameter
α∗ in the ψ(α∗) functions is common to all basis functions but n∗ in the NISTOs is
different for each basis function in an atom. For example, the energy differences (in
hartree) for Ne atom are 0.000042(Eψ(2)−HC −Eψ(α∗)−HC ), 0.000378(Eψ(2)−MHC −
Eψ(α∗)−MHC ), 0.133412(EI ST O−HC − EN I ST O−HC ) and 0.0375(EI ST O−MHC −
EN I ST O−MHC ), respectively. It may be said that these differences are acceptable
because we use fewer number of variational parameters. Moreover, the noninteger
parameters α∗ and n∗ can restrict the applicability of such ETO with HC type basis
functions to molecular calculations by causing additional time consuming difficulties
in themolecular integral computations. For this reason, the present ETO-HC and ETO-
MHC basis functions could be more convenient for molecular structure calculations.

4 Conclusion

We have applied ETO-HC and ETO-MHC type basis functions to atomic RHF calcu-
lations. The presented results clearly demonstrate how the accuracy is increased when
we move from ETO via ETO-HC to ETO-MHC functions. It is shown that addition of
HC and MHC function improves the performances of polynomial type functions (i.e.,
BTO and ψ(2)) more than of ISTO within the minimal basis framework. Each type of
the ETO-MHC function, and likewise the ETO-HC function, yields results of almost
similar quality.

According to the above-mentioned statement, such improved minimal basis set
descriptions of atoms could also be advantageous for the determination of various prop-
erties of molecules. Therefore, the proposed different basis functions can be chosen
properly for atomic and molecular studies when RHF and semi-empirical molecu-
lar orbital methods are employed. All the present wavefunctions are available upon
request to ES at the e-mail address: ercan.sahin@amasya.edu.tr.
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