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Abstract We study the properties of travelling combustion waves in a diffusional
thermal model with a two-step competitive exothermic-exothermic reaction mecha-
nism. This investigation considers the system in one spatial dimension under adiabatic
conditions. Based on the notion of the crossover temperature, the model is examined
analytically using the activation energy asymptotic method to predict travelling com-
bustion wave behaviour in the limit of large activation energies. The model is then
studied numerically using a shooting-relaxation method over a wide range of param-
eter values, such as those describing the ratios of enthalpies, pre-exponential factors
and activation energies. It is demonstrated that the flame speed as a function of these
parameters is a single-valued monotonic function and there are two flame regimes
identified—each region representing parameter values when one reaction dominates
the other.
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1 Introduction

Our focus in thiswork is the study of a reaction schemewhich is described by themodel
with two-stage competitive exothermic reactions, where both reactions occur simul-
taneously and consume the same reactants. This model has practical applications in
simulating the combustion ofMeCH2,whereMe is either TitaniumorZirconium [1,2].
Although most observed physico-chemical phenomena are a consequence of dozens,
hundreds or even thousands of concurrent or consecutive endothermic and exothermic
reactive processes, simple lumped models representing the elementary reactive steps
can be utilized to provide useful understanding. In some cases, especially when the
whole combustion process is thermally dominated by two exothermic reactive steps,
the simplest useful model comprises a pair of exothermic reactions producing either
metal carbo-hydrides or metal hydrides, characterized by different chemical kinetics.
Since both reactions feed on the same reactant, they are referred to as competitive
reactions. On the other hand, if the reactions consume different reactants, they are
then referred to as parallel reactions [3]. In the competitive case the two reactions
are both chemically and thermally coupled, whereas the reactions are only thermally
coupled in the parallel case.

There are several studies [4–7] into the scheme describing the competitive
exothermic-endothermic (exo-endo) reactions. Hmaidi et al. [4] investigated the exis-
tence and stability of one-dimensional flame fronts propagating through a solid reactive
slab and treated the endothermic reaction as heat loss to perturb the exothermic
reaction. An analysis was given based on the limit of large activation energies and
the assumption that the endothermic reaction has larger activation energy and pre-
exponential factor than the exothermic reaction. Sharples et al. [5] extended the work
of [4] to relax the choice of parameter values, including Lewis number, the ratios of
enthalpies and pre-exponential factors. Linear stability of the combustion waves in
regime where the exothermic reaction is dominating over the endothermic reaction
was studied using the Evans function method. Hopf bifurcation points were found
and confirmed by using a numerical method to solve the governing partial differential
equations (pdes). In [6], a similar systematic stability analysis of combustion waves
for the case where the endothermic reaction plays a more dominant role was carried
out. It was found that the inclusion of the competitive endothermic reaction stabi-
lized the reaction system. Gubernov et al. [7] defined a ‘crossover temperature’ to
study the properties of combustion wave solutions in a diffusion-reaction model with
a two-step competitive exothermic-endothermic reaction mechanism under adiabatic
conditions—the heat release from the exothermic reaction is equal to the heat con-
sumption by the endothermic reaction. Based on this definition, the regimes where
exothermic and endothermic reactions dominate were identified and the properties of
the combustion wave solutions, particularly the flame speed and extinction conditions,
were investigated. The flame speed as a function of parameters was found to be either
monotonic single-valued or double-valued C-shaped.

In contrast to the case of the competitive exo-endo reactions which have been
extensively studied above, the scheme describing the competitive exothermic reactions
(exo-exo reactions) has received little attention. Sidhu et al. [8] and Towers et al. [9]
have investigated flame propagation in a model with two-stage competitive exo-exo
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reactions and demonstrated the existence of regions of bi-stability—co-existence of
two stable solutions corresponding to slow and fast branches for the same parameter
values. There was a third unstable branch joining the two stable branches based on
solving a system of ordinary differential equations (odes). They also illustrated a
hysteresis type behaviour that one reaction can switch rapidly to the other by varying
the activation energy of one of the reactions. In [10] we proposed an approximation
theory for solid fuels under adiabatic conditions. The asymptotic results obtained for
flame speed agreed well with the numerical solutions. The profiles of temperature and
mass fraction were also obtained analytically using piecewise approximation method
and confirmed numerically.

The work reported here presents an analysis for a two-step competitive exo-exo
reaction schemeemploying the definition of the crossover temperature proposedby [7].
Note that Towers et al. [9] gave a different definition of the crossover temperature by
requiring that the rate constants of the first and second reactions be equal. However,
here we prefer to use the definition that the heat releases by the two reactions are equal
so that the crossover temperature depends on the ratio of enthalpies (an important
parameter in our study). The model is analysed over a wide range of parameter values.
Following [8,9], we do not consider heat loss (Newtonian or convective cooling).
However, unlike the work reported in [8,9], we relax the restriction of the ratios of
activation energies, pre-exponential factors and enthalpies.

2 Mathematical model

A general schematic for a two-step competitive reaction mechanism is

A
k1(T )−−−→ B + Q1 (R1), A

k2(T )−−−→ C + Q2 (R2),

where A represents the reactant; B andC are chemically inert products (in otherwords,
the reactions are irreversible); Q1 > 0 and Q2 > 0 are enthalpies of the first (R1) and
the second (R2) reactions respectively. The reaction rate constants k1(T ) and k2(T )

obeyArrhenius kinetics. FollowingForbes andDerrick [11], the reaction rate constants
take the form

ki (T ) =
{
0, T < Ti ,

Aie−Ei /RT , T ≥ Ti , i = 1, 2,

where Ai and Ei are the pre-exponential factors and the activation energies and R is
the universal gas constant. T1 and T2 are the threshold temperatures above which the
first and second reaction occur. For simplicity, we set T1 = T2 = Ta , where Ta is the
ambient temperature. With the introduction of the dimensionless variables used in [8],
when u ≥ ua the governing pdes are

ut = uxx + v
(
e−1/u + qre− f/u

)
, (1)

vt = Le−1vxx − vβ
(
e−1/u + re− f/u

)
, (2)
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where q = Q2/Q1 , r = A2/A1 and f = E2/E1 . The subscripts represent derivatives
with respect to the specified independent variables.

In these equations, u and v correspond to the temperature nondimensionalized by
the adiabatic flame temperature for the systemwith reaction R1 only andmass fraction
of initial reactant A scaled over its value in the fresh mixture respectively; x and t
represent dimensionless spatial and time coordinates. The parameters q , r and f
are the ratios of enthalpies, the pre-exponential factors and the activation energies,
respectively. The Lewis number Le is the ratio of thermal tomass diffusivities, varying
from around unity for gaseous fuels to large values (� 1) for solid fuels. Finally, the
parameter, β, is the ratio of the activation energy to the enthalpy of reaction R1.

Equations (1) and (2) are subject to the boundary conditions

u = ua, v = v0, for x → ∞, (3)

ux = 0, vx = 0, for x → −∞. (4)

On the right boundary (x → ∞) , we have a ‘cold’ and ‘unburnt’ state (the ambient
temperature is ua and the consumption of the fuel is negligible) and no reactions
occur when u < ua . For definiteness and without loss of generality, the initial mass
fraction v0 is chosen to be one. Unlike [12], we do not set ua = 0 but specify the
value ua = 10−4 throughout our study (noting that this value corresponds to the
ambient temperature having a value of Ta ≈ 300K for these types of reactions). On
the left boundary (x → −∞) , neither the burnt temperature denoted as ub nor the
mass fraction can be specified. We assume no reaction should occur at the left end.
Consequently, the derivatives of u and v are set to zero.

We now consider a moving coordinate frame, ξ = x − ct . Such a consideration
transforms Equations (1) and (2) to

uξξ + cuξ + v
(
e−1/u + qre− f/u

)
= 0, (5)

Le−1vξξ + cvξ − vβ
(
e−1/u + re− f/u

)
= 0, (6)

where the constant c represents the flame speed and the subscript represents derivative
with respect to the moving front coordinate ξ .

Equations (5) and (6) are subject to the boundary conditions

u = ua, v = 1, for ξ → ∞, (7)

uξ = 0, vξ = 0, for ξ → −∞. (8)

3 Asymptotic analysis

To begin with, we denote the crossover temperature as u∗, at which the rate of heat
release from reaction R1 is equal to the rate of heat release from reaction R2. Con-
sidering heat released by R1 and R2 in Eq. (1) and by means of simple algebraic
manipulations, u∗ = ( f − 1)/ ln(qr) . Clearly, the crossover temperature depends
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on the parameter values q, r and f . There are two regions when u∗ > 0: (a)
f > 1 and qr > 1 , (b) 0 < f < 1 and 0 < qr < 1 ; and two regions when
u∗ < 0: (c) f > 1 and 0 < qr < 1 , (d) 0 < f < 1 and qr > 1 . One reaction
always dominates the other in the parameter space where u∗ < 0 . Reaction R1 always
releases much more heat than reaction R2 in region (c). We refer to this as R1 domina-
tion. On the other hand, for case (d), reaction R2 is more exothermic, and we refer to
this as R2 domination. Both cases (c) and (d) are feasible in the competitive exo-exo
reaction schemes but we do not present further analysis for cases (c) and (d) since
these two cases do not exhibit interesting dynamic behaviour as they can be reduced
to the traditional one-step scheme [12,13]. In this paper we will only focus on the
investigation of the properties of the combustion waves properties for case (a) since
case (b) can be mapped one-to-one to case (a) by interchanging the notations. We
note that case (d) is not possible in the competitive exo-endo reaction schemes since
it implies flame extinction as the rate of heat reduction by the endothermic reaction is
always greater than the rate of heat release by the exothermic reaction [7].

3.1 R1 dominated regime

In the region (a) and if f → ∞ , reaction R1 dominates and thus the second reaction
term in Eqs. (5) and (6) can be omitted. Therefore, for f � 1, we use the asymptotic
results of the single step irreversible exothermic reaction model to approximate the
solutions of the competitive exo-exo reaction model. To obtain asymptotic results,
the large activation energy limit is exploited. This plays the same role as the large β

limit, although there is not a one-to-one correspondence between them [12]. Based on
this limit, the burnt temperature and flame speed using the activation energy asymp-
totic (aea) method are

ub = 1

β
, c =

√
2Le

β
exp

(
−β

2

)
. (9)

Equation (9) is valid regardless of the values of the parameters q and r so long as
qr > 0 .

3.2 R2 dominated regime

For the case f → 1+ and qr > 1 , u∗ → 0+ . On the other hand, reaction R2
dominates in the region f < 1 and qr > 1 (case (d) discussed earlier). Consequently,
when the values of the parameters q and r (qr > 1) are fixed, the case f = 1 can be
considered as a supremum (least upper bound) of region (a) . When f = 1 , the system
(5) and (6) reduces to a single-step combustion model

uξξ + cuξ + v(1 + qr)e−1/u = 0, (10)

Le−1vξξ + cvξ − βv(1 + r)e−1/u = 0. (11)
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Introducing a new coordinate η = ξ
√
1 + qr and defining c̄ = c/

√
1 + qr and β̄ =

β(1 + r)/(1 + qr) , themodel can bewritten exactly the same as a standard single-step
model. Thus once again, the expressions for the burnt temperature and flame speed
written for the case when qr > 1 and f = 1 can be written in the original variables as

ub = 1 + qr

β(1 + r)
, c =

√
2Le(1 + qr)2

β(1 + r)
exp

(
− β(1 + r)

2(1 + qr)

)
. (12)

In the case qr → ∞ and f > 1 , reaction R2 dominates and thus the first reaction
term in Eqs. (5) and (6) can be neglected, leading to the system of odes

uξξ + cuξ + qrve− f/u = 0, (13)

Le−1vξξ + cvξ − βrve− f/u = 0. (14)

Hence for qr → ∞ and f > 1 , the burnt temperature and the flame speed are

ub = q

β
, c =

√
2Leq2r

β f 2
exp

(
−β f

2q

)
. (15)

Finally, it is clear from our analysis presented in this section that the burnt temper-
ature ub and the flame speed c are both dependent on the type and the properties of the
fuel. There is a possibility of a transition between one dominated regime to the other
when these fuel properties are varied.

4 Travelling wave solutions

The two-point boundary value problem (bvp) consisting of the ode system (5) and (6)
togetherwith boundary conditions (7) and (8)were solved numerically using a standard
shooting algorithm with a Runge-Kutta integration scheme. Following the approach
of [9], this solution was subsequently used in a relaxation algorithm to improve the
accuracy of result. In practice, there are three types of fuels – gaseous, porous and solid
fuels. Herewe use Le = 1, 2 and 10 to represent the Lewis numbers of gaseous, porous
and solid fuels respectively. Temperature and fuel profiles for different fuel types
are displayed with other parameter values fixed. Typical combustion wave solution
profiles are shown in amoving coordinate frame in Figs. 1 and 2. Looking from right to
left, the reaction temperature is increasing monotonically until the fuel is completely
consumed. The intervals of integration are scaled to range from 0 to 1 while the values
of the original variable representing the integration length are approximately 1200,
900 and 600 for Le = 1, 2 and 10 respectively. It is readily seen in Fig. 2 that the
reaction region for Le = 10 is much narrower than those for Le = 1 and Le = 2 . The
flame speed for Le = 10 (c ≈ 0.013) is more than double that for Le = 1 (c ≈ 0.006)
and the flame speed for Le = 2 is in between these speeds (c ≈ 0.008). In addition,
it should be pointed out that, similar to the relationship between Le and flame speed,
the larger the Lewis number the higher the value of the burnt temperature. However,
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Fig. 1 Combustion wave
solution profiles for
dimensionless
temperature βu(ξ) and mass
fraction v(ξ) for Le = 1 (red
solid lines), Le = 2 (blue dashed
lines) and Le = 10 (green dot
lines) with other parameter
values being β = 10 , f = 1.5 ,
q = 5 , r = 5 and ua = 10−4
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Fig. 2 Combustion wave
solution profiles for mass
fraction v(ξ). The parameter
values and notations used here
are the same with those in Fig. 1
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there is no simple correspondence between Lewis number and the burnt temperature
as there is no clear mapping between these two parameters.

4.1 Case 1: Le = 1 (gaseous fuels)

Tobeginwith,we present the numerical and asymptotic results for gaseous fuelswhose
Lewis number is normally set to unity (e.g. in [12]). Figure 3 shows themaximumburnt
temperature as a function of f for Le = 1 , r = 2 and two different values of β and q .
It is readily apparent that there are two distinct regimes. When f > 2 , reaction R2 is
almost completely ‘frozen’ and the peak value of the temperature equals the adiabatic
burnt temperature for the one-step model (indicated by the dashed lines). Hence,
we refer to the region f > 2 as reaction R1 dominated regime. In this regime, the
parameter q almost has no impact on the burnt temperature. However as f decreases,
reaction R2 becomes more important. The burnt temperature converges to the value
obtained by expression (12) as f → 1+ . Varying the parameter values of q and β can
result in significant changes to the value of ub when f = 1 as shown in Fig. 3 (left
boundary).
The dependence of the flame speed on f is illustrated in Fig. 4. The flame speed
converges to the asymptotic flame speed (a constant value) for the single stepmodel (9)
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Fig. 3 Dependence of the burnt
temperature ub on f for β = 5 ,
q = 5 (red curve 1), β = 5 ,
q = 0.45 (blue curve 2),
β = 10 , q = 5 (green curve 3)
and β = 10 , q = 0.45 (black
curve 4) with Le = 1 ,
r = 2 and ua = 10−4 . The
dashed lines represent the
asymptotic results (9) for
f → ∞, while diamonds
correspond to the asymptotic
solutions (12) for f = 1
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Fig. 4 Dependence of the flame
speed c on f . The parameter
values and the notations used
here are the same as those used
in Fig. 3

1 1.5 2 2.5 3
10−4

10−2

100

4

3

2

1

for large values of f ( f > 2). The discrepancy between the numerical solutions
using the shooting-relaxation method and the asymptotic results are smaller for β =
10 (curve 3, 4) than that for β = 5 (curve 1, 2). This is expected since the asymptotic
results (9) are obtained in the limit of large activation energy (β � 1). We also note
that the flame speed is almost independent of q for large values of f , while q becomes
more significant as f approaches one.
The above analysis shows the effect of the ratio of the activation energies on the
behaviour of combustion waves.

Next we will investigate the properties of combustion wave solutions when vary-
ing q and r . Here we choose two different values for the ratios of the activation
energies: f = 1 and f = 3 . The dependence of the flame speed on β is illustrated
in Figs. 5 and 6. The difference between the asymptotic results and the numerical
solutions reduces gradually with increasing β . Once again, it is apparent that there are
two distinct regimes depending on the choice of f . For f = 3 , the difference between
the solutions corresponding to q = 0.45 and q = 5 for the flame speed is small. When
β = 5 , the flame speeds for both values of q are c ≈ 0.2 . However, for f = 1, the
value of the flame speed for q = 5 is about 100 times larger than that for q = 0.45 .
For instance, the flame speeds for q = 0.45 and q = 5 are c ≈ 1.17 and c ≈ 0.011
when β = 5 . Thus, the ratio of enthalpies plays a significant role in the flame speed
when f = 1 . We fix the value of β to 10 hereafter since numerical solutions agree
well with asymptotic results when β ≥ 10 as shown in Figs. 5 and 6.
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Fig. 5 Flame speed versus β

for Le = 1 , f = 3 ,
r = 2 and ua = 10−4.
Numerical solutions
for q = 0.45 and q = 5 are
indicated by the red solid line
and black diamond respectively,
asymptotic results given by (9)
are represented by the blue
dashed line
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Fig. 6 Dependence of the flame speed on β for two different values of q with Le = 1 , f = 1 , r =
2 and ua = 10−4 . The left and right graphs show the results for q = 5 and q = 0.45 respectively. The red
solid line represents the numerical solutions and the blue dashed line corresponds to the asymptotic results
given by (12)

Figure 7 illustrates the dependence of flame speed on q in a log-log scale. Fixing
r = 2 and q ≥ 0.5 (since qr ≥ 1), the properties of the combustion waves are studied
with two distinctive values of f to demonstrate two different reaction dominated
regimes. In the R1 dominated regime ( f = 3), the flame speed is almost independent
of q. Furthermore, the numerical results for the flame speed are very close to the
asymptotic expression (9) for the one-step model. However, in the R2 dominated
regime ( f = 1), the parameter q plays a significant role in the behaviour of combustion
waves. Here, it is also shown that the flame speed behaviour shows close resemblance
to the asymptotic expression (12).

Finally, the dependence of flame speed on r is plotted in Fig. 8. Similarly, in the
R1 dominated regime ( f = 3), the parameter r has almost no impact on the flame
speed, while r is much more important in the R2 dominated regime ( f = 1). We note
that there is some discrepancy between the numerical and asymptotic results since
the asymptotic results are only valid in the large β limit and the value of β used in
this case is not very large compared with the value of qr . The difference reduces as
qr → 1 when f = 1 . However, both the numerical and asymptotic results show
similar generic behaviour when the parameter r is varied.
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Fig. 7 Dependence of the flame
speed c on q for
f = 3 and f = 1 with other
parameter values being Le = 1 ,
β = 10 , r = 2 and ua = 10−4 .
The green dashed line represents
the asymptotic results (9) for the
one-step model, while the blue
dashed line represents the
asymptotic results (12).
Numerical solutions for
f = 1 and f = 3 are indicated
by red and black solid lines
respectively

Fig. 8 Dependence of the flame
speed c on r for q = 5 . The
notations and the other
parameter values used here are
the same with those used in
Fig. 7

4.2 Case 2: Le > 1

In this section, we focus on the solutions corresponding to porous (Le = 2) and solid
(Le = 10) fuels. The results presented in this section are relevant to cases when the
fuel consists of particles of different sizes and shapes including soot powders. Figure 9
shows the dependence of burnt temperature on f for Le = 2 and Le = 10 . The two
curves are almost identical except that the burnt temperatures for Le = 2 are slightly
lower than those for Le = 10 . As can be seen from the expressions (9) and (12),
the burnt temperature is independent of Lewis number. The asymptotic results for
burnt temperature agree excellently with numerical solutions. Figure 10 illustrates the
dependence of flame speed on f for Le = 2 and Le = 10 . It is obvious that the
flame speed for Le = 10 is greater than that for Le = 2 . Compared with the burnt
temperature (results shown in Fig. 9), Fig. 10 clearly shows that the Lewis number
has a greater impact on the flame speed.

Figures 11 and 12 show the dependence of flame speed on β in the two distinct
dominated regimes. It is readily seen that the two different regimes can be clearly
distinguished by choosing different values of the ratio of activation energies. Figure 11
illustrates the relationship between c and β in the R1 dominated regime, whereas the
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Fig. 9 Dependence of the burnt temperature ub on f for Le = 2 (red dotted line) and Le = 10 (blue solid
line) withβ = 10 , q = 5 , r = 2 and ua = 10−4 . The black dashed lines represent the asymptotic results (9)
for f → ∞, while the blue (upper) and red (inverted) triangles represent the asymptotic results (12) for
Le = 10 and Le = 2 respectively for f = 1 . The inset clearly shows that the burnt temperature for Le = 2
is close but always lower than the value for Le = 10

Fig. 10 Dependence of the
flame speed c on f for Le = 2
(red) and Le = 10 (blue) with
β = 10 , q = 5 ,
r = 2 and ua = 10−4 . The
dashed lines represent the
asymptotic results (9) for
f → ∞
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Fig. 11 Flame speed versus β

for two values of Le with f = 1 ,
q = 5 , r = 2 and ua = 10−4
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Fig. 12 Flame speed versus β

for two values of Le with f = 3 ,
q = 5 , r = 2 and ua = 10−4

Fig. 13 Dependence of the flame speed c on q for f = 3 (R1 dominated regime) and f = 1 (R2 dominated
regime) with other parameter values being Le = 2 , β = 10 , r = 2 and ua = 10−4 . The green dashed
line represents the asymptotic results (9) for the one-step model, while the blue dashed line represents the
asymptotic results (12). Numerical solutions for f = 1 and f = 3 are indicated by red and black solid
lines respectively

dependence of c on β in the R2 dominated regime is shown in Fig. 12. The asymptotic
results are in qualitative agreement with the numerical solutions, although there are
clear differences between them. Due to the approach taken to obtain the asymptotic
results, the difference between the numerical solutions and the asymptotic results
becomes greater for larger values of Lewis number.

Next the effect of the ratios of the activation energies and pre-exponential factors
are presented. To be consistent with the previous section (our investigation of Le = 1),
f = 1 and f = 3 are fixed and the effects of q and r in the R1 and R2 dominated
regimes are investigated. Themain results are shown in Figs. 13 – 16. Figures 13 and 14
illustrate the dependence of the flame speed on q for Le = 2 and Le = 10, respec-
tively. The dependence of the flame speed on r for Le = 2 and Le = 10 are shown
in Figs. 15 and 16. In the R1 dominated regime ( f = 3), the system converges to the
irreversible single exothermic reaction model and the flame speed is almost indepen-
dent of the parameters q and r . Furthermore, these figures show that the difference
between the numerical solutions and the asymptotic results (based on the one-step

123



J Math Chem (2017) 55:1187–1201 1199

Fig. 14 Dependence of the
flame speed c on q for
Le = 10 and r = 2 . The
notations and the other
parameter values used here are
the same with those used in
Fig. 13

Fig. 15 Dependence of the
flame speed c on r for
Le = 2 and q = 5 . The
notations and the other
parameter values used here are
the same with those used in
Fig. 13

Fig. 16 Dependence of the
flame speed c on r for
Le = 10 and q = 5 . The
notations and the other
parameter values are the same
with those used in Fig. 13

model) is greater for higher Lewis numbers. However, in the R2 dominated regime
( f = 1), the parameters q and r play important roles in the determination of the flame
speed. It is shown that the flame speed increases monotonically as q or r increases.
The asymptotic results (12) provide a good approximation for f = 1 especially when
the product qr is of order β (qr 	 β).
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5 Conclusion

We have investigated the properties of the combustion waves for a two-stage com-
petitive exothermic reaction scheme under adiabatic conditions. The boundary value
problem is studied both numerically and analytically. In particular, the asymptotic
flame speed and burnt temperature for the case when the ratio of the activation
energies f = 1 are obtained using the activation energy asymptotic method. The
asymptotic results and numerical solutions are in good agreement, especially when
the product qr is of the order of β . Moreover, it is found that the flame speed as a
function of model parameters is a single-valued monotonic function.

When f is sufficiently large, reaction R2 is not activated and the combustion wave
solutions have a similar behaviour to the irreversible one-step exothermic reaction
model. This regime is referred to as the R1 dominated regime. In this regime, the flame
speed is almost independent of the parameters q and r . However, when f → 1+ ,
reaction R2 is activated and dominates reaction R1. This is accompanied by a decrease
(increase) of the burnt temperature and flame speed depending on decreasing (increas-
ing)q with other parameter values fixed. Parameter r can alsomake a significant impact
in the R2 dominated regime. Although there is a difference between the numerical and
asymptotic solutions quantitatively, the results are qualitatively in agreement.

To summarise, the combustion waves for the two-step competitive exothermic
reaction model shows various dynamical behaviour depending on the choice of the
parameter values. Our work clearly shows that the key parameters that governs the
dynamical behaviour of the combustion waves are the ratios of the activation ener-
gies, the enthalpies and the pre-exponential factors of the two competitive exothermic
steps of the reaction mechanism. In our future work, the inherent characteristic which
reflects the existence of multiplicity of travelling wave solutions as reported in [8,9]
will be studied along with the linear stability of the travelling wave solutions.
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