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Abstract In this paper two mathematical models for handling water pollution are
introduced. In the first one we assume that algae and fungi are in competition for
resources that come from wastewater, while in the second one we introduce explicitly
the equation of nutrients. Both algae and fungi need dissolved oxygen (DO) for their
biological process of growth. But there is a difference, indeed algae produce it too
and in a higher quantity than the one they use. For the first model it is shown that
if the coexistence equilibrium exists, it is stable without additional conditions. If the
competition rate between algae and fungi is not high for a chosen set of parameters
the stability of the coexistence equilibrium is reached even without an external con-
stant input of DO in the system. For the second model we have found the matching
equilibrium points with the ones of the first model, furthermore other two equilibria
are found.

Keywords Mathematical model · Algae · Fungi · Competition · Wastewater

1 Introduction

Algae are important in a lake, as they can improve the quality of the aquatic ecosystem,
growing under right conditions such as adequate nutrients (mostly phosphorus, but
nitrogen is important too). The nutrients that are present in the wastewater can derive
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from agricultural and/or industrial discharges. Fungi can be used for biodegradation
of organic pollutant in a waterbody, because the grow using the nutrients obtained
from the biodegradation, [1]. Some mathematical models in the literature study the
behaviour of algae biomass in a waterbody in the presence of organic pollutants, [4,5].
In [2,3] the case of fungi has been addressed. In this paper we want to investigate the
situation in which both algae and fungi are present in the same waterbody, assuming
that they compete for the resources coming from the pollutants.

In this paper we introduce two mathematical systems modeling the algae and fungi
behaviour in a waterbody. The waterbody considered could be nutrient-rich waters,
like municipal wastewater or some industrial effluents. Both algae and fungi can feed
on these wastes and therefore purify the water, while also producing a biomass suitable
for biofuels production.

In the next Section we present the first model and in Sect. 3 its qualitative analysis.
Sect. 4 contains the extended model in which also nutrients are present, its qualitative
behaviour is examined in Sect. 5. These two models are compared in Sect. 6 and a
final discussion concludes the paper.

2 The first mathematical model

In the first model we assume that algae and fungi are in competition for food, since
both share the same resources. Further, fungi as well as algae need dissolved oxygen
(DO) to thrive but we assume that the algae’s production and input of DO into the
system is much larger than their own use for their growth.

The model consists of three equations that describe the time evolution of the algae
population, the fungi population and the DO respectively. The model, in which all the
parameters are nonnegative, reads:

d A

dt
= rA A − aA A − bA A

2 − cAF

dF

dt
= hOF

k + kOO
− aF F − bF F

2 − cAF

dO

dt
= qO + gA − aOO − f

hOF

k + kOO
. (1)

In the first equation algae grow at a constant rate rA and are washed out at a constant
rate aA. We assume that algae are in competition among themselves at a constant rate
bA and also experience interspecific competition with fungi at rate c.

In the second equation the fungi’s growth depends on the presence of DO. They are
washed out at rate aF . The intraspecific competition occurs at rate bF while c denotes
the rate of the interspecific competition with the algae population.

The third equation shows the evolution in time of DO.We assume that it is supplied
from external sources at rate qO , but a part of it comes from the algae own production
at rate g. We take further into account its washing out, at rate aO and its depletion due
to its assumption by fungi at rate f � 1.
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3 The qualitative analysis of the model

Tofind the equilibriumpoints of themodel, we need to solve the equilibrium equations,
i.e. the system obtained by setting the right hand side of (1) to zero, namely

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A(rA − aA − bA A − cF) = 0

F

(
hO

k + kOO
− aF − bF F − cA

)

= 0

qO + gA − aOO − f
hOF

k + kOO
= 0.

(2)

Further, for the stability analysis, we need to calculate the Jacobian matrix J of system
(1), given by

⎡

⎢
⎢
⎢
⎣

rA − aA − 2bA A − cF −cA 0

−cF −aF − 2bF F − cA + hO

k + kOO

hkF

(k + kOO)2

g − f hO

k+kOO
−aO− f hkF

(k+kOO)2

⎤

⎥
⎥
⎥
⎦

.

(3)

Solving (2) we obtain the analytic expression of three equilibrium points. In addi-
tion, we prove that two other equilibria exist. We also show that all these points are
conditionally locally asymptotically stable, while the coexistence equilibrium is stable
if it is feasible.

Proposition 3.1 The trivial equilibrium point, E0 = (0, 0, 0), exists if

qO = 0. (4)

Furthermore, it is stable if the following condition holds:

rA < aA. (5)

Proof For A = F = O = 0 in the system (2) we get that E0 exists if qO = 0. The
characteristic polynomial associated to the matrix (3) evaluated at E0 is

det(J − μ) = (rA − aA − μ)(−aF − μ)(−aO − μ) = 0.

To have the stability of E0 all the eigenvalues should be negative thus the condition
(5) must hold. ��
Proposition 3.2 The fungi-and-algae-free point E1 =

(
0, 0, qOa

−1
O

)
exists always.

It is stable if the following conditions hold:

rA < aA and
hqO

kaO + kOqO
< aF . (6)

123



1484 J Math Chem (2017) 55:1481–1504

Fig. 1 The equilibrium E1 is stably achieved with the parameter values rA = 10.1273, aA = 16.93072,
bA = 11.7382, c = 19.3012, h = 1.61592, k = 0.454245, kO = 5.87845, aF = 2.55798, bF =
0.0344478, qO = 2, g = 3.63317, aO = 5.41771, f = 1

Proof In fact for A = F = 0 in (2) from the last equation we get O = qOa
−1
O . While

the characteristic polynomial associated to E1 is

det(J − μ) = (rA − aA − μ)(−aO − μ)

(
hqO

kaO + kOqO
− aF − μ

)

= 0.

To have all the eigenvalues negative the conditions (6) must hold. ��
In Fig. 1 one can see that for a chosen set of parameters the equilibrium E1 is stably

achieved.

Proposition 3.3 The fungi-free equilibrium

E2 =
(
rA − aA

bA
, 0,

qObA + g(rA − aA)

bAaO

)

is feasible if
rA > aA (7)

and it is stable if
hO2

k + kOO2
< aF + cA2 (8)

holds.

Proof From the first equilibrium equation of (2) in which we set F = 0 it follows

A = rA − aA
bA

.
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Fig. 2 The equilibrium E2 is stable for the parameter values rA = 8.90096, aA = 4.14886, bA =
1.62848, c = 0.0691916, h = 11.8402, k = 1.92602, kO = 16.7554, aF = 18.7713, bF = 15.4976,
qO = 69.5303, g = 13.847, aO = 19.037, f = 1

Thus for the nonnegativity of the algae population, (7) must hold. From the third
equation instead we get the equilibrium value of the oxygen.

O = qObA + g(rA − aA)

bAaO
.

The characteristic polynomial associated to E1 is once again easily obtained,

det(J − μ) = (−rA + aA − μ)(−aO − μ)

(
hO2

k + kOO2
− aF − cA2 − μ

)

= 0,

as well as its eigenvalues

μ1 = −ra + aA < 0

μ2 = −aO < 0

μ3 = hO2

k + kOO2
− aF − cA2

Requiring μ3 < 0 we find the condition (8). ��
In Fig. 2 we show that for a chosen set of parameters the stability of the fungi-free

equilibrium, E2, is attained.

Proposition 3.4 The algae-free point is in fact a set of multiple equilibria, namely
(0, F3, O3), (0, F4, O4) and (0, F5, O5). Of them, only one is feasible, if

O >
aFk

h − aFkO
, (9)
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and it is stable if
rA < aA + cF3. (10)

Proof Part 1: Existence
For A = 0 the system (2) becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A = 0
hO

k + kOO
− aF − bF F = 0

qO − aOO − f
hOF

k + kOO
= 0.

(11)

Solving the second equation with respect to F we get

F = O(h − aFkO) − aFk

bF (k + kOO)
. (12)

Condition (9) arises by requiring the positivity of the expression (12). Note that the
opposite case, obtained when h − aFkO < 0,

O <
aFk

h − aFkO
,

cannot arise, because O < 0 would then follow, which is impossible because the
oxygen must be a nonnegative quantity.

Substituting the expression (12) for F into the third equation of the system (11) we
obtain the following third degree equation in O

aO3 + bO2 + cO + d = 0, (13)

with

a = −aObFk
2
O < 0

b = qObFk
2
O − 2aObFkkO − f h2 + f haFkO

c = 2qObFkkO − aObFk
2 + f haFk

d = qObFk
2 > 0.

Since a < 0 and d > 0 by Descartes’ rule of signs the third degree polynomial (13)
in O has at least one positive root. We are able to show that there is exactly one such
root. In Table 1 the only four possible cases are summarized.

The first case is impossible, in fact assuming that b > 0 and c < 0 we find

aObFk + f h2

kO
< qObFkO − aObFk + f haF < −qObFkO .
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Table 1 The four possible cases
for the signs of the coefficients
of the third degree equation (13)

Cases a b c d Number of real positive roots

1) − + − + 3 (impossible)

2) − + + + 1

3) − − − + 1

4) − − + + 1

But this is a contradiction, because the term in themiddle should be less than a negative
term (on the right) and greater than a positive one (on the left side).

Thus there is only one positive equilibrium, with O3

E3 =
(

0,
O3(h − aFkO) − aFk

bF (k + kOO3)
, O3

)

with O3 the real positive root of (13) satisfying (9).
Part 2: Stability

To study the stability of the equilibrium point we evaluate the Jacobian matrix (3) at
E3. The resulting characteristic polynomial det(J − μ) explicitly becomes

(rA − aA − cF3 − μ)

{

μ2 +
(

aF + 2bF F3 + aO + f hkF3
(k + kOO3)2

− hO3

k + kOO3

)

μ +
(

aO + f hkF3
(k + kOO3)2

)

(aF + 2bF F3) − aOhO3

k + kOO3

}

= 0.

The eigenvalue μ1 = rA − aA − cF3 is negative if (10) holds, while the roots of the
quadratic polynomial in μ are negative with no further conditions. It turns out that
both coefficients of the terms of the two lowest degrees in μ are positive, so that the
Routh–Hurwitz conditions are unconditionally satisfied. In fact, substituting F3, (12),
for the coefficient of μ we get

(

aF + 2hO3

k + kOO3
− 2(O3aFkO + aFk)

k + kOO3
+ aO + f hkF3

(k + kOO3)2
− hO3

k + kOO3

)

=
(

aF + hO3

k + kOO3
− 2aF + aO + f hkF3

(k + kOO3)2

)

= O3(h − aFkO) − aFk

bF (k + kOO3)
+ aO + f hkF3

(k + kOO3)2
= F3 + aO + f hkF3

(k + kOO3)2
> 0.

Similarly, for the constant term, by dividing by aO , denoting by H a positive quantity,
we have:

aF + 2bF F3 − hO3

k + kOO3
+ H > 0.

��
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Fig. 3 The equilibrium E3 is stabile for the parameters rA = 4.85571, aA = 13.2729, bA = 11.6077,
c = 12.7024, h = 11.4803, k = 2.3815, kO = 1.11246, aF = 1.40551, bF = 1.95987, qO = 65.3973,
g = 16.7907, aO = 15.374, f = 1

Figure 3 shows that for a chosen set of parameters the algae-free equilibrium, E3,
is stably achieved.

For the coexistence equilibrium point we have the following result

Proposition 3.5 There exists at least one feasible coexistence equilibrium
E4 = (A∗, F∗, O∗) if the following three conditions hold:

δ = bFbA−c2 > 0, rA−aA−bA A
∗ > 0, (aFc+bF )(k+kOO

∗)(rA−aA) > chO∗
(14)

and whenever it exists, it is stable.

Proof To find the conditions for the existence of the coexistence equilibrium point
from the first equation of the system (2) we get

F = rA − aA − bA A

c

and substitute it into the remaining two equations. We solve these two equations with
respect to A and we match the resulting expressions

A = (aFc + bF )(rA − aA)(k + kOO) − chO

(k + kOO)(bFbA − c2)

= f hO(rA − aA) + c(aOO − qO)(k + kOO)

cg(k + kOO) + f hbAO
.

Thus, we now have the following cubic polynomial in O:

a1O
3 + b1O

2 + c1O + d1 = 0, (15)
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with

a1 = −aOk
2
Oδ

b1 = kO( f hc + bFkOg)(rA − aA) + kO(kOqO − 2aOk)δ

+(aFkO − h)( f hbA + ckOg)

c1 = k( f hc + 2bFkOg)(rA − aA) + k(2kOqO − aOk)δ

+chg(2aFkO − h) + aFkhbA
d1 = aFck

2g + k2qOδ + bFk
2g(rA − aA).

For δ = bFbA − c2 > 0, it follows a1 < 0 and d1 > 0. Thus the polynomial (15) by
the Descartes’ rule of signs has at least one positive root O∗. For the feasibility of the
equilibrium we need to have F∗ > 0 and A∗ > 0, providing thus the second and the
third conditions in (14).

To study the stability, the characteristic polynomial of (3) evaluated at E4 gives the
cubic equation

det(J − μ) = μ3 + Rμ2 + Sμ + P = 0

with

R = bA A
∗ + aO + bF F

∗ + f hkF∗

(k + kOO∗)2
> 0

S = A∗F∗δ + bFaO F∗ + f hkF∗(bA A∗ + bF F∗)
(k + kOO∗)2

+ h2kF∗O∗

(k + kOO∗)3
> 0

P = δ

(

aO A∗F∗ + f hkF∗2A∗

(k + kOO∗)2

)

+ bA A∗h2kF∗O∗

(k + kOO∗)3
+ cghkA∗F∗

(k + kOO∗)2
> 0.

For δ = bFbA −c2 > 0, which holds by feasibility, the three eigenvalues are negative.
Thus E4 is stable whenever it is feasible. ��

In Fig. 4 we show that the coexistence equilibrium is stable for a selected set of
parameter values.

In Table 2 we summarize the feasibility and stability conditions for the five equi-
librium points of model (1).

In Fig. 5 for a chosen set of parameters and using the same initial conditions, but
changing the value of qO , the constant input ofDO in the system, the stable coexistence
equilibrium, E4, is obtained, left frame, while in the right frame instead E2 is found.
Thus, starting from the coexistence equilibrium, by decreasing the rate qO at which
oxygen is supplied into the system, the fungi-free equilibrium is obtained.
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Fig. 4 Two possible configurations for the equilibrium E4, qO = 0 and qO = 1. It is stable in the following
cases. Left: qO = 0, the point (1.20, 0.30, 0.55) is achieved for the parameters rA = 1, aA = 0.001,
bA = 0.8, c = 0.1224, h = 1.1, k = 1, kO = 1, aF = 0.001, bF = 0.8, g = .1, aO = 0.001, f = 1.
Right: qO = 1, the point (1.08, 1.08, 10.15) is obtained for the same parameters as before but changing
the value of qO

Table 2 The feasibility and stability conditions for the five equilibrium points of model (1)

Eq. Feasibility conditions Stability conditions

E0 qO = 0 rA < aA

E1 None rA < aA and
hqO

kaO + kOqO
< aF

E2 rA > aA
hO2

kaO + kO O2
< aF + cA2

E3 O3 >
aFk

h − aFkO
rA < aA + cF3

E4 rA − aA − bA A
∗ > 0, bFbA − c2 > 0

(aFc + bF )(k + kO O∗)(rA − aA) > chO∗ None

Fig. 5 Left frame: the equilibrium E4 is stable for qO = 30; rA = 19.6445, aA = 1.73234, bA = 11.5828,
c = 3.34324, h = 16.676, k = 12.4305, kO = 0.517493, aF = 3.04963, bF = 1.3597, g = 11.5323,
f = 0.835718, aO = 5.42261 Right frame: the equilibrium E2 at the stability for the same parameters as
before and qO = 20
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4 The mathematical model with nutrients

In this section we consider another model in which the nutrients N are explicitly taken
into account as a dependent dynamic variable. The model reads:

d A

dt
= g(N )A − eA A − mAA

2

dF

dt
= k(N , O)F − eF F − mF F

2

dN

dt
= qN − rg(N )A − sk(N , O)F − eN N

dO

dt
= qO + gAA − eOO − cOk(N , O)F (16)

with

g(N ) = hAN

kA + kN N
and k(N , O) = k1NO

k2 + k3N + k4O + k3k4NO
.

Note that in (16) the growth rate of A is assumed to depend directly on N . This fact is
expressed using a Monod equation, i.e. the function g(N ). The growth of F depends
on both N and O , thus it is expressed by a product of two Monod equations in N and
O respectively, giving the function k(N , O). All the parameters are nonnegative, and
furthermore we assume r, s, cO ≥ 1.

5 The qualitative analysis of the second model

To find the equilibrium points of themodel, we need to solve the equilibrium equations
of (16), thus the system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A [g(N ) − eA − mAA] = 0

F [k(N , O) − eF − mF F] = 0

qN − rg(N )A − sk(N , O)F − eN N = 0

qO + gAA − eOO − cOk(N , O)F = 0

(17)

Further, for the stability analysis, we need to calculate the Jacobian matrix of the
system (1)

J̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

J̃1,1 0 J̃1,3 0

0 k(N , O) − eF − 2mF F
dk(N , O)

dN
F

dk(N , O)

dO
F

rhAN

kA + kN N
−sk(N , O) J3,3 −s

dk(N , O)

dO
F

gA −cOk(N , O) −cO
dk(N , O)

dN
F J̃4,4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(18)
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with

J̃1,1 = hAN

kA + kN N
− eA − 2mAA, J̃1,3 = hA(kA + kN N )A − kNhAN A

(kA + kN N )2
,

J̃3,3 = −rhA A (kA + kN N − kN N )

(kA + kN N )2
− s

dk(N , O)

dN
F J̃4,4 = −eO − cO

dk(N , O)

dO
F

Here

dk(N , O)

dN
,

dk(N , O)

dO

are the derivatives of k(N , O) with respect to N and O respectively.
Solving the equilibrium equations we obtain the analytic expressions of four equi-

librium points. In addition, we prove that three other equilibria exist. We also show
that all these points are conditionally locally asymptotically stable.

Proposition 5.1 The trivial equilibrium point, Ẽ0 = (0, 0, 0, 0), exists if

qO = qN = 0. (19)

Furthermore, if it exists, it is stable.

Proof For A = F = N = O = 0 in the system (17) we obtain that Ẽ0 exists if
qO = qN = 0. The characteristic polynomial associated to the matrix (18) evaluated
at Ẽ0 is

det( J̃ − μ) = (eA + μ)(eF + μ)(eN + μ)(eO + μ) = 0.

All the eigenvalues are negative thus Ẽ0 is stable if it exists. ��
In Fig. 6 we show that for a chosen set of parameters the stability of Ẽ0 is attained.

Proposition 5.2 The algae-fungi-and-oxygen-free point, namely Ẽ1 = (0, 0, qNe
−1
N ,

0), exists if
qO = 0. (20)

Furthermore, it is stable if the following condition holds:

eAqNkN + eAeN kA − hAqN > 0. (21)

Proof For A = F = O = 0 in the system (17) we get that Ẽ1 exists if qO = 0. The
characteristic polynomial associated to the matrix (18) evaluated at Ẽ1 is

det( J̃ − μ) =
(

eA − hAqN
qNkN + eN kA

+ μ

)

(eF + μ)(eN + μ)(eO + μ) = 0.

To have the stability of Ẽ1 the condition (21) must hold. ��
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Fig. 6 The equilibrium Ẽ0 is stable for the parameter values hA = 1.26987, kA = 9.13376, kN = 6.32359,
eA = 0.975404, mA = 2.78498, k1 = 5.46882, k2 = 9.57507, k3 = 9.64889, k4 = 1.57613, eF =
9.70593, mF = 9.57167, qN = 0, r = 1.41886, s = 4.21761, eN = 4.85376, qO = 0, gA = 8.0028,
eO = 9.15736, cO = 7.92207

Fig. 7 The equilibrium Ẽ0 is stable for the same parameter values as for Fig. 6 and qN = 45.2896

Figure 7 shows that for a chosen set of parameters the stability of Ẽ1 is attained.

Proposition 5.3 The algae-fungi-and-nutrient-free point, namely Ẽ2 = (0, 0, 0, qO
e−1
O ), exists if

qN = 0. (22)

Furthermore, if it exists it is stable.
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Fig. 8 The equilibrium Ẽ2 is stable for the same parameter values as for Fig. 6 and qO = 40.7362

Proof For A = F = N = 0 in the system (17) we get that Ẽ2 exists if qN = 0. The
characteristic polynomial associated to the matrix (18) evaluated at Ẽ2 is

det( J̃ − μ) = (eA + μ)(eF + μ)(eN + μ)(eO + μ) = 0.

For stability all the eigenvalues must be negative thus Ẽ2 is stable if it exists. ��
Figure 8 shows the stable equilibrium Ẽ2 achieved for a chosen set of parameters.

Proposition 5.4 The algae-and-fungi-free point, Ẽ3 = (0, 0, qNe
−1
N , qOe

−1
O ), exists

always. Furthermore, it is stable if the following conditions hold

eAqNkN + eAeN kA − hAqN > 0 (23)

and
k1qNqO

qNqOk3k4 + eOqNk3 + eNqOk4 + eN eOk2
< eF . (24)

Proof For A = F = 0 in the system (17) we get that Ẽ3 exists always. The charac-
teristic polynomial associated to the matrix (18) evaluated at Ẽ2 is

det( J̃ − μ) =
(

eF − k − 1qNqO
qNqOk3k4 + eOqNk3 + eNqOk4 + eN eOk2

+ μ

)

×
(

eA − hAqN
qNkN + eN kA

+ μ

)

(eN + μ)(eO + μ) = 0.

To have all the eigenvalues negative (23) and (24) must hold, thus Ẽ3 is stable. ��
In Fig. 9 we show that for a chosen set of parameters the stable equilibrium Ẽ3 is

attained.
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Fig. 9 The equilibrium Ẽ3 is stable for the same parameter values as for Fig. 6 and qN = 45.2896,
qO = 40.7362

Proposition 5.5 The fungi-free point is in fact a set of multiple equilibria, namely
(A4, 0, N4, O4), (A5, 0, N5, O5) and (A6, 0, N6, O6). Of them, only one is feasible,
if

hAN

kA + kN N
> eA (25)

and it is stable if

N4O4eFk3k4 − N4O4k1 + N4eFk3 + O4eFk4 + eFk2 > 0 (26)

and
B1 > 0 and C1 > 0 (27)

hold, with B1 and C1 as below.

Proof Part 1: Existence
For F = 0 the system (17) becomes,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A [g(N ) − eA − mAA] = 0

qN − rg(N )A − eN N = 0

qO + gAA − eOO = 0

F = 0

(28)

Solving the third equation of (28) with respect to O we find

O = qO + gAA

eO
> 0, (29)

and from the first equation we obtain A,
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Table 3 The four possible cases
for the signs of the coefficients
of the third degree equation (31)

Cases a2 b2 c2 d2 Number of real positive roots

1) + + + − 1

2) + + − − 1

3) + − + − 3 (impossible)

4) + − − − 1

A = g(N ) − eA
mA

. (30)

For the feasibility of Ẽ4 we need to ask the positivity of (30), thus condition (25) must
hold. Substituting the expression of A previously found into the second equation of
the system (28), a third degree polynomial in N is obtained,

a2N
3 + b2N

2 + c2N + d2 = 0, (31)

with

a2 = k2NmAeN > 0

b2 = 2kAkNmAeN + rh2A − k2NmAqN − reAhAkN

c2 = k2AmAeN − 2kAkNmAqN − reAhAkA
d2 = −k2AmAqN < 0.

Since a2 > 0 and d2 < 0 by Descartes’ rule of signs the third degree polynomial (31)
in N has at least one positive root. We will show below that there is exactly one such
root. In Table 3 the only four possible cases are summarized.

The third case is impossible, in fact assuming that b2 < 0 and c2 > 0 we find

b2 = kN (kAmAeN + kAmAeN − kNmAqN − reAhA) + rh2A < 0.

Let us set

Q = kAmAeN − kNmAqN − reAhA < −rh2A
kN

− kAmAeN < 0

thus

c2 = kA(Q − kNmAqN ) < 0.

But this is a contradiction with the assumption c2 > 0.
Thus there is only one positive equilibrium

Ẽ4 =
(
g(N4) − eA

mA
, 0, N4,

qO + gAA4

eO

)

,

where N4 is the real positive root of (31).
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Fig. 10 The equilibrium Ẽ4 is stable for the set of parameter values hA = 7.04047, kA = 4.42305,
kN = 0.195776, eA = 3.30858, mA = 4.24309, k1 = 2.7027, k2 = 1.97054, k3 = 8.21721, k4 =
4.29921, eF = 8.87771, mF = 3.91183, qN = 34.1708, r = 8.08514, s = 7.55077, eN = 7.69114,
qO = 19.7354, gA = 3.96792, eO = 3.77396, cO = 2.16019

Part 2: Stability
The characteristic polynomial associated to the matrix (18) evaluated at Ẽ4 is

det( J̃ − μ) =
(
N4O4eFk3k4 − N4O4k1 + N4eFk3 + O4eFk4 + eFk2

N4O4k3k4 + N4k3 + O4k4 + k2
+ μ

)

×(eO + μ)(A1μ
2 + B1μ + C1) = 0,

with

A1 = N 2
4 k

2
N + 2N4kAkN + k2A > 0,

B1 = 2AN 2
4 k

2
NmA + 4AN4kAkNmA + N 2

4 (eAk
2
N + eN k

2
N ) + AhAkAr + 2Ak2AmA +

−N 2
4 hAkN + 2N4(eAkAkN + eN kAkN ) − N4hAkA + eAk

2
A + eN k

2
A

C1 = 2AN 2
4 eN k

2
NmA + 2A2hAkAmAr + 4AN4eN kAkNmA + N 2

4 eAeN k
2
N +

+AeAhAkAr + 2AeNk
2
AmA

−N 2
4 eNhAkN + 2N4eAeN kAkN − N4eNhAkA + eAeN k

2
A.

To have all the eigenvalues negative (26) and (27) must hold, thus Ẽ4 is stable. ��
In Fig. 10 we show that for a chosen set of parameters the stability of Ẽ4 is attained.

Proposition 5.6 There exist at least one feasible algae-free point,

Ẽ5 =
(

0,
k(N5, O5) − eF

mF
, N5,

eN cO N5 − qNcO + qOs

eOs

)

,
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if
k(N5, O5) − eF > 0, eN cO N5 − qNcO + qOs > 0, f3 < 0. (32)

where f3 is given below in (40). Furthermore, it is stable if the following condition
holds:

eAkN N5 + eAkA − hAN5 > 0, (33)

and the Routh–Hurwitz criteria hold

B2

A2
> 0,

C2

A2
> 0,

B2C2

A2
2

>
D2

A2
. (34)

Proof Part 1: Existence
For A = 0 the system (17) becomes,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F [k(N , O) − eF − mF F] = 0

qN − sk(N , O)F − eN N = 0

qO − eOO − cOk(N , O)F = 0

A = 0

(35)

We solve the first equation of (35) with respect to F , and we get

F = k(N , O) − eF
mF

. (36)

Solving the second and the third equations of (35) with respect to F and equating them
we find an expression in O

F = qN − eN N

sk(N , O)
= qO − eOO

cOk(N , O)
, (37)

and from (37) we get O ,

O = eN cO N − qNcO + qOs

eOs
. (38)

Substituting (36) into the third equation of (35) we get a fifth degree polinomial in N

a3N
5 + b3N

4 + c3N
3 + d3N

2 + e3N + f3 = 0, (39)

with

a3 = c2Oe
3
Nk

2
3k

2
4mF > 0

f3 = −mFqN
[
cOk4qN (cOk4qN − 2eOk2s − 2k4qOs) + (eOk2s + k4qOs)

2
]
, (40)

and b3, c3, d3 and e3 are defined in Appendix A. Since a3 > 0, to have at least one
positive root of (39) f3 must be negative.
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Fig. 11 The equilibrium Ẽ5 is stable for the set of parameter values hA = 0.647781, kA = 4.86608, kN =
9.93558, eA = 3.89696, mA = 7.01721, k1 = 2.14784, k2 = 4.99448, k3 = 0.556305, k4 = 0.354883,
eF = 4.89305, mF = 2.94844, qN = 40.5671, r = 3.15619, s = 7.82938, eN = 0.648179, qO = 15
,gA = 7.00175, eO = 1.80741, cO = 0.243628

Part 2: Stability
The characteristic polynomial associated to the matrix (18) evaluated at Ẽ5 is

det( J̃ − μ) = (A2μ
3 + B2μ

2 + C2μ + D2)

(
eAkN N + eAkA − hAN

kN N + kA
+ μ

)

= 0.

Requiring the negativity of all the eigenvalues, conditions (33) and (34) must hold. ��
In Fig. 11 we show that for a chosen set of parameters Ẽ5 is stably attained.
Numerically, the coexistence equilibrium point, Ẽ6 = (A6, F6, N6, O6) exists for

a chosen set of parameters. From the first and the second equations of system (35) we
obtain the analytical expressions for A and O , as functions of N and F ,

A = hAN − eAkN N − eAkA
kAmA + mAkN N

(41)

and

O = eFk2 + eFk3N + mFk2F + mFk3NF

k1N − eFk4 − eFk3k4N − mFk4F − mFk3k4NF
. (42)

For the feasibility of the coexistence equilibrium we must have A > 0 and O > 0.
Substituting A and O from (41) and (42) respectively, into the third and fourth equa-
tions of (35) we get two expressions in F and N , say H(F, N ) andG(F, N ). In Fig. 12
we plot the intersection point between the two expressions.

The characteristic polynomial associated to Ẽ6 is:

Ãμ4 + B̃μ3 + C̃μ2 + D̃μ + Ẽ = 0,
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Fig. 12 The intersection point
between the two isoclines,
H(F, N ) (black) and G(F, N )

(red), depending of F and N
(Color figure online)

Fig. 13 The equilibrium Ẽ6 is stable for the set of parameter values hA = 5.40106, kA = 3.1111,
kN = 0.712346, eA = 1.8198, mA = 0.929889, k1 = 4.63489, k2 = 0.0933251, k3 = 9.15026,
k4 = 6.42742, eF = 0.0141906, mF = 0.303853, qN = 27.1407, r = 1.27266, s = 0.0864769,
eN = 2.0847, gA = 4.54966, eO = 7.2708, cO = 3.54116; On the left: qO = 47.7051; On the right:
qO = 0

where Ã, B̃, C̃ , D̃ and Ẽ are expressions depending on the parameters of the system.
If the Routh–Hurwitz conditions hold Ẽ6 is stable.

In Fig. 13 we show that for a chosen set of parameters Ẽ6 is stably attained. For
qO = 47.7051, Ẽ6 = (2.7090, 0.2036, 5.8428, 8.2499) while for qO = 0, Ẽ6 =
(2.7090, 0.1861, 5.8428, 1.6889). From Fig. 13, if there is no external input of oxygen
into the system only the oxygen population is affected.

In Table 4 we summarize the feasibility and stability conditions for the seven equi-
librium points of model (16).
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Table 4 The feasibility and stability conditions for the five equilibrium points of model (16)

Eq. Feasibility conditions Stability conditions

Ẽ0 qO = qN = 0 None

E1 qO = 0 eAqN kN + eAeN kA − hAqN > 0

Ẽ2 qN = 0 None

Ẽ3 None eAqN kN + eAeN kA − hAqN > 0 and

k1qN qO
qNqOk3k4 + eOqN k3 + eN qOk4 + eN eOk2

< eF

Ẽ4
hAN

kA + kN N
> eA N4O4(eF k3k4 − k1) + N4eF k3 + O4eF k4 + eF k2 > 0,

B1 > 0 and C1 > 0

Ẽ5 k(N5, O5) − eF > 0, f3 < 0,
B2
A2

> 0,
C2

A2
> 0,

B2C2

A22
>

D2

A2

eN cO N5 − qN cO + qOs > 0 eAkN N5 + eAkA − hAN5 > 0,

Ẽ6 Numerically Routh–Hurwitz conditions

Table 5 Summary of the equilibrium points of the models (1) and (16)

Interpretation Equilibria of (1) Equilibria of (16) Interpretation

Ecosystem E0 = (0, 0, 0) Ẽ0 = (0, 0, 0, 0) ecosystem

Collapse collapse

Ẽ1 = (0, 0, ∗, 0) nutrient-only

Ẽ2 = (0, 0, 0, ∗) oxygen-only

Algae-and-fungi-free E1 = (0, 0, ∗) Ẽ3 = (0, 0, ∗, ∗) algae-and-fungi-free

Fungi-free E2 = (∗, 0, ∗) Ẽ4 = (∗, 0, ∗, ∗) fungi-free

Algae-free E3 = (0, ∗, ∗) Ẽ5 = (0, ∗, ∗, ∗) algae-free

Coexistence E4 = (∗, ∗, ∗) Ẽ6 = (∗, ∗, ∗, ∗) coexistence

6 Comparison between the models without and with nutrients

In Table 5 we summarize the equilibrium points of the models (1) and (16).
For each fixed point of (1) we find a corresponding equilibrium of (16). In addition,

the mathematical system with nutrients explicitly modeled has two more equilibria.
From the above summarizing Tables 2 and 4 we observe the differences between the
conditions needed for the feasibility and stability of the various equilibria.

In both cases the ecosystemmay collapse, but while it is enough not to feed oxygen
and nutrients into system (16) to achieve this status, as Ẽ0 is unconditionally stable, for
(1) even disrupting the inflow of oxygen, harldly thinkable in view of the fact that some
will always enter into the waterbody from the atmosphere, to obtain the stability of
this outcome a further condition must hold (5). Thus in this case it is possible to avoid
the system’s collapse if the algae reproduction rate rA exceeeds their mortality rate
aA. On the other hand, if we consider also nutrients in the system, a similar situation
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can be obtained in (16) with no algae, nor fungi nor oxygen, if condition (21) holds. In
such case, to avoid collapse, the parameters appearing in the response function g(N )

should be suitably tuned together with the nutrients input flow rate qN .
This very same condition (21) together with (24) ensures the stability of the algae-

and-fungi-free equilibrium Ẽ3 in (16). In the simplermodel (1) less involved conditions
must hold for the corresponding situation, i.e. the point E1, namely giving lower
bounds on the fungi and algae mortality rates.

Instead there is a second equilibrium in (16) giving this very same outcome, Ẽ2. It
is achieved if the nutrients supply stops, and in such case it is unconditionally stable.
Evidently, this is a considerable difference among the two models. Whether nutrients
are taken into account or not appears to have a substantial effect on the ecosystem
behaviour.

To obtain the fungi-free situation, equilibrium E2 in (1), the growth rate of algae
should be greater than the mortality rate for feasibility (7), while for its stability the
fungi mortality rate should be high enough (8), although in this condition the algae
level also helps in satisfying it. For the corresponding equilibrium in (16), Ẽ4, the
feasibility condition imposes restrictions on the response function g(N ), for stability
the conditions are much more involved, see (26) and (27).

The feasibility condition of the algae-free point E3 relies on a high enough level of
the oxygen in the first model, while in the second one, equilibrium Ẽ5, it depends on
both oxygen and the nutrients and further also on a high level of nutrients, see (32).
It therefore may give a more relaxed condition. In other words, nutrients may help to
deplete the algae. Stability of this outcome in (1) is obtained if the algae reproduction
rate is bounded above by their mortality augmented by a quantity that depends on the
fungi equilibrium level. Thus even in a highly reproducing environment, a suitable
quantity of fungi may avoid eutrophization of the waters. It is very hard to assess the
meaning of the corresponding stability conditions in the model (16) in view of the fact
that they are quite involved, (33), (34).

The coexistence equilibrium E4 of the model (1) is always stable if it exists while
for the model (16) the existence of Ẽ6 is shown numerically and for its stability the
Routh–Hurwitz conditions must hold. For both E4 and Ẽ6 we have made numerical
simulations with two fixed set of parameters varying only the input of oxygen qO . The
results are quite interesting. For the equilibrium E4 changing qO from 0 to 1 leads to
a significant increase in the DO concentration and in the fungi biomass, respectively,
see Fig. 4. For Ẽ6 changing qO from 0 to 47.7051 only the concentration of DO will
increase while A, F and N will remain at the same value, see Fig. 13.

7 Conclusions

A three dimensional, nonlinearmathematicalmodel has been introduced and analysed.
In addition to the trivial equilibrium, four additional equilibrium points have been
found. Their stability was been completely analysed. For a chosen set of parameters
with the same initial conditions we get the stability of the coexistence equilibrium, E4,
both in the absence, qO = 0, and with full, qO = 1, external oxygen supply, Fig. 4.
Thus the constant input of DO is not necessarily needed if the parameters are chosen
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appropriately, to have a viable system. In fact algae contribution of DO to the system
is enough for the fungi utilization. The simulations of Fig. 5 instead show that the DO
concentration should not drop below a critical threshold, because in such situation the
fungi may disappear. Such a loss would be detrimental for the ecosystem.

One of the hypothesis of the model is the competition for food between algae and
fungi, but in an indirect way the results indicate that algae help the fungi growth by
producing DO.
Also a four dimensional, nonlinear mathematical model has been analysed. Themodel
was built starting from (1) in which the equation of nutrients was introduced explicitly.

Seven equilibrium points were found amongwhich three of them exist if no external
input of oxygen and/or nutrient is considered, one of them exist always and three other
need feasibility conditions. For six of them we found the analytical expression or we
proved their existence analytically, while for the coexistence equilibrium we used
numerical methods. For the equilibrium stability we found that two of them are stable
without conditions and the remaining ones are locally conditionally stable.

As for the system (1) in Fig. 13 one can see that the coexistence equilibrium Ẽ6
can be reached even without constant input of oxygen from the external environment,
thus the algae population helps indirectly the fungi population.
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8 Appendix A

b3 = −3 cO
2eN

2k3
2k4

2mF qN + 2 cO eN
2k3

2k4
2mF qO s − cO

2eF eN
2k1 k3 k4 s +

+2 cO
2eN

3k3 k4
2mF + 2 cO eN

2eO k3
2k4 mF s + cO

2eN
2k1

2s (43)
c3 = 3 cO

2eN k3
2k4

2mF qN
2 − 4 cO eN k3

2k4
2mF qN qO s + eN k3

2k4
2mF qO

2s2 +
+2 cO

2eF eN k1 k3 k4 qN s − 6 cO
2eN

2k3 k4
2mF qN − 2 cO eF eN k1 k3 k4 qO s2 +

+2 cO eN
2eO k2 k3 k4 mF s + 4 cO eN

2k3 k4
2mF qO s − 4 cO eN eO k3

2k4 mF qN s +
+2 eN eO k3

2k4 mF qO s2 − cO
2eF eN

2k1 k4 s + cO
2eN

3k4
2mF − cO eF eN eO k1 k3 s

2 +
+2 cO eN

2eO k3 k4 mF s + eN eO
2k3

2mF s2 − 2 cO
2eN k1

2qN s + 2 cO eN k1
2qO s2 (44)

d3 = −cO2k32k42mF qN3 + 2 cO k32k42mF qN2qO s − k32k42mF qN qO2s2 −
+cO2eF k1 k3 k4 qN2s + 6 cO2eN k3 k42mF qN2 + 2 cO eF k1 k3 k4 qN qO s2 −
+4 cO eN eO k2 k3 k4mF qN s − 8 cO eN k3 k42mF qN qO s + 2 cO eO k32k4mF qN2s −
+eF k1 k3 k4 qO2s3 + 2 eN eO k2 k3 k4mF qO s2 + 2 eN k3 k42mF qO2s2 −
+2 eO k32k4mF qN qO s2 + 2 cO2eF eN k1 k4 qN s − 3 cO2eN2k42mF qN −
+cO eF eN eO k1 k2 s2 − 2 cO eF eN k1 k4 qO s2 + cO eF eO k1 k3 qN s2 +
+2 cO eN2eO k2 k4mF s + 2 cO eN2k42mF qO s − 4 cO eN eO k3 k4mF qN s −
+eF eO k1 k3 qO s3 + 2 eN eO2k2 k3mF s2 + 2 eN eO k3 k4mF qO s2 −
+eO2k32mF qN s2 + cO2k12qN2s − 2 cO k12qN qO s2 + k12qO2s3 (45)

e3 = −2 cO2k3 k42mF qN3 + 2 cO eO k2 k3 k4mF qN2s + 4 cO k3 k42mF qN2qO s −
+2 eO k2 k3 k4mF qN qO s2 − 2 k3 k42mF qN qO2s2 − cO2eF k1 k4 qN2s +
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+3 cO2eN k42mF qN2 + cO eF eO k1 k2 qN s2 + 2 cO eF k1 k4 qN qO s2 −
+4 cO eN eO k2 k4mF qN s − 4 cO eN k42mF qN qO s + 2 cO eO k3 k4mF qN2s −
+eF eO k1 k2 qO s3 − eF k1 k4 qO2s3 + eN eO2k22mF s2 +
+2 eN eO k2 k4mF qO s2 + eN k42mF qO2s2 − 2 eO2k2 k3mF qN s2 −
+2 eO k3 k4mF qN qO s2 (46)
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