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Abstract The single-reference (SR) coupled-cluster (CC) approaches proved to be
remarkably efficient in handling the dynamic correlation and continue to be widely
exploited in quantum chemical computations of the molecular electronic structure.
Yet, in the presence of quasi-degeneracy, e.g., when handling molecules away from
their equilibrium geometry or when dealing with strongly correlated systems, a proper
account of a non-dynamic correlation becomes essential and calls, in general, for a
multi-reference (MR) typemethodology. However, in view of the ambiguity, complex-
ity, and computational demands of suchMR approaches it is tempting to design SRCC
typemethods that are capable of accommodating both kinds of correlation effects. One
avenue how to achieve this goal is to employ the complementarity of perturbative (i.e.,
CC) and variational (i.e., UHF, VB, CI, CAS SCF, etc.) type approaches and exploit
the latter to remedy the CC methods—primarily CCSD or CCSD(T)—for the lack
of the static or non-dynamic correlation effects. This leads to the so-called externally
corrected (ec) ecCCSD or ecCCSD(T) approaches, which amend the standard CCSD
or CCSD(T) methods by accounting for higher-than-pair clusters, extracted from vari-
ous external sources. The same goal that leads simultaneously to more efficient SR CC
algorithms may also be achieved by an effective implicit account of higher-order clus-
ters via the so-called internally corrected methods (e.g., ACP-D45, ACCD, ACPQ,
etc). While both types of these approaches were formulated and exploited long time
ago, they recently enjoyed a certain renaissance. The objective of thiswork is to review,
classify, and interrelate these efforts and highlight the advances made in this direction.
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1 Introduction

The coupled cluster (CC) approaches [1–4] (for recent reviews, see, e.g., [5–13], for a
historical perspective, see [14,15]) represent one of the most successful and efficient
ways of handling the correlation effects in calculations of the atomic and molecular
electronic structure. This is particularly true for closed-shell, non-degenerate ground
states, inwhich case the single-reference (SR)CCmethods are being successfully used,
even though much progress has also been made in handling of quasi-degenerate and
open-shell systems, including excited states, by relying on multi-reference (MR) CC
approaches (see, e.g., Ref. [16,17]). Nonetheless, the exploitation of CC Ansätze for
quasi-degenerate or highly-degenerate states, such as found in metallic-like extended
systems and in molecular systems away from their equilibrium geometry, i.e., when
breaking chemical bonds or generating potential energy curves (PECs) or surfaces
(PESs), is far from being settled. For this reason there has been recently a renewed
interest in what we refer to as the externally and internally corrected CC approaches
that were first explored more than three decades ago. These methods eventually
developed into a number of practical schemes that enable an efficient handling of
quasi-degeneracy in bond-breaking situations and in strongly correlated systems. It is
the goal of this paper to systematize and classify these methods, as well as to elucidate
their relationship with recent new developments.

The CC methods are based on Hubbard’s connected cluster theorem [18] of the
many-body perturbation theory (MBPT). This theorem asserts that the exact wave
function |�〉 of an N -electron system can be expressed in the exponential form in terms
of i-body connected cluster components Ti acting on an independent particle model
(IPM) wave function |�0〉 (usually represented by a single-determinant Hartree–Fock
wave function), i.e.,

|�〉 = eT |�0〉 with T =
N∑

i=1

Ti , (1)

wherewe employed the intermediate normalization 〈�0|�〉 = 1. The efficiency of this
approach stems from the fact that higher than two-body contributions can be largely
accounted for via the products of the lower-order components that arise thanks to the
exponential Ansatz. This is particularly the case for the four-body clusters that may
be often efficiently represented via the products of pair clusters, which is sometimes
symbolically represented by the inequality T4 � 1

2T 2
2 .

Next, due to the fact that the electronic Hamiltonian involves at most two-body
interactions, the exact correlation energy �E = E − 〈H〉 relative to some IPM
reference |�0〉 with energy 〈H〉 ≡ 〈�0|H |�0〉, as given by the time-independent
Schrödinger equation

HN|�〉 = �E |�〉 HN = H − 〈H〉, (2)
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where HN designates the normal product form of the Hamiltonian (cf., e.g., [1,2,4,
19]), is fully determined by the one- and two-body cluster components T1 and T2,
respectively, namely

�E = 〈�0|HNeT |�0〉 =
〈
�0

∣∣∣∣HN

(
T1 + T2 + 1

2
T 2
1

)∣∣∣∣�0

〉
, (3)

or by T2 only if we employ the maximum overlap or Brueckner molecular orbitals
(BMOs), in which case T1 vanishes. Nonetheless, the higher-order cluster components
Ti , i > 2, contribute thanks to their interaction with T1 and T2, as implied by the chain
of CC equations that results when we project Schrödinger equation (2), with |�〉 given
by the cluster Ansatz of Eq. (1), onto the i-times excited configuration states |�(i)

k 〉,
〈�(i)

k |�( j)
l 〉 = δi jδkl , (i, j = 1, 2, . . . , N ; k, l ranging), i.e.,

〈�(i)
k |HNeT |�0〉C = 0 i = 1, 2, . . . , N , (4)

where the subscript C implies a restriction to only the connected components.
Needless to say that we assume here a standard ab initio or a semi-empirical

approach, in which one employs a finite-dimensional subspace of a general N -electron
space spanned by a chosen set of atomic orbitals. The explicit CC equations then take
the form of a system of nonlinear algebraic equations, i.e.,

ak +
∑

i

bki ti +
∑

i≤ j

cki j ti t j + · · · = 0, (5)

where ti are relevant cluster amplitudes and the coefficients ak, bki , cki j , etc. are most
easily found using diagrammatic techniques of the second quantization formalism (see,
e.g., [1–11]). In our developments we found it beneficial to rely on the orthogonally
spin adapted (OSA) form of the CCD or CCSD equations [20]. In this case the impor-
tant, pair-interaction, nonlinear terms are givenby thefiveGoldstone–Hugenholtz-type
diagrams (cf. Fig. 3 of [20]), unless we employ the unitary group approach (UGA)
[21,22] CC formalism [23,24].

The basic workhorse which provides the required T1 and T2 cluster amplitudes
is the CCSD method that results by setting Ti = 0 for i > 2 in the CC chain (4).
This decouples the CCSD equations involving the T1 and the T2 clusters from the
rest of the chain. The use of BMOs reduces then CCSD to CCD, which involves only
pair-clusters T2. A small, but often important T3 component is usually accounted for
perturbatively via the CCSD(T) method [25–29], which is often referred to as the
“gold standard” of quantum chemistry, since it provides very accurate and reliable
results. Unfortunately, this is no longer the case when handling strongly correlated or
quasi-degenerate systems when CCSD(T), and often even CCSD itself, break down.

The simplest well-known example of such strongly-correlated systems is the π -
electron model of cyclic polyenes CNHN having a non-degenerate ground state
(N = 4ν + 2), as described by semi-empirical Hubbard or Pariser–Parr–Pople (PPP)
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Hamiltonians, modeling liner metallic-like systems with Born-von Kármán bound-
ary conditions (see, e.g., [30–33] and references therein). Indeed, with the increasing
size of these polyenes the importance of quadruples, hexuples, etc, also increases to
a degree that the CCD method completely breaks down [33], as do even higher-order
versions, such as the CCSDTQmethod [34]. In fact, some of the connected quadruples
no longer possess the corresponding disconnected quads, and similarly for hexuples
and higher order clusters, the number of which increases with the excitation order [35],
indicating a very complex structure of the pertinent wave function (as also implied
by the Bethe Ansatz; see, e.g., [36]). Indeed, as stated by Thouless [37]: “the wave
function of a many-body system is so complicated that any approximation to it will
be almost orthogonal to it”. We note here that in the case of cyclic polyenes the CCD
method is equivalent to CCSD, since the MOs are given by the symmetry as Bloch
orbitals and thus represent BMOs. In the following, for the sake of simplicity, we will
often assume that T1 = 0. Moreover, in the case of the Hubbard Hamiltonian, the
geometry is irrelevant, since only the on-site Coulomb integrals are involved.

Another useful system enabling one to continuously vary the degree of quasi-
degeneracy via a single geometry parameter, andwhich can be exploited at the ab initio
level, turned out to be the so-called H4 and P4 models involving four hydrogen atoms
in either isosceles trapezoidal (H4) or rectangular (P4) configurations [38]. These
models have been exploited in well over 200 studies [39] that explore the ability of
various approaches to handle the quasi-degeneracy effects. They were later extended
to the H8model [40] and the very challenging S4model [41]. Further, the same kind of
difficulties when using the standard CC approaches arise in bond-breaking situations,
being particularly severe in the triple-bond breaking and simultaneous multiple-bond
breaking (for early work, see, e.g., [42]).

One way of accounting for the abovementioned deficiencies of the standard SR-CC
approaches is via the so-called externally corrected (ec) CC methods [43–45]. The
principal idea here is based on the fact that the electronic Hamiltonian involves at
most two-body potentials, so that not only the energy is fully determined by the one-
and two-body clusters, but also the bi-excited configurations can directly interact with
at most quadruply-excited ones. We know that the CCD or CCSD equations arise by
neglecting the three- and four-body clusters (i.e., by setting T3 = T4 = 0), which
decouples them from the rest of the CC chain. Thus, if we could extract a suitable
approximation T (0)

3 ≈ T3 and T (0)
4 ≈ T4 of, respectively, the T3 and T4 clusters from

some independent source and account for them in the CCD equations, i.e.,

〈
�

(i)
k

∣∣∣∣HN

(
T2 + 1

2
T 2
2 + T (0)

3 + T (0)
4

)∣∣∣∣ �0

〉

C
= 0, (6)

wewould achieve amoremeaningful decoupling of theCCchain (4) than that provided
by the standard CCD. We refer to such methods as the externally corrected CCD or,
including singles, CCSD and designate them as ecCCD and ecCCSD, respectively. In
fact, if we would choose the exact T3 and T4 clusters, extracted, for example, from the
exact full configuration interaction (FCI) wave function, then the ecCCSD equations
(6) would yield the exact FCI energy.
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Now, this idea opens up a question how to find a suitable external source of approx-
imate T (0)

3 and T (0)
4 clusters that would be easy to generate and that would provide

a good approximation to the exact ones. Before we dwell into this problem let us
mention that, historically, such attempts led to a realization that the role of the T4
clusters can be accounted for by a cancelation of certain terms in standard CCD or
CCSD equations, namely those represented by the diagrams that are not separable
over the internal hole lines [38,46]. We shall refer to such approaches as the internally
corrected (ic) CC methods and address them in Sect. 3.2.2.

2 CC formalism ancillaries

Prior to dealing with the ecCC and icCC approaches we wish to point out a few
relevant items concerning the role played by the molecular orbitals (MOs) or spin-
orbitals (MSOs) in the CC formalism and in its spin adaptation, as well as to comment
on distinct ways which can be employed to truncate the full chain of CC equations.

The basic general form of CC equations employs MSOs |A〉 ≡ |a〉|σ 〉, given by a
simple product of a MO |a〉 and a pure spin-up or spin-down functions |σ 〉, σ = α, β.
The advantage of such an approach is its generality, enabling to treat, in principle,
both closed- and open-shell systems. In the latter case one often employs the unre-
strictedHartree–Fock (UHF) reference and the correspondingMSOs. Thismay also be
beneficial when breaking chemical bonds. Of course, the use of the UHFMSOs gener-
ally results in a spin-contamination of the states considered. However, when handling
closed-shell singlet ground states, such a spin-nonadapted approach is computation-
ally uneconomical, since it unnecessarily increases the dimension of the problem. For
these very reasons one strives, whenever possible, for a spin-adapted formalism.

Considering closed-shell, singlet, ground states, the simplest way to spin-adapt the
CC equations is to rely on the Goldstone version of the relevant diagrams and to
associate a factor of two with each closed-loop of oriented lines [1,2,4]. This implies,
however, that one implicitly employs non-orthogonal configuration states |�(i)

k 〉. This
is of little importance in actual applications when considering at most doubly-excited
configurations, i.e., when k ≤ 2.Yet, alreadywhen including triples, this unnecessarily
increases the number of amplitudes considered (for details see [4]). Nonetheless, even
when we are primarily interested in CCD or CCSD, the use of the OSA formalism [20]
is beneficial, providing sparser matrices for cluster coupling coefficients and enabling
us to cast the CC formalism into the SCEP (self-consistent electron pair) form, as
shown by Chiles and Dykstra [46]. The OSA formalism is also useful for gaining a
better insight into the approximate coupled pair (ACP) type approximations, as we
shall see below.

In order to generate the OSA CC formalism, we have basically two options: We
can employ either the particle-hole particle-hole (ph–ph) or the particle–particle
hole–hole (pp-hh) coupling, the latter being preferable for several reasons [20] (cf.
also [47–51]). It not only leads to a simpler formalism, but it also possesses simple
transformation properties for the relevant configuration states and corresponding clus-
ter amplitudes [20] (for the case of triples, see [52]). We shall see later that the OSA
CC formalism is also beneficial when formulating icCCD, particularly the so-called
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ACPQ (ACPwith quadruples) approach [53] (see also [33]). Indeed, most of our work
dealing with the icCCD approaches relied on the OSA version of CCD (or CCSD).

We next address the options for a truncation of the CC chain of equations (4),
i = 1, 2, . . . , N , focussing on CCD or CCSD methods that provide the essential T2,
or T1 and T2, clusters that are required to determine the desired energy, Eq. (3). As
already mentioned, the standard way is to simply truncate by the excitation order, i.e.,
to ignore the higher-order cluster components and the corresponding higher-excited
configurations. Thus, for CCSD, we set T3 = T4 = 0 and consider equations projected
onto the singly- anddoubly-excited configurations, |�(1)

k 〉 and |�(2)
k 〉, respectively, thus

achieving a decoupling from the rest of the CC chain, Eq. (4). Similarly for CCSDT
we set T4 = T5 = 0, for CCSDTQ T5 = T6 = 0, etc., since |�(i)

k 〉 configurations can
interact at most with |�(i+1)

k 〉 and |�(i+2)
k 〉 configurations. The advantage of this type

of truncation is its simplicity and a straightforward nature. Yet, it leads to a formalism
that comprises a number of high-order terms in the resulting non-linear algebraic
equations that involve few-body clusters, in particular the amplitudes constituting T1.
Indeed, already at the CCSD level we require quartic terms associated with the 1

4! T
4
1

component. Although the number of one-body clusters is relatively small and they
can be completely eliminated by relying on BMOs, they may play a non-negligible
role when employing non-HF MOs. Of course, the number of such non-linear terms
increases when proceeding beyond the CCSD level, in which case it will involve even
higher-order clusters than T1.

Another option for a truncation of the CC chain of equations is to avoid terms that
play a negligible role, such as those involving one-body clusters just mentioned or,
generally, even those involving Ti clusters, such as Tj T(i− j+k) with k = 0, 1, 2 and
j = 1, 2, . . ..We can roughly assess the importance of individual terms by considering
the lowest order of the perturbation theory (PT), based on the IPM zero-order wave
function, in which such terms will contribute for the first time and eliminate those
that contribute to the wave function beyond the prescribed cut off (cf., e.g., Table II
of [54]). We note that such an approach was successfully used in the first ab initio
application of the CC method which explored the role of triexcited clusters [4]. It may
also be beneficial to exclude some terms in the standard CC equations, as in the icCC
approaches, as will be apparent later on (cf. Sect. 3.2.2).

Yet another interesting approach, initiated by Bartlett and Musiał [55,56], is to
consider only those terms in the CC equations that provide an exact result for an n-
electron system. This leads to the so-called nCChierarchy of CC equations, whichwill
be addressed in Sect. 3.2.2.1. An alternative way to simplify standard approaches that
proceed beyond the CCSD level is to delineate a subset of MOs bordering the Fermi
level as the so-called active MOs and to consider only a subset of higher-than-pair
cluster amplitudes that involve these active MOs. This leads to various CCSDt or even
CCSDtq [57,58] or, e.g., CAS(4,4)CCSD [59] approaches.

3 Classification of approximate CCSD approaches

We shall classify the CCSD approaches according to whether they correct the resulting
CCSD energy a posteriori, based on the PT, such as CCSD(T) [28], or whether they
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first correct the CCSD equations and evaluate the energy using a priori corrected
cluster amplitudes. We refer to the former ones as the energy correcting methods
and to the latter ones as the amplitude correcting approaches. Those correcting the
energy perturbatively can do so also during the iterative process, as in the CCSDT-n
approaches [26,27].

The amplitude correcting approaches can then do so either externally (ecCCSD),
relying on externally generated higher-order cluster amplitudes (e.g., [43]), or inter-
nally (icCCSD) by deleting specific cluster components in standard CCSD equations,
as in the ACP-D45, ACCSD, ACPQ, etc. methods (e.g., [38]). The latter can then
be based either on hypothetical UHF-implied higher-than-pair clusters [53] or on the
terms that give a vanishing contribution for n-electron systems when considering,
e.g., nCC methods [55,56], in particular 2CC, or be guided by the exclusion principle
violating (EPV) terms and CEPA ideas (see below). We shall see that, remarkably,
different approaches may lead to essentially the same method.

3.1 Energy-corrected approaches

Although we focus in this work on amplitude corrected CC methods, we briefly con-
sider the energy-based corrections (for a comparison of the energy and amplitude
corrected approaches see [60–62]). The simplest way to approach this topic is to start
with the following energy-type functional [60]

E ≡ E(χ,�) = 〈χ |H |�〉
〈χ |�〉 , (7)

which yields the exact energy E

E ≡ Eexact = 〈χ |H |�exact〉
〈χ |�exact〉 = 〈χexact|H |�〉

〈χexact|�〉 , (8)

when either the bra or the ket state represent the exact wave function. Of course,
|χexact〉 ≡ |�exact〉.

Using now the CC Ansatz (1) for |�〉 in (7) we can write

E(χ,CC) = 〈χ |H |eT �0〉
〈χ |eT �0〉 = D−1〈χ |H |eT �0〉, (9)

wherewe designated the normby D, D ≡ 〈χ |eT �0〉. Considering, next, the numerator
of Eq. (9) and using the resolution of the identity, we find that

〈χ |H |eT �0〉 =
∑

k

〈χ |eT |�k〉〈�k |e−T HeT |�0〉

= 〈χ |eT |�0〉〈�0|H |�0〉 +
∑

i≥1,�(i)
k /∈�i

∑

k

〈
χ |eT |�(i)

k

〉〈
�

(i)
k |H |�0

〉
,

(10)
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where H designates the similarity transformed Hamiltonian, i.e., H = e−T HeT =
(HeT )C , with C indicating again the connected component and �i represents the set
of configurations spanning the i-times excited configuration space that are considered
at a given level of the CC approach. Clearly, the terms 〈�(i)

k |H |�0〉 with �
(i)
k ∈ �i

vanish in view of the validity of CC equations (6).
In the case of CCSD we can thus write

E(χ,CCSD) = ECCSD + D−1
∑

i>2

∑

k

〈
χ |eT |�(i)

k

〉〈
�

(i)
k |H |�0

〉

≡ ECCSD + �E(χ,CCSD), (11)

where i > (2) implies that the sum extends over higher than doubly-excited configura-
tions |�(i)

k 〉 and T = T1 + T2 in both D and H , which in turn implies that 〈χ |eT |�(i)
k 〉

vanishes unless |χ〉 involves higher-than-doubly-excited configuration states. Thus,
as long as |χ〉 belongs to the space spanned by singly- and doubly-excited config-
urations (or in the general CCSDTQ· · · case to the space spanned by the relevant
excited state manifold �), we always obtain the standard CCSD (or CCSDTQ· · · )
energy. However, when |χ〉 contains higher-than-doubly-excited configurations [or,
in general, |χ〉 /∈ Span(�)], the energy given by Eq. (11) equals the standard CCSD
energy ECCSD, plus the correction�E(χ,CCSD), represented as a linear combination
of moments 〈�(i)

k |H |�0〉. For this reason this approach is sometimes referred to as
the method of moments (MM) CC (see also [63]), as well as the energy-corrected or
the energy-based CC approach.

The last factor in Eq. (10) or in the expression for �E(χ,CCSD), as implied
by Eq. (11), (namely a projection onto the i-fold excited configuration |�(i)

k 〉 of the
similarity transformed Hamiltonian acting on reference |�0〉), is referred to as an i-
body (or i th order or i-tuple) moment (or, simply a moment), and is designated as
M (i)

k . Clearly, the zero order moment M (0)
0 (when |�(i)

k 〉 ≡ |�0〉) gives the standard
CC (or CCSD) energy, while the CCSD equations require the vanishing of the first
and second order momenta, i.e., M (1)

k = M (2)
k = 0. The state |χ〉 must thus involve

at least triply-excited configurations lest the �E(χ,CCSD) correction vanish. This
correction may thus be decomposed into the triple, quadruple, etc., components. The
highest nonvanishing moment in the CCSD case is then M (6)

k [62].
Kowalski and Piecuch introduced several versions of the MM-CC approaches

[64,65], including the renormalized (R-) and the completely renormalized (CR-)
CCSD(T) andCCSD(TQ)methods. Later on, Piecuch andWłoch [66,67] reformulated
thesemethods in terms of the left eigenstates of the similarity transformedHamiltonian
of CC theory [68,69], thus developing the so-calledCR-CC(2,3)method [or, generally,
the CR-CC(m A, m B) methods] that provide a noniterative correction to the CC energy
due to the higher-than-m A-tuply excited clusters and the excitation level m B . These
approximations not only encompass and provide an insight into the previously for-
mulated noniterative CC methods, such as CCSD(T) but, moreover, are size extensive
and very accurate. In particular, the CR-CC(2,3) method corrects for the triples and
mimics well the full CCSDT approach, even in the bond-breaking situations where
CCSD(T) fails (see [70] for examples and extensive references to an earlier work).
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In order to account for quadruples one would need CR-CC(2,4) approach, which is
computationally much more demanding (cf., e.g., [71]).

Finally, we must mention here the so-called CCSDT-n methods [26,72–75] and
their various “a” and “b” variants (see also [10]), whose iterative versions could also
be counted among the amplitude-correcting methods. However, their CCSD[T] or
CC4SD[T] [26] and the ubiquitous CCSD(T) [28] versions simply add a non-iterative
triple correction to theCCSDenergy andmay thus be regarded as the energy-correcting
methods.

3.2 Amplitude-corrected approaches

Unlike the energy-corrected approaches, the amplitude-corrected methods do not seek
a posteriori energy correction to theCCSDenergy, but instead account for higher-than-
pair cluster amplitudes that were neglected when decoupling CCSD equations from
the rest of the CC chain, namely the T3 and T4 clusters. This can be done either explic-
itly by finding a suitable approximation of the three- and four-body cluster amplitudes
and using them to correct the CCSD equations, which leads to the externally-corrected
(ec) CCSD methods (ecCCSD), or by accounting for such clusters implicitly by con-
sidering only a subset of diagrams that are associated with the disconnected 1

2T 2
2

clusters. These latter approaches rely on possible, approximate, implicit cancelations
of disconnected and connected quadruples or on amutual cancelation of certain cluster
componentswhen only a small, finite number of electrons is involved. To such schemes
we shall refer to as the internally-corrected (ic) methods. They will be addressed in
Sect. 3.2.2, where we also provide an insight into such approaches that is based on
the information provided, generally, by broken-symmetry IPM solutions, specifically
those of the UHF-type. In both the ecCCSD and the icCCSD approaches we shall pay
attention to recent advances that fall into these categories and outline their relationship
with earlier developments.

3.2.1 Externally-corrected approaches

As already intimated above, the basic idea of the externally corrected approaches,
specifically of the ecCCSDmethod, stems from the fact that (i) the energy is completely
determined by the one- and two-body clusters T1 and T2, Eq. (3) and, (ii) the CCSD
equations—representing the smallest subset of CC equations in the full CC chain (4)
that determine these one- and two-body clusters—involve at most four-body clusters
T4, i.e.,

〈
�

(1)
k |HNeT1+T2 + HN T3|�0

〉
C = 0

〈
�

(2)
k |HNeT1+T2 + HN (T3 + T4 + T1T3)|�0

〉
C = 0. (12)

To decouple these equations from the rest of the CC chain one sets T3 = T4 = 0.
Clearly, having a reasonable estimate of the T3 and T4 clusters, we should be able to
achieve a physically moremeaningful decoupling of the CCSD equations from the rest
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of the CC chain by approximately accounting for the neglected three- and four-body
cluster amplitudes.

Designating, thus, the approximate triples and quadruples by T (0)
3 and T (0)

4 , respec-
tively, we can employ the Ansatz

T = T1 + T2 + T (0)
3 + T (0)

4 , (13)

leading to the ecCCSD equations

〈
�

(1)
k |HNeT1+T2 + HN T (0)

3 |�0
〉
C = 0

〈
�

(2)
k |HNeT1+T2 + HN

(
T (0)
3 + T (0)

4 + T1T (0)
3

)|�0
〉
C = 0. (14)

Obviously, should we have available the exact three- and four-body amplitudes,
such as those provided by the cluster analysis of the exact FCI wave function, the
ecCCSD equations (14) would yield the exact FCI energy.

This immediately entails the problem of finding a suitable, independent, external
source of such higher-than-pair clusters. The obvious criteria for such a source are
that it: (i) be universally and easily accessible without significantly encumbering the
computational effort, (ii) be size-consistent as far as possible, (iii) account for the
non-dynamic or static correlations that are missing in standard SR-CC approaches
and, finally, (iv) be open to a systematic improvement.

Once the approximate T (0)
3 and T (0)

4 cluster amplitudes are available, we simply

evaluate the pertinent 〈�(i)
k |VNT (0)

3 |�0〉C, i = 1, 2 and 〈�(2)
k |VNT (0)

4 |�0〉C terms,
once and for all, and use them to correct the absolute term ak in CCSD equations (5).
The T1T (0)

3 term can then be handled in several ways: (i) it can bemade to vanish using
BMOs or by relying on the CCD approximation, (ii) it can be recalculated in each
iteration using the current values of singles when solving iteratively CCSD equations
or, simply, (iii) it can be handled like the other T (0)

3 and T (0)
4 terms using approximate

values for T1 ≈ T (0)
1 that are, in general, automatically obtained in the cluster analysis

of the external source wave function. Since the contribution of this term is usually
very small, the latter option has been employed in most of our applications.

We next discuss various options for possible sources of higher-than-pair cluster
amplitudes, proceeding in the order of their historical exploitation and, at the same
time, shall point out recent exploitations and extensions wherever applicable.

3.2.1.1 UHF-based CCSD′ and CCSDQ′ methods
Our initially contemplated source for approximate higher-than-pair clusters was the

UHFwave function of the different-orbitals-for-different-spins (DODS) type or, rather,
its projected version onto the singlet state (PUHF). The motivation for this choice was
the fact that the UHF wave function provides the exact result in the fully correlated
limit of the cyclic polyene model, in which we were interested at the time [33] (cf.
also [76–92]). Moreover, the UHF wave functions are easily accessible, even though
for standard closed-shell molecular species they are available only if the restricted
HF (RHF) solution is triplet (or non-singlet) unstable [93] (cf. also [94–96]). This,
generally, happens either in strongly correlated systems, like cyclic polyenes, or in
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standard molecular species for geometries away from the equilibrium one, e.g., when
exploring the entire PECs or PESs. Of course, in the latter case, this implies a singular
behavior at the triplet instability onset. Moreover, these wave functions cannot provide
three-body clusters [33,53,97]. We thus set T3 = T (0)

3 = 0, as in the standard CCSD

method, and consider only T (0)
4 , namely the term

〈
�

(2)
k |VN T4|�0

〉
C =: 

(4)
k (T ). (15)

For this purpose we first express the IPM, broken-spin symmetry, UHF wave func-
tion |�BS〉 in an exponential form via the single-excitation operator R1 (that has the
same form as T1; see Thouless’ theorem, e.g., [95,98]) and project it onto the singlets
with P0, i.e.,

P0|�BS〉 = P0 exp(R1)|�0〉 = exp(K )|�0〉, (16)

where
K = K2 + K4 + · · · , (17)

since the terms involving odd powers of R1 are projected out by P0. The relevant
k(i)

j amplitudes defining the Ki operators may then be extracted from the UHF wave
function (see, e.g., [97]).

Considering, next, the term associated with quadruples, i.e.,

P0

(
1

4! R4
1

)
|�0〉 =

(
1

2
K 2
2 + K4

)
|�0〉 =: C ′

4|�0〉, (18)

where C ′
4 designates an approximation to the corresponding FCI quadruple compo-

nent, we can write for the correction term 
(4)
k (T ), Eq. (15), that


(4)
k (K ) :=

〈
�

(2)
k

∣∣∣∣VN K4

∣∣∣∣�0

〉

C

=
〈
�

(2)
k

∣∣∣∣VN

(
C ′
4 − 1

2
K 2
2

)∣∣∣∣�0

〉

C
=: 

(4)
4 − 

(4)
2,2

=
(


(4)
4 − 

(4)
2,2

)

l
+

(


(4)
4 − 

(4)
2,2

)

u

= ãk −
∑

i≤ j

cki j ki k j .. (19)

Herewe approximated T4 by K4, K4 = T (0)
4 ≈ T4, andused (18) in the second equa-

tion. The resulting terms 
(4)
4 ≡ 〈�(2)

k |VN C ′
4|�0〉C and 

(4)
2,2 ≡ 〈�(2)

k |VN
1
2 K 2

2 |�0〉C
are then split into their linked (l) and unlinked (u) parts. The unlinked part can be
shown to give a vanishing contribution (see [53,97]), while the linked 

(4)
4 term con-

tributes to the absolute term ak and the 
(4)
2,2 term has a bilinear form in terms of the

ki amplitudes (for actual evaluation of these quantities in terms of the R1 amplitudes,
see [53,97]).
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Thus, the CCSD′ equations take the form

ak + ãk +
∑

i

bki ti +
∑

i≤ j

cki j (ti t j − ki k j ) = 0, (20)

where, for the sake of simplicity we suppressed higher than bilinear terms involving
t (1)k amplitudes.

Let us note, finally, that the UHF-based CCSD′ formalism enables an insight into
the icCCSD approaches that were carried out independently earlier, in particular the
ACP-D45 method [38], as will be seen in Sect. 3.2.2, while the actual implementation
of the UHF-based CCSD′ method was carried out only later on [97].

Very recently, this method, as well as its perturbatively corrected versions for triples
(see also [99]), was successfully applied to the H8 model [40] by Tobola [100]. Of
course, this could be done only for geometries where the RHF solution is triplet unsta-
ble.

3.2.1.2 VB based ecCCSD method
An excellent potential source of the required higher-order cluster components

is represented by the valence-bond (VB) wave functions, since they provide an
ideal description of the bond-breaking processes, while requiring only a few cova-
lent (and, if necessary, ionic) structures [101]. We employed VB wave functions
as an external source at the semiempirical PPP-level in the first exploration of the
ecCCSD approaches [43–45]. The generation of the VB wave functions, their cluster
analysis, and the ecCCSD formalism were done within the unitary group approach
(UGA) [23,24]. When compared with the FCI energies, the CCSD-VB method pro-
vided excellent results for cyclic and linear polyenes in thewhole range of the coupling
constant [44]. The same very good results were obtained when considering bond-
breaking or bond-formation processes, involving both closed- and open-shell type
subsystems (cyclobutadiene ring opening and dissociation into the ethylenic frag-
ments, as well as benzene dissociation along the Diels–Alder mode into the closed
shell fragments and also into the open-shell radicaloid C3 fragments) [45]. Unfortu-
nately, VBwave functions are not readily available at the ab initio level, not tomention
computational difficulties due to the non-orthogonality of the atomic orbitals that are
required in the general case.

3.2.1.3 CAS SCF based ecCCSD methods
In order to account for quasi-degeneracy that is associated with bond-breaking

processes within the MO formalism, we have to involve relevant configuration states
characterizing the dissociation process. Further, not all the triples and quadruples are
of equal importance. The most important ones will naturally arise within a properly
chosen active space. For those reasons we have turned our attention to the CAS SCF
and CAS CI wave functions [102–104] as a possible external source for triples and
quadruples, while relying on the UGACC formalism [23,24]. Within the standard CC
formalism, the CAS SCF corrected CCSD was first proposed by Stolarczyk [105], but
no actual implementation has been carried out.
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Most recently, an important advance has been made by Xu and Li [106], who base
their approach on CCSDt and involve T4 as well as T5 clusters as externals, using the
Ansatz

T = T1 + T2 + t3 + T (0)
4 + T (0)

5 , (21)

where t3 represents active triples of the type t Abc
I jk with I and A representing active

occupied and virtual orbitals, respectively. The fixed clusters T (0)
4 and T (0)

5 (designated
by the authors as S4 and S5) are then obtained from the CAS SCF wave function and
their contribution to CCSDt equations evaluated once and for all. It seems that the
T1T (0)

4 ≡ T1S4 term in triples equation is evaluated in every iteration and that the
quadruple and quintuple clusters are generated by cluster analysis of the FCI wave
function within the active space. It also seems that only active triples are accounted
for.

The results for a symmetric dissociation of water, spectroscopic constants of several
diatomics, the cyclobutadiene automerization barrier, and Cl + O3 → ClO + O2
reaction are very good (the cyclobutadiene barrier also agrees well with the RMR-
CCSD result [107]) when compared with the experiment or the exact results (FCI or
DMRG) and are considerably better than the CCSDt or even the CCSDT results. The
authors propose to extend the ecCC idea to CCSDtq-CASSCF and exploit DMRG
(Density Matrix Renormalization Group) and FCIQMC (Quantum Monte Carlo FCI)
as the external sources.

Our own experience with CAS SCF or CAS FCI indicated the need for relatively
large active spaces when breakingmultiple bonds, requiring in turn substantial compu-
tational effort, which turned us to an exploitation ofmulti-reference CISD (MR-CISD)
wave functions [108–110] as an external source (see also [6,111]).

3.2.1.4 RMR-CCSD method
The RMR-CCSD method employs the subsets T (0)

3 and T (0)
4 of the three- and the

four-body amplitudes, respectively, provided by a small size MR-CISD method. The
choice of MR-CISD has been primarily motivated by the complementarity of the CC
and CI approaches in their ability to account for the dynamic and the non-dynamic
(or static) correlation effects. Moreover, a suitable modest size MR-CISD takes into
account configurations that guarantee proper dissociation products. Indeed, such an
MR-CISD, employing only a small reference space spanned by active MOs, provides
us with a small subset of triples and quadruples relative to the reference |�0〉which are
primarily responsible for a correct description of the dissociation channel of interest.
The great majority of core-virtual quadruples that are primarily responsible for a
dynamic correlation are then accounted for via the CCSD exponential cluster Ansatz.

Needless to say that the subsets of triples and quadruples constituting T (0)
3 and T (0)

4
also explicitly account for higher than quadruples, as implied by the fact that the exact
triples and quadruples would restore the FCI result. Numerous practical applications
showed that a low-dimensional MR-CISD, relying on an appropriate active space,
provides the most important connected triples and quadruples, while the CC Ansatz
takes care of the remaining higher-than-pair clusters. Another advantage of the RMR-
CCSD approach is a possibility of an extension to open-shells [112] and to MR-CC
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approaches [113–115] of the state-universal (SU) type [116] (see also [11]), which are
briefly described below.

In summary, theRMR-CCSDmethod involves the following three steps: (i) A selec-
tion of a suitable reference space and a computation of the corresponding MR-CISD
wave function, (ii) the cluster analysis of the MR-CISD wave function of step (i),
renormalized relative to |�0〉, yielding a subset of three- and four-body cluster ampli-
tudes constituting the T (0)

3 and T (0)
4 operators, and, finally, (iii) an evaluation of the

correcting terms 〈�(i)
k |VNT (0)

3 |�0〉C, i = 1, 2 and 〈�(2)
k |VN(T (0)

1 T (0)
3 + T (0)

4 )|�0〉C ,
adding them to the absolute term ak of (5), and solving the standard form of CCSD
equations.

To enable applications to larger species we have also developed a truncated version
of RMR-CCSD [117,118], as well as an analogue to the standard CCSD(T) method
perturbatively accounting for the secondary triples (i.e., those that are not included in
T (0)
3 ), designated by the acronym RMR-CCSD(T) [119]. These approaches enabled

us to handle rather large systems, e.g., nickel carbonyls [120] and transition metal
ions with methylene [118]. The RMR-CCSD and RMR-CCSD(T) methods were also
employed in handling of the singlet-triplet splitting in biradicals [121,122], reaction
barrier heights [123,124], symmetry-breaking in radicals [125,126], in computation
of PECs including a dissociation of a triple-bond in N2 [110,127], and in generation of
the harmonic force field of ozon [128] (see also other methodological developments
in [129–132]).

3.2.1.5 GMS-SU-CC and (M,N)-CCSD methods
Although we focuss in this work on SR-CC approaches, we now briefly outline a

generalization of theRMR-CCSDmethod toMR-CC approaches of the state-universal
(SU) and state-selective (SS) types, leading to the ecSU-CCSD or ecSS-CCSD meth-
ods. These developments rely on an extension of the ecCCSD idea to what is referred
to as a general model space (GMS) and enable us to handle not only the lowest state
of a given symmetry species, but also the higher-lying states of the same symme-
try [113–115]. Here must be recalled that the standard version of the MR-SU-CC
formalism [116] requires a complete model space (CMS) in order to warrant the
size-extensivity. This is computationally demanding and impractical, since in most
instances we are only interested in low-lying excited states that are associated with
single and double excitations from the ground state, rather than with all the possi-
ble excitations associated with a given number of electrons and active orbitals. Such
low-lying excited states form, in general, an incomplete model space (IMS), in which
case the CMS formalism cannot be applied lest the size-extensivity of the SU-CC
equations be violated and the exact result in the limit when all clusters are accounted
for be achieved. For this reason we introduced the GMS-based SU-CC theory which is
rigorous even in the IMS case (we use the term GMS rather than IMS to emphasize a
complete generality, since GMS can be spanned by an arbitrary set of configurations,
independently of CMS).

The crucial ingredient in this development [113] is the concept of the so-called
connectivity or constraint conditions (C-conditions for short) that must be imposed
on cluster amplitudes that are associated with the internal excitations (i.e., those
acting within the model space, transforming one reference into another one). The
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C-conditions require that the corresponding connected n-body cluster amplitude be
canceled by the sum of all possible disconnected n-body terms (see [113]). In an
actual computer implementation of this approach, the C-conditions must be respected
in every iteration.

The GMS-approach that exploits the C-conditions is primarily useful in the SU-
CCSD method which can simultaneously describe N excited states when using an
N -dimensional reference or model space [133] (also labeled as NR-RMR-CCSD or
NR-SU-CCSD).

The size-extensivity of GMS-SU-CC approaches was tested in [134] and their
general performance in [135–137]. However, it can also be beneficial in the Brillouin–
Wigner version of the CCmethod (BW-CC) [138] and, especially, in the state-selective
or state specific (SS) MR-SS-CC approaches that focus on one state at a time. An
often used SS-CC version of the MR-SU-CC method was developed by Mukherjee et
al. [139,140], and is usually designated by the acronym MkCCSD. Like other MR-
SU-CCmethods, its original formulation relies on a CMS and its exploitation has been
almost exclusively focused on ground states (or, generally, the lowest state of a given
symmetry species), even though, in principle, it can access excited states as well. A
comparison of the performance of the NR-SU-CCSD or NR-SU-CCSD(T) methods
with MkCCSD for the ground state indicates the usefulness of the C-conditions when
relying on the IMSorGMS[141]. It is, of course, particularly interesting to examine the
performance of thesemethods for the excited states, including excited state PECs [137,
142].Whenwe compared NR-SU-CCSDwithMkCCSD for a number of excited states
of ethylene [143], we found that in all cases the MkCCSD method yielded practically
the same result as did the GMS-SU-CCSD method, as long as the convergence could
be achieved, which, unfortunately, was not the case in many instances [143]. Note
that the SS-CC methods compute every state separately, while the SU-CC approaches
yield all the states represented by the model space in a single calculation.

The development of the algorithm for the cluster analysis of general MR-CI wave
functions that is based on the SU-CC Ansatz [144] and the formulation of the SU-CC
method employing GMS [113] enabled us to formulate the GMS-based SU-CC theory
which can be regarded as a multistate version of the RMR-CCSD method. Here again
we could employ, in principle, any external sourse of higher-order cluster amplitudes.
Yet, for a number of reasons we use modest size MR-CISD wave functions for that
purpose. In general, we thus employ the SU-CCSD theory that is based on an M-
dimensional GMS and extract a subset of higher-than-pair cluster amplitudes from an
N -reference MR-CISD wave function. We refer to the resulting approach as the N -
reference, M-state CCSDmethod and use the acronym (N ,M)-CCSD [114]. Note that
(N ,1)-CCSD is identical with the RMR-CCSD or NR-RMR-CCSD approaches and
(0,M)-CCSD is the same as the standard M-reference SU-CCSD. The size-extensivity
of this approach was tested in [134] and the correction for triples was developed in
[145,146]. The initial testing using the LiH molecule [147] was then extended to
a number of systems exploring both the ground and the excited states [133,148],
including the PECs for an asymmetric dissociation of water [149].
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Table 1 Correlation of various diagram designations

This work Ref. [33,38,53]a Ref. [20]b Ref. [169]c Ref. [171]d Ref. [168]e

D1 1 (iκ ) D A Dc

D2 2 (iiκ ) D A′ Dex

D3 3 (iiiκ ) C C C

D4 4 (ivκ ) A D A

D5 5 (v) B B B

a Ref. [33], Fig. 10(c); Ref. [38], Fig. 1; Ref. [53], Fig. 4
b Ref. [20], Fig. 3(c)
c Ref. [169], Fig. 1
d Ref. [171], Fig. 1
e Ref. [168], Fig. 1

3.2.2 Internally-corrected approaches

In order to better understand the role played by the terms describing pair interac-
tions that are associated with the disconnected quadruples 1

2T 2
2 of the CCD or CCSD

formalism—especially in quasi-degenerate situations—and possibly design compu-
tationally more efficient approximate schemes for handling of these non-linear terms
(see, e.g., [55]), we employed several minimum basis set H4 models, in which we
could continuously vary the degree of degeneracy via a single geometry parameter,
from a non-degenerate to a completely degenerate regime. We were also motivated
by an approximate handling of pair interactions by the CEPA (coupled electron pair
approximation) schemes [150–153] and especially by the role played by factoriz-
able EPV diagrams, particularly those that are separable over the hole lines (see,
e.g., [54,55,154]; see also [155,156]).

The simplest way to appreciate the role of the EPV terms is to realize that both
CISD and CCSD will yield the exact result for two-electron systems, unlike L-CCSD.
Indeed, all the terms resulting from the 1

2T 2
2 diagrams of CCD or CCSD represent in

this case factorizable EPV terms that are required to compensate for the fact that we
use unrestricted summations over the hole and/or particle labels, which in turn greatly
facilitate computations [54,154] (see also Appendix F of [19]).

We found that, indeed, the EPV diagrams play a special role, particularly when
the quasi-degeneracy sets in. This led to a formulation of the so called ACP-D45
(approximate coupled pair) approximation [38] using only the diagrams that separate
over the one or the two hole lines (labeled as diagrams 4 and 5; see below). This
method provided an excellent approximation to the exact FCI energies even in a
highly degenerate regime, thus significantly improving the standard CCSD results.
This approximation was also exploited at the ab initio level to handle the quasi-
degeneracy in the ground state of the Be atom [157,158].

Here we must comment on the diagram labeling that will be used throughout this
section. We rely on the Goldstone–Hugenholtz-type representation, which enables an
easy spin-adaptation using the OSA formalism [20]. We then number the five relevant
Goldstone–Hugenholtz diagrams representing the pair-interaction term 1

2T 2
2 as Di ,

with i = 1, 2, . . . , 5. These diagrams are shown in Fig. 3(c) of [20] [where they are
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labeled by Roman numerals (i) through (v)] or in Fig. 10(c) of [33], in Fig. 1 of [38],
and in Fig. 4 of [53]. When we retain only the diagrams Di and D j , for example, i.e.,
Di + D j , we shall write simply Di j , and similarly, in general, the symbol Di jk . . .

will imply
Di +D j +Dk + · · · , i.e., Di jk · · · ≡ Di +D j +Dk + · · · . The relationship with

notations used by other authors is shown in Table 1.
We found that ignoring the first three diagrams D123 which do not separate over

the hole lines (for more details, see below) not only considerably simplifies the CCSD
formalism, but in fact greatly improves it in the degenerate regime. On the other hand,
the ACP-D123 approximation, in which only the first three diagrams are accounted
for, yields similar results as does the linear CCSD (L-CCSD) approximation (which
is also equivalent to CEPA-0) that retains only linear terms (i.e., the terms 1

2T 2
2 are

ignored), until reaching a singularity of L-CCSD, in which case ACP-D123 no longer
converges [38]. We hasten to add here that very similar results were obtained at almost
the same time by Chiles and Dykstra [46,159–161], who designated the method by
the acronym ACCD (approximate CCD). We must also point out an exploitation of
the ACP-type approaches by Jeziorski et. al. in their basis-set free approaches based
on explicitly correlated geminals for He, Be, H2, and LiH [162,163] and Ne [164].
These authors refer to their variant of the ACP or ACCD approaches as the factorized
coupled pair (FCP) approximation (cf. also [165]).

As already mentioned, the ACCD or the ACP-D45 approximation works extremely
well in highly degenerate situations, such as arising in metallic-like systems, exem-
plified by the cyclic polyene model, in which case the standard CCD [33,83] or even
CCSDT or CCSDTQ [34] completely break down. Nonetheless, there seems to be
a wrong sign for the T4 contribution in the CCSDT treatment of some H4 models
[166] when also T3 are accounted for. This was likely the reason that while the H4
models (especially the so-called H4 model [38]) became extremely popular for test-
ing of various approaches handling quasi-degeneracy, being employed in hundreds
of papers [39], the ACCD or ACP-D45 approximation (and later ACPQ [53]) were
seldom used till the recent renewed interest, as will be seen in the following sections.

A better understanding of modus operandi of the ACCD approach was later pro-
vided by exploiting the UHF wave function as an external source, which also led to
the formulation of the ACPQ approximation [33,53] (see also Sect. 3.2.1.1), which
provides yet better results for cyclic polyenes and the exact result in the fully corre-
lated limit (β = 0). Assuming, thus, that the UHF or PUHF approximate amplitudes
ki , Eq. (20), are exact, so that ki = ti , the last term in (20) will vanish, yielding

ak + ãk +
∑

i

bki ti = 0, (22)

where ãk = (
(4)
4 )l ≡ 〈�(2)

k |VN C ′
4|�0〉C can be shown to be given by the D45

diagrams (or, in fact, also by 1
2 (D34) + D5 or even by D14 or D1+1

2 (D34), as implied
by Fig. 14 of [53] (see also [90]).

Let us next considermore recent CC approaches of the icCCSD type and relate them
with an earlier work. Since the authors of these developments use different labeling of
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the relevant five diagrams for 1
2T 2

2 , we provide a correlation between these respective
notations in Table 1. To avoid a possible confusion, we shall use the notation in terms
of Di , i = 1, 2, . . . , 5, symbols given in the first column of Table 1.

3.2.2.1 nCC methods
In their search for computationally more efficient CC algorithms, Bartlett and

Musiał [55,56] came up with an interesting idea to formulate what they refer to as the
nCC hierarchy of CC approximations. This new paradigm simply requires the nCC
approximation to be exact for an n-electron system and involves only the minimum
necessary number of relevant diagrams. Thus, 2CCwill be exact for 2-electron systems
and will involve only a subset of CCSD diagrams, 3CC will be exact for 3-electron
systems and involve only a subset of CCSDT diagrams, etc. In fact, 2CC will also be
exact for all products of 2-electron units, 3CC for product of 3-electron units, etc.,
thanks to the size-extensivity of the CC formalism.

The idea likely arose from the fact that while CISD and CCSD are both exact for
2-electron systems, not all the terms in the relevant formalism need be retained, as
already noted (see, e.g., [54,154–156]). In fact, it turns out that 2CC is identical with
the ACP-D45 [38] or ACCD [46] methods (when extended by singles or when using
Brueckner orbitals), thus offering a new viewpoint on these approaches.

To proceed to a general nCC case, the authors classify the relevant diagrams as the
hole–hole conjoint (HCJ) diagrams and the non-HCJ (NHCJ) diagrams. This classifi-
cation is in fact relatedwith the concept of the so-called non-factorizableEPVdiagrams
(see, e.g., [54,154]). In the 2CC case, the HCJ diagrams are precisely those that are
separable over the one or the two internal hole lines, namely the diagrams D4 and D5,
while theNHCJ ones are given by the diagramsD1, D2, andD3 (note that Fig. 1 of [55]
employs the Goldstone representation of Hugenholtz diagrams; see, e.g., [6,167]).

For the general nCC case, the authors formulate the rules which eliminate the
irrelevant NHCJ diagrams. For the nonlinear terms, this leads to an algorithm that
lowers the power in the dependence on the number of virtual orbitals n p by one,
yielding a computationally more efficient codes. Unfortunately, this is not the case for
the linear term, so that already 3CC will have to store n3

hn3
p T3 amplitudes.

It is thus clearly the 2CC method that brings useful benefits relative to CCSD. It
is not only exact for 2-electron systems, but also for all products of 2-electron units.
Further, it facilitates an evaluation of non-linear terms, reducing the effort to ∼ n4

hn2
p

from ∼ n3
hn3

p. On the whole, the authors state that [55]: “The numerical results of
nCC are close to those for the full CC variant, and in some cases are closer to the
full CI reference result. As 2CC is exact for separated electron pairs, it is the natural
zeroth-order approximation for the correlation problem inmolecules with other effects
introduced as these units start to interact”. Yet, on the basis of their earlier work [166],
the authors are noncommittal regarding a possible compensation of the T4 clusters
through the neglect of NHCJ terms, particularly in quasi-degenerate regimes.

In a very recent paper [168] Bartlett et al. focus their attention on the problem
of triple-bond breaking. In this work they separate the Hugenholtz diagram for D12
into its direct (D1) and exchange (D2) parts, thus considering the five Goldstone–
Hugenholtz diagrams (see Table 1) that are characterizing the OSA formalism, yet
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employ the spin-orbital formalism. This is important in view of a special role played
by the exchange term D2 in bond breaking process (see also Sect. 3.2.2.3).

3.2.2.2 Parametrized CC theory pCCSD
In view of a disparate role played by individual diagrams of the CCSD method,

Huntington and Nooijen [169] searched for an optimal mix of contributions from the
four Hugenholtz diagrams constituting the 1

2T 2
2 interaction term (see Table 1 for their

diagram labeling), being inspired by CEPA approaches [150–153]. For this purpose
they employed a test set of 19 molecules involving first row atoms and focused on
their equilibrium bond-lengths and bond angles, using a cc-pVTZ basis set and the
CCSD(T) results as a reference.

In order to minimize the number of variational parameters to be optimized they
employed the fact that in two-electron systems the D123 diagrams do not contribute,
i.e., D123 = 0, in which case also 1

2D4 + D5 = 0. Their Ansatz can thus be obtained
by adding these terms that vanish in the two-electron case weighted with variational
parameters to the full set of CCSD 1

2T 2
2 diagrams D12345, namely

D12345 + κD123 + λ

(
1

2
D4 + D5

)

= (1 + κ)D123 + 1

2
D4 + (1 + λ)

(
1

2
D4 + D5

)

= 1

2
(1 + α)D4 + αD5 + βD123, (23)

where in the last equation we introduced new variation parameters α = 1 + λ and
β = 1+κ (i.e., in the author’s notation 1

2 (1+α)A+αB+β(C+D); Eq. (8) of [169]).
Designating, thus, the resulting procedure by an acronym pCCSD(α, β), the standard
CCSD corresponds to pCCSD(1,1), while pCCSD(1,0) gives the 2CC = ACCD =
ACP-D45 methods (again up to, possibly, the one-body clusters).

For the equilibrium bond lengths and bond angles of their first-row test set of
molecules the authors found—relying on the absolute and standard deviations from
the CCSD(T) reference—that the optimal results are provided by the pCCSD(−1,1)
scheme, while pCCSD(1,0) (i.e., 2CC or ACCSD) yields results that are almost the
same as those provided by standard CCSD. This could have been, however, expected
since in the absence of quasi-degeneracy theACP-D45, ACPQor 2CC approximations
are known to yield almost the same result as the standard CCSD method. It is in the
quasi-degenerate or degenerate situations, which were not investigated, that ACP-D45
or ACPQ prove to be beneficial, as pointed out above (see, e.g., [33,34,38], etc.).

As the next step, the authors investigated reaction energies and barrier heights
for a set of 36 reactions introducing an additional parameter γ weighing the T1T2
diagrams,whose contribution again vanishes in the two-electron case [170]. The result-
ing pCCSD(α, β, γ ) scheme gives again the exact result in the two-electron case for
any choice of the parameters α, β, γ . Using local pair natural orbitals (LPNOs) they
found that the variants pCCSD(−1,1,1), pCCSD(−1,1,−1), pCCSD(−1.5,1,1), and
pCCSD(−1.5,1,−1) yield more or less equivalent best results for the reaction energies
and barrier heights. The authors warn that “the pCCSD approaches may have their
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limitation, in particular as the T -amplitudes grow in magnitude, these methods lose
reliability” [170].

On thewhole, as already noted in the original pCCSD(α, β) paper [169], “the choice
of optimal parameters in pCCSD is empirical, and we consider it not very likely that
one can find a first principles theoretical justification for the (−1,1) values for the
parameters recommended here or to find a theoretical argument why the approach
includes (rather than mimics) triple excitation effects”.

3.2.2.3 Distinguishable cluster (DC) approximations
Quite a different line of approach, more akin to the early work leading initially to

the ACCD or ACP-D45 approximations [38,46,159–161], and later to the ACPQ
[33,53], nCC [55,56], and pCCSD(α, β) [169,170] approaches, was followed by
Kats and Manby [171–173]. In contrast to pCCSD, however, they distinguish direct
and exchange terms that are associated with the first Hugenholtz diagram involving
particle-hole interactions (i.e., Fig. 5(a) of [53]), namely the diagrams D1 and D2 (A
and A′ in their notation, cf. Table 1), and remove the exchange diagram D2 hypothe-
sizing “that the approximate description of physically irrelevant exchange processes
could be the source of the poor behaviour of CCSD for dissociation”.

Relying then again on the fact that 2D2 + D3 = 0 = D4 + 2D5 holds for two-electron
systems, and adding a(2D2 + D3) + b(D4 + 2D5) = 0 to D12345, they get

D12345 + a(2D2 + D3) + b(D4 + 2D5)

= D1 + (1 + 2a)D2 + (1 + a)D3 + (1 + b)D4 + (1 + 2b)D5

= D1 + 1

2
(D3 + D4), (24)

where they set a = b = − 1
2 in the last equation. This approach is referred to by

the authors as the distinguishable cluster (DC) approximation and is labeled by the
acronym DCD, or BDCD when BMOs are used.

The resulting DCD approach is reminiscent of the ACP-D14 approximation that
was shown earlier to provide an excellent description for cyclic polyenes in the whole
range of the coupling constant (cf. Table 1 of [90]; see also [91]). In fact, in the case of
a relatively large cyclic polyene C22H22, both ACP-D45 and ACP-D14 results differ
only marginally in the whole range of the coupling constant, ranging from the fully
correlated to a weakly correlated limit, the largest difference amounting to about half
an meV (see Table 2). Indeed, in the case of the PPP or Hubbard model of cyclic
polyenes (or, in fact, in any case when a minimum basis set (MBS) is employed and
Coulson’s pairing theorem holds), we find that the hole–hole diagram D4 provides
the same contribution as the particle–particle diagram D3 thanks to the presence of
the particle-hole symmetry of MBS MOs, so that in such cases we have that ACP-
D14 ≡ ACP-D11

2 (34). Although this was not realized at the time, the PUHF-based
interpretation of these approximations involves the same diagrams as ACP-D45 (this
can be realized by separating the UHF-based diagrams in the first and second rows
of Fig. 14 of [53] into those corresponding to the direct and the exchange terms and
neglecting those associated with an unlinked contribution or involving an odd number
of closed loops), indicating thus their “equivalence”. As shown by Kats and Manby
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Table 2 Correlation energy per electron �E/N for the Hubbard Hamiltonian model of cyclic polyene
C22H22 in the whole range of the coupling constant given by the reciprocal value of the resonance (hopping)
integral β, ranging from the fully correlated (β = 0) to a weakly correlated (β = −5 eV) limit, as obtained
withe the ACP-D45 ≡ D45 and ACP-D41 ≡ D14 methods

−β (eV) FCIa (eV) �D45a (eV) �D14b (eV) �� (meV)

5.0 0.0855 0.0003 0.0003 0.0

2.5 0.1758 0.0040 0.0039 0.1

2.0 0.2242 0.0088 0.0087 0.1

1.5 0.3074 0.0203 0.0201 0.2

1.0 0.4601 0.0401 0.0396 0.5

0.5 0.2651 0.0423 0.0419 0.4

0.0 1.2500 0.0000 0.0000 0.0

The exact FCI energies were obtained by solving Lieb–Wu equations [174] and we define the energy
differences as follows:�D45 = FCI−D45 and�D14 = FCI−D14.Note that for theHubabrdHamiltonian
ACP-D45 ≡ ACPQ
a Ref. [33]
b Ref. [90]

[171], this approximation indeed produces very good results (see also [172,173]).
Their examples for the dissociation of the H50 chain and the 4×4×4 cube of H atoms
are especially impressive and indicate a potential usefulness of this approximation for
highly degenerate metallic-like systems.

Most recently Kats derived the DCD equations by exploiting an effective screened
Coulomb interaction and a p-h symmetrized Fock matrix [175]. The screening was
achieved by modifying one-electron densities by relying on the so-called direct-ring
CCD (drCCD) or, an equivalent, dRPA (direct random phase approximation), see, e.g.,
[176]. Also, a perturbative triple correction to DCSD that employs screened Coulomb
integrals, DCSD(T), was shown to be superior to the “naive” CCSD(T) that relies on
a standard (T) correction, although still lacking when employed in quasi-degenerate
situations when non-dynamic or static correlation effects are essential [175].

As our earlier work and recent developments leading to the nCC (in particular 2CC)
and to theDCDor BDCD approximations indicate, it is important to separate the direct
and the exchange ph–ph terms and to remove the exchange term D2 (see also [168]).

This was not done in the pCCSD approaches [169,170], where both diagrams D1
and D2 are lumped together. Their separation, however, would not very likely change
the pCCSD results that focussed on systems in their equilibrium geometry, as already
pointed out above.

4 Conclusions

Weattempted to provide an overview of the existing externally and internally corrected
CCD or CCSD approaches, elucidating their relationship by relying on common foun-
dations. Depending on an external source, the ecCCSD methods may slightly violate
the exact size-extensivity, yet all actual applications clearly indicate that these devi-
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ations are, generally, insignificant, since these methods still rely on the exponential
CC Ansatz for the wave function (cf., e.g., [177]) and, with a proper choice of the
reference space are size-consistent (i.e., describing a correct dissociation channel).
Indeed, it is to be pondered whether an undue insistence on the exact size-extensivity
rather than an overall accuracy and reliability is to be preferred, particularly in view
of an unsatisfactory performance of exactly size-extensive methods like CCSD(T), or
even CCSD itself, in quasi-degenerate situations.

Clearly, any reasonable approximation of the three- and the four-body amplitudes
provides a physically more meaningful decoupling of the full CC chain of equations
than setting T3 = T4 = 0 yielding standard CCSD, particularly in view of the fact
that by employing the FCI amplitudes, the ecCCSD will return the exact FCI energy.
Of course, the icCCSD approaches are always exactly size-extensive irrespective of
the choice of the subset of the CCSD diagrams that is selected. All these approaches
retain the other desirable properties of CCmethods, namely the invariance to a separate
unitary transformation in the occupied and virtual MO or MSO spaces, the ease of
application and extension to open-shells and to MR CC approaches relying on either
the standard or the UGA formalism, and provide an efficient account of the dynamic
correlation effects.

The ecCCSD methods that are based on either a single or a multiple reference,
specifically the RMR-CCSD, GMS-SU-CCSD, (M, N )-CCSD and the new CCSDt-
CASSCF methods, enabled numerous practical applications yielding reliable PESs or
PECs and the related spectroscopic data, excitation energies, reaction barriers, binding
energies in transitionmetal complexes, and force fields, including diradicaloid species,
etc. The GMS-SU-MRCC version enabled a simultaneous generation of vertical exci-
tation energies for the excited states of the same symmetry species and, in contrast to
the SS-CC method, namely the so-called MkCCSD, is not plagued by convergency
problems. A wider exploitation of these approaches would be certainly beneficial in
many applications.

After a considerable hiatus, the icCCD or icCCSD methods are gaining a new
attention, bringing novel viewpoints, understanding, and prospects of computation-
ally more efficient and, simultaneously, more desirable exploitations. These methods,
namely ACC(S)D, ACP-D45, ACPQ, 2CC or BDCD, etc., usually yield more mean-
ingful results than standard CCSD, particularly in the presence of quasi-degeneracy,
while being computationally more effective. Although these approaches account in
one way or another for missing quadruples, especially in highly degenerate situations,
the absence of triples may be an impediment in some situations. The use of OSAMOs
is certainly to be preferred, since it minimizes the dimension of the resulting system of
algebraic equations and offers a possibility to employ the ACPQ approximation. In our
opinion, these methods offer the greatest promise when applied to highly degenerate
situations, thus enabling to simulate extended systems.
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