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Abstract The concept of geometric–arithmetic index was introduced in the chemical
graph theory recently, but it has shown to be useful. There are many papers studying
different kinds of indices (as Wiener, hyper–Wiener, detour, hyper–detour, Szeged,
edge–Szeged, PI, vertex–PI and eccentric connectivity indices) under particular cases
of decompositions. The main aim of this paper is to show that the computation of
the geometric-arithmetic index of a graph G is essentially reduced to the computation
of the geometric-arithmetic indices of the so-called primary subgraphs obtained by
a general decomposition of G. Furthermore, using these results, we obtain formulas
for the geometric-arithmetic indices of bridge graphs and other classes of graphs, like
bouquet of graphs and circle graphs. These results are applied to the computation
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of the geometric-arithmetic index of Spiro chain of hexagons, polyphenylenes and
polyethene.

Keywords Graph invariant · Topological index · Geometric–arithmetic index

Mathematics Subject Classification 05C07 · 92E10

1 Introduction

A topological index is defined as a single number that represents a chemical structure
in graph-theoretical terms via themolecular graph, and that correlates with amolecular
property; it is used to understand physicochemical properties of chemical compounds.
Topological indices are interesting since they capture some of the properties of a
molecule in a single number. Hundreds of topological indices have been introduced
and studied, starting with the seminal work by Wiener [25] in which he used the sum
of all shortest-path distances of a (molecular) graph for modeling physical properties
of alkanes.

Topological indices based on end-vertex degrees of edges have been used over
40 years. Among them, several indices are recognized to be useful tools in chemical
researches. Probably, the best know such descriptor is the Randić connectivity index
(R) [15]. There are more than thousand papers and a couple of books dealing with
this index (see e.g., [7,8,16] and the references therein). During many years, scientists
were trying to improve the predictive power of the Randić index. This led to the
introduction of a large number of new topological descriptors resembling the original
Randić index. The first geometric-arithmetic index GA1, defined in [24] as

GA1(G) =
∑

uv∈E(G)

√
dudv

1
2 (du + dv)

where uv denotes the edge of the graphG connecting the vertices u and v, and du is the
degree of the vertex u, is one of the successors of the Randić index. AlthoughGA1 was
introduced just six years ago, there are many papers dealing with this index (see e.g.,
[5,13,17,18,21,24] and the survey [4]). There are other geometric-arithmetic indices,
like Z p,q (Z0,1 = GA1), but the results in [4, p. 598] show empirically that the GA1
index gathers the same information on observed molecules as other Z p,q indices.

The reason for introducing a new index is to gain prediction of some property of
molecules somewhat better than obtained by already presented indices. Therefore, a
test study of predictive power of a new index must be done. As a standard for testing
new topological descriptors, the properties of octanes are commonly used. We can
find 16 physico-chemical properties of octanes at www.moleculardescriptors.eu.

Although only about 1000 benzenoid hydrocarbons are known, the number of pos-
sible benzenoid hydrocarbons is huge. For instance, the number of possible benzenoid
hydrocarbons with 35 benzene rings is 5851000265625801806530 [23]. Therefore,
the modeling of their physico-chemical properties is very important in order to predict
properties of currently unknown species.
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The graphic in [4, Fig. 7] (from [4, Table 2], [22]) shows that there exists a good
linear correlation between GA1 and the heat of formation of benzenoid hydrocarbons
(the correlation coefficient is equal to 0.972). Furthermore, the improvement in pre-
diction with GA1 index comparing to Randić index in the case of standard enthalpy
of vaporization is more than 9%. Hence, one can think that GA1 index should be
considered in the QSPR/QSAR researches.

We say that a family of subgraphs {G1, . . . ,Gr } of G is a decomposition of G
if G1 ∪ · · · ∪ Gr = G and Gi ∩ G j is either empty or a vertex for every i, j ∈
{1, . . . , r} , i �= j . The subgraphs G1, . . . ,Gr are usually called primary subgraphs
of the decomposition.

Particular cases of decompositions are the T-decompositions (equivalent to the
concept of graphs obtained by point-attaching, see [6,19]); they are a very useful tool
in different areas of graph theory, as Gromov hyperbolic graphs (see e.g., [2,3,12]),
polynomials on graphs (see [6]) and metric dimension of graphs (see [19]). We say
that a vertex v of a graph G is a cut-vertex if G\{v} is not connected. A graph is
biconnected if it does not contain cut-vertices. Given a graph G, we say that a family
of subgraphs {G1, . . . ,Gr } of G is a T-decomposition of G if G1 ∪ · · · ∪Gr = G and
Gi ∩G j is either empty or a cut-vertex for every i, j ∈ {1, . . . , r} , i �= j . Every graph
has a T-decomposition, as the following example shows. Given any edge in G, let us
consider the maximal two-connected subgraph containing it: this is the well-known
biconnected decomposition of G.

In [9] and [10] the authors introduce the concept of bridge and chain graphs,
which are particular cases of T-decompositions (a chain graph is a graph with a T-
decomposition in which every cut-vertex belongs at most to two primary subgraphs;
bridge graphs are a subset of chain graphs). For bridge and chain graphs the PI index
was determined in [9] and for bridge graphs the Szeged index (and the vertex PI index)
was considered in [11]. Recently, the Wiener index was considered in [1] for a class
of graphs containing as special cases the bridge and chain graphs. Also, in [10] appear
formulas for the Wiener, hyper–Wiener, detour and hyper–detour indices of bridge
and chain graphs. Besides, [20] contains formulas for the Szeged, edge–Szeged, PI,
vertex–PI and eccentric connectivity indices of splice graphs (another class of graphs
with T-decompositions). More classes of graphs can be obtained as particular cases of
T-decompositions: bouquets of graphs, rooted product graphs, corona product graphs
and block graphs (see [19]).

Since the papers [1,9–11,20] (studying different kinds of indices under particular
cases of decompositions) are useful, it is natural to show that the computation of the
geometric-arithmetic index of a graph G is essentially reduced to the computation
of the geometric-arithmetic indices of the primary subgraphs obtained by a general
decomposition of G. This is the main aim of the present paper. Using these results, we
obtain formulas for the geometric-arithmetic indices of bridge graphs and other classes
of graphs, like bouquet of graphs and circle graphs. These results are applied in Sect.
3 to the computation of the geometric-arithmetic index of Spiro chain of hexagons,
Polyphenylenes and Polyethene (see Examples 3.2, 3.4 and 3.8, respectively).

Throughout this paper, G = (V (G), E(G)) denotes a (non-oriented) finite simple
(without multiple edges and loops) connected graph with E(G) �= ∅. Note that the
connectivity ofG is not an important restriction, since ifG has connected components
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G1, . . . ,Gr , thenGA1(G) = GA1(G1)+· · ·+GA1(Gr ); furthermore, everymolecular
graph is connected.

2 Geometric–arithmetic index and decompositions

If v ∈ V (G), then we denote by NG(v) or N (v) the set of neighbors of v, i.e.,

NG(v) = N (v) = {
u ∈ V (G) | uv ∈ E(G)

}
.

Given a decomposition {G1, . . . ,Gr } of G, denote by W the set of vertices v in
G belonging at least at two Gi ’s. Given a vertex v ∈ W , denote by Gi1 , . . . ,Gik the
set of primary subgraphs containing v and by di j the number of neighbors of v in Gi j
(then dv = di1 + · · · + dik ). If v ∈ W , then we define W (v) as

W (v) =
∑

u∈NG (v)\W

√
dudv

1
2 (du + dv)

−
k∑

j=1

∑

u∈NGi j
(v)\W

√
dudi j

1
2 (du + di j )

.

Denote by Z the set of edges in G with both endpoints in W . If e = uv ∈ Z , then
e ∈ Gi for some i , and we denote by d∗

u , d∗
v the degrees of u, v in Gi . If e = uv ∈ Z ,

then we define Z(e) as

Z(e) =
√
dudv

1
2 (du + dv)

−
√
d∗
u d

∗
v

1
2 (d

∗
u + d∗

v )
.

The following result allows to compute the precise value ofGA1(G) in terms of the
geometric-arithmetic indices of the primary subgraphs in any decomposition.

Theorem 2.1 Let {G1, . . . ,Gr } be a decomposition of the graph G. Then

GA1(G) =
r∑

i=1

GA1(Gi ) +
∑

v∈W
W (v) +

∑

e∈Z
Z(e).

Proof First of all, note that if u, v /∈ W and uv ∈ E(G), then the term in GA1(G)

corresponding to uv in G is equal to its corresponding term in
∑r

i=1 GA1(Gi ).
For each v ∈ W and u /∈ W with uv ∈ E(G), W (v) replaces in the sum∑r
i=1 GA1(Gi ) the corresponding term to uv by its correct value as edge in G. This

fact holds since the degree of u is du both in G and in its (unique) corresponding
primary subgraph.

Finally, for each u, v ∈ W with uv ∈ E(G), Z(uv) replaces in the sum∑r
i=1 GA1(Gi ) the corresponding term to uv by its correct value as edge in G. 	

In order to estimate the difference between GA1(G) and

∑r
i=1 GA1(Gi ), Proposi-

tion 2.4 will provide bounds forW (v) and Z(uv).We need first the following technical
result.
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Lemma 2.2 Given any positive integer a, let ha be the function ha(x) = 2
√
x

a+x on the
interval [1,∞). Then ha strictly increases in [1, a], strictly decreases in [a,∞), and
|h′

a(x)| ≤ 1
8 for every x ∈ [1,∞).

Proof Since

h′
a(x) =

1√
x
(a + x) − 2

√
x

(a + x)2
= a − x√

x (a + x)2
,

h′
a > 0 on [1, a) and h′

a < 0 on (a,∞). A computation gives

h′′
a(x) =

−√
x (a + x)2 + (x − a)

(
1

2
√
x
(a + x)2 + 2

√
x (a + x)

)

x(a + x)4

= 3x2 − 6ax − a2

2 x3/2(a + x)3
.

We have 3x2 − 6ax − a2 = 0 if and only if

x = 3a ± √
9a2 + 3a2

3
= 3 ± 2

√
3

3
a.

Thus, h′′
a ≤ 0 on

[
1, 3+2

√
3

3 a
]
and h′′

a ≥ 0 on
[ 3+2

√
3

3 ,∞). Since limx→∞ h′
a(x) = 0

and a ≥ 1,

|h′
a(x)| ≤ max

{
h′
a(1),−h′

a

(
3 + 2

√
3

3
a

) }
= max

{
a − 1

(a + 1)2
,

c0
a3/2

}

for every x ∈ [1,∞), where

c0 =
2
√
3

3√
3+2

√
3

3

( 6+2
√
3

3

)2
∼ 0.079.

Consider the function

H(t) = t3/2(t − 1)

(t + 1)2
= t5/2 − t3/2

(t + 1)2

for t ∈ [2,∞). Since

H ′(t) =
( 5
2 t

3/2 − 3
2 t

1/2
)
(t + 1)2 − (

t5/2 − t3/2
)
2(t + 1)

(t + 1)4
= t1/2

2

t2 + 6t − 3

(t + 1)3
> 0
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for t ∈ [2,∞), we have

t3/2(t − 1)

(t + 1)2
= H(t) ≥ H(2) = 23/2

9
> c0,

t − 1

(t + 1)2
>

c0
t3/2

,

for every t ∈ [2,∞). Therefore,

|h′
a(x)| ≤ max

{
a − 1

(a + 1)2
,

c0
a3/2

}
=

{
c0, if a = 1,
a−1

(a+1)2
, if a ≥ 2.

for every x ∈ [1,∞). Since u(t) = t−1
(t+1)2

satisfies

u′(t) = (t + 1)2 − (t − 1)2(t + 1)

(t + 1)4
= 3 − t

(t + 1)3
,

we obtain u′(t) ≥ 0 for every t ∈ [2, 3] and u′(t) ≤ 0 for every t ∈ [3,∞). Hence,
u(a) ≤ u(3) = 1

8 > c0 for every a ≥ 2 and |h′
a(x)| ≤ 1

8 for every x ∈ [1,∞). 	

We also need the following result (see e.g., [17, Corollary 2.3]).

Lemma 2.3 Let g be the function g(x, y) = 2
√
xy

x+y with 0 < a ≤ x, y ≤ b. Then

2
√
ab

a + b
≤ g(x, y) ≤ 1.

The equality in the lower bound is attained if and only if either x = a and y = b, or
x = b and y = a, and the equality in the upper bound is attained if and only if x = y.
Besides, g(x, y) = g(x ′, y′) if and only if x/y is equal to either x ′/y′ or y′/x ′.

Given a decomposition {G1, . . . ,Gr } of G and e = uv ∈ Z , we say that e is
maximal or minimal if du = dv or d∗

u = d∗
v , respectively.

Given a graphG, denote by�, δ the maximum andminimum degrees ofG, respec-
tively.

Proposition 2.4 Let {G1, . . . ,Gr } be a decomposition of the graph G. Given e ∈ Z ,
denote by�e, δe the maximum and minimum degrees of the primary subgraph Gi with
e ∈ Gi , respectively. Then

−1 ≤ 2
√

�δ

� + δ
− 1 ≤ Z(e) ≤ 1 − 2

√
�eδe

�e + δe
≤ 1,

for every e ∈ Z . If e is maximal or minimal, then Z(e) ≥ 0 or Z(e) ≤ 0, respectively.
Furthermore,

|W (v)| ≤ 1

8

√
� dv(dv − 1),

for every v ∈ W .
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Proof If e = uv ∈ Z , then Lemma 2.3 gives

−1 ≤ 2
√

�δ

� + δ
− 1 ≤ Z(e) =

√
dudv

1
2 (du + dv)

−
√
d∗
u d

∗
v

1
2 (d

∗
u + d∗

v )
≤ 1 − 2

√
�eδe

�e + δe
≤ 1.

If e is maximal or minimal, then

Z(e) =
√
dudv

1
2 (du + dv)

−
√
d∗
u d

∗
v

1
2 (d

∗
u + d∗

v )
= 1 −

√
d∗
u d

∗
v

1
2 (d

∗
u + d∗

v )
≥ 0

or

Z(e) =
√
dudv

1
2 (du + dv)

− 1 ≤ 0,

respectively.
Finally, fix v ∈ W . As in the definition of W (v), denote by Gi1 , . . . ,Gik the set of

primary subgraphs containing v and by di j the number of neighbors of v in Gi j for
j = 1, . . . , k. Fix j and u ∈ NGi j

(v)\W . Mean value theorem and Lemma 2.2 give

∣∣∣∣∣
2
√
dudv

du + dv

− 2
√
dudi j

du + di j

∣∣∣∣∣ = √
du

∣∣ hdu (dv) − hdu (di j )
∣∣ = √

du
∣∣ h′

du (t)
∣∣ (dv − di j

)

for some t ∈ (di j , dv) ⊂ [1, dv], where ha is the function appearing in Lemma 2.2.

Since |h′
du

(t)| ≤ 1
8 for every t ∈ [1,∞) by Lemma 2.2, we deduce

∣∣∣∣∣
2
√
dudi j

du + di j
− 2

√
dudv

du + dv

∣∣∣∣∣ ≤ √
�

1

8

(
dv − 1

)
.

Hence,

|W (v)| ≤ 1

8

√
� dv(dv − 1),

for every v ∈ W . 	

We have the following direct consequence of Theorem 2.1, since |Z(e)| ≤ 1 for

every e ∈ Z by Proposition 2.4.

Corollary 2.5 Let {G1, . . . ,Gr } be a decomposition of the graph G. Then

∣∣∣∣∣GA1(G) −
r∑

i=1

GA1(Gi )

∣∣∣∣∣ ≤ 1

8
�3/2(� − 1) cardW + card Z.
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Proposition 2.6 Let {G1, . . . ,Gr } be a decomposition of the graph G. If dv ≤ du for
every v ∈ W and u ∈ NG(v)\W , then

GA1(G) ≥
r∑

i=1

GA1(Gi ) − card Z.

Furthermore, if every edge in Z is maximal, then

GA1(G) ≥
r∑

i=1

GA1(Gi ).

Proof Fix v ∈ W . We are going to prove W (v) ≥ 0. Denote by Gi1 , . . . ,Gik the set
of primary subgraphs containing v and by di j the number of neighbors of v in Gi j , as
in the definition of W (v). Fix j and u ∈ NGi j

(v)\W . Since

hdu (x) = 2
√
x

du + x

is an increasing function on [1, du] by Lemma 2.2, and di j ≤ dv ≤ du ,

√
dudi j

1
2 (du + di j )

≤
√
dudv

1
2 (du + dv)

.

Hence, W (v) ≥ 0 for every v ∈ W . Since |Z(e)| ≤ 1 for every e ∈ Z by Proposition
2.4, Theorem 2.1 gives the result.

Furthermore, if every edge in Z is maximal, then Proposition 2.4 gives Z(e) ≥ 0
for every e ∈ Z , and the second inequality follows by Theorem 2.1. 	

Corollary 2.7 Let {G1, . . . ,Gr } be a decomposition of the graph G with minimum
degree δ. If dv = δ for every v ∈ W , then

GA1(G) ≥
r∑

i=1

GA1(Gi ) − card Z.

Furthermore, if every edge in Z is maximal, then

GA1(G) ≥
r∑

i=1

GA1(Gi ).

The obtention of bounds for the geometric arithmetic index is a very active topic
of research (see e.g., [5,13,17,21,24], the survey [4] and the references therein). The
following result provides an upper bound for it involving the numbers of vertices and
the diameters of the primary subgraphs in the biconnected decomposition.
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Let us define M(n, r) as follows: M(n, r) := r + 1

2
(n − r − 1)(n − r + 4).

We denote by diam(G) the diameter of G, i.e., diam(G) := max{d(u, v) | u, v ∈
V (G)}.
Theorem 2.8 If {G1, . . . ,Gk} is the biconnected decomposition of a graph G and
G j has n j vertices for 1 ≤ j ≤ k, then

GA1(G) ≤
k∑

j=1

M
(
n j , diam(G j )

)
.

Proof If G j has n j vertices and m j edges for 1 ≤ j ≤ k, then G has m = ∑k
j=1m j

edges. Since each G j is two-connected, the classical Ore’s result in [14, Theorem 3.1]
gives m j ≤ ∑k

j=1 M
(
n j , diam(G j )

)
for every 1 ≤ j ≤ k. Since GA1(G) is bounded

by the number of edges in G, we have

GA1(G) ≤ m =
k∑

j=1

m j ≤
k∑

j=1

M
(
n j , diam(G j )

)
.

	


3 Applications to mathematical chemistry

Next, we apply our results on decompositions in order to compute the geometric-
arithmetic indices of several chemical graphs.

Let {Gi }di=1 be a set of finite pairwise disjoint graphs and vi , wi ∈ V (Gi ). The
chain graph

C(G1,G2, . . . ,Gd) = C(G1,G2, . . . ,Gd ; v1, w1, v2, w2, . . . , vd , wd)

of {Gi }di=1 with respect to the vertices {vi , wi }di=1 is the graph obtained from the
graphs G1, . . . ,Gd by identifying the vertex wi and the vertex vi+1 for every i ∈
{1, 2, . . . , d − 1}.

We denote by ui the vertex inC(G1,G2, . . . ,Gd ; v1, w1, . . . , vd , wd) obtained by
identifying the verticeswi and vi+1. It is clear that {G1, . . . ,Gd} is a T-decomposition
of the chain graph:

C(G1, . . . ,Gd ; v1, w1, . . . , vd , wd).

Following the notation in [9], given any graph H , v,w ∈ V (H) and an integer
d > 1, let us define

Td(H, v, w) = C(H, . . . , H ; v,w, . . . , v, w),

where H appears d times. Theorem 2.1 has the following direct consequence.
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Corollary 3.1 Consider any graph H, v,w ∈ V (H) and an integer d > 1.
(1) If vw /∈ E(H), then

GA1
(
Td(H, v, w)

) = d GA1(H) + (d − 1)W (u1).

(2) If vw ∈ E(H), then

GA1
(
Td(H, v, w)

) = d GA1(H) + (d − 1)W (u1) + (d − 2)Z(vw).

Example 3.2 Spiro chain of hexagons. Consider the chain graph Td(C6), where C6 is
the cycle graph with vertices v1, v2, . . . , v6 (labeled clockwise), v = v1 and w = v4.
Since vw /∈ E(C6), Corollary 3.1 gives

GA1
(
Td(C6)

) = d GA1(C6) + (d − 1)W (u1)

= 6d + (d − 1)

(
4
2
√
8

6
− 4

)
=

(
2 + 8

√
2

3

)
d + 4 − 8

√
2

3
.

Note that if we take v = v3 or w = v5 in Example 3.2, then we obtain graphs with
the same geometric-arithmetic index than the previous one.

Given any graph H , v,w ∈ V (H), P2 a graph of one edge connecting the two
vertices v′, w′, and an integer d > 1, let us define

Ud(H) = C(H, P2, . . . , H, P2, H ; v,w, v′, w′, . . . , v, w, v′, w′, v, w),

where H appears d times. Theorem 2.1 also has the following consequence.

Spiro chain of hexagons

Corollary 3.3 Consider any graph H, v,w ∈ V (H) and an integer d > 1. Denote
by dv, dw the degrees of v,w in H, respectively.

(1) If vw /∈ E(H), then

GA1
(
Ud(H)

) = d GA1(H) + (d − 1)

(
W (u1) + W (u2) + 2

√
(dv + 1)(dw + 1)

dv + dw + 2

)
.
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(2) If vw ∈ E(H), then

GA1
(
Ud(H)

) = d GA1(H) + (d − 1)

(
W (u1) + W (u2) + 2

√
(dv + 1)(dw + 1)

dv + dw + 2

)

+(d − 2)Z(vw).

Proof Consider the T-decomposition {H, P2, . . . , H, P2, H} of Ud(H). Note that

GA1(P2) = 1 and Z(P2) = 2
√

(dv+1)(dw+1)
dv+dw+2 − 1. If vw /∈ E(H), then Z is just

the set of copies of P2. Hence, Theorem 2.1 gives

GA1
(
Ud(H)

) = d GA1(H) + d − 1 + (d − 1)W (u1) + (d − 1)W (u2)

+ (d − 1)

(
2
√

(dv + 1)(dw + 1)

dv + dw + 2
− 1

)

= d GA1(H) + (d − 1)

(
W (u1) + W (u2) + 2

√
(dv + 1)(dw + 1)

dv + dw + 2

)
.

If vw ∈ E(H), thenZ is the set of copies of P2 and the copies of vw which are not
in the first and last copies of H . Therefore, we just need to add the term (d −2)Z(vw)

to the formula in (1). 	


Example 3.4 Polyphenylenes. Consider the chain graphUd (C6), whereC6 is the cycle
graph with vertices v1, v2, . . . , v6 (labeled clockwise), v = v1 and w = v4. Since
vw /∈ E(C6), Corollary 3.3 gives

GA1
(
Ud(C6)

) = d GA1(C6) + (d − 1)

(
W (u1) + W (u2) + 2

√
(dv + 1)(dw + 1)

dv + dw + 2

)

= 6d+(d−1)

(
2

(
2
2
√
6

5
−2

)
+1

)
=

(
3+ 8

√
6

5

)
d + 3 − 8

√
6

5
.

If we take v = v3 or w = v5 in Example 3.4, then we obtain graphs with the same
geometric-arithmetic index than the previous one.

Let {Gi }di=1 be a set of finite pairwise disjoint graphs and vi ∈ V (Gi ). The bridge
graph

B(G1,G2, . . . ,Gd) = B(G1,G2, . . . ,Gd ; v1, v2, . . . , vd)

of {Gi }di=1 with respect to the vertices {vi }di=1 is the graph obtained from the
graphs G1, . . . ,Gd by connecting the vertices vi and vi+1 by an edge for every
i ∈ {1, 2, . . . , d − 1}. Theorem 2.1 has the following consequence.
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Theorem 3.5 Let {Gi }di=1 be a set of finite pairwise disjoint graphs and vi ∈ V (Gi ).
Then

GA1
(
B(G1, . . . ,Gd ; v1, . . . , vd)

) =
d∑

i=1

GA1(Gi ) + d − 1 +
d∑

i=1

W (vi )

+
d−1∑

i=1

Z(vivi+1).

Proof Consider the T-decomposition {G1, . . . ,Gd , v1v2, . . . , vd−1vd} of

B(G1, . . . ,Gd ; v1, . . . , vd).

We have in this caseW = {v1, . . . , vd},Z = {v1v2, . . . , vd−1vd} andGA1(vivi+1) =
1 for i ∈ {1, . . . , d − 1}. Hence, Theorem 2.1 gives the result. 	


Given any graph H , v ∈ V (H) and an integer d > 1, let us define

Gd(H, v) = B(H, . . . , H ; v, . . . , v),

where H appears d times. Theorem 3.5 has the following corollary.

Corollary 3.6 Consider a graph H, v ∈ V (H) and an integer d > 1. Denote by vi
the copy of v in the i-th copy of H in Gd(H, v) and by dv the degree of v in H.

(1) If d = 2, then

GA1
(
Gd(H, v)

) = d GA1(H) + 1 + 2W (v1).

(2) If d ≥ 3, then

GA1
(
Gd(H, v)

) = d GA1(H) + d − 3 + 2W (v1) + (d − 2)W (v2)

+4
√

(dv + 1)(dv + 2)

2dv + 3
.

Proof Weprovefirst the case (2).Note that Z(v1v2) = Z(vd−1vd) = 2
√

(dv+1)(dv+2)
2dv+3 −

1 and Z(vivi+1) = 1 − 1 = 0 for every i ∈ {2, 3, . . . , d − 2}. Theorem 3.5 gives

GA1
(
Gd(H, v)

) = d GA1(H) + d − 1 +
d∑

i=1

W (vi ) +
d−1∑

i=1

Z(vivi+1)

= d GA1(H) + d − 1 + 2W (v1) + (d − 2)W (v2)

+ Z(v1v2) + Z(vd−1vd)

= d GA1(H) + d − 1 + 2W (v1) + (d − 2)W (v2)

+ 4
√

(dv + 1)(dv + 2)

2dv + 3
− 2.
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In case (1) we have Z = {v1v2} and Z(v1v1) = 1 − 1 = 0, and so the previous
argument gives the formula. 	


Example 3.7 As an application of the previous result, we consider k ≥ 3, d ≥ 3 and
the bridge graphGd(Pk, w1), where Pk is the path graphwith verticesw1, w2, . . . , wk .
Corollary 3.6 gives

GA1
(
Gd(Pk, w1)

) = d GA1(Pk) + d − 3 + 2W (v1) + (d − 2)W (v2)

+ 4
√

(dv + 1)(dv + 2)

2dv + 3

=
(
k − 3 + 4

√
2

3

)
d + d − 3 + 2

(
1 − 2

√
2

3

)

+ (d − 2)

(
2
√
3

4
− 2

√
2

3

)
+ 4

√
6

5

=
(
k − 2 + 2

√
2

3
+

√
3

2

)
d − 1 − √

3 + 4
√
6

5
.

Example 3.8 Polyethene. For d ≥ 3, consider the bridge graphGd(P3, w2). Note that
G4(P3, w2) is the graph corresponding to Polyethene. Corollary 3.6 gives

GA1
(
Gd(P3, w2)

) = d GA1(P3) + d − 3 + 2W (v1) + (d − 2)W (v2)

+ 4
√

(dv + 1)(dv + 2)

2dv + 3

= 4
√
2

3
d + d − 3 + 2

(
2

(
2
√
3

4
− 2

√
2

3

))

+ (d − 2)

(
2

(
2
√
4

5
− 2

√
2

3

))
+ 4

√
12

7

= 13

5
d − 31

5
+ 22

√
3

7
.

Gd(P3, w2) (Polyethene when d = 4).
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Note that in the previous results we have used always T-decompositions. We
deal now with a class of graphs obtained by decompositions which are not T-
decompositions.

Let {Gi }di=1 (d ≥ 3) be a set of finite pairwise disjoint graphs and vi ∈ V (Gi ). The
circle graph F(G1,G2, . . . ,Gd) = F(G1,G2, . . . ,Gd ; v1, v2, . . . , vd) of {Gi }di=1
with respect to the vertices {vi }di=1 is the graph obtained from the graphs G1, . . . ,Gd

by connecting the vertices vi and vi+1 by an edge for every i ∈ {1, 2, . . . , d}, where
vd+1 is defined as vd+1 = v1. Theorem 2.1 has the following consequence.

Theorem 3.9 Let {Gi }di=1 be a set of finite pairwise disjoint graphs with d ≥ 3 and
vi ∈ V (Gi ). Then

GA1
(
F(G1, . . . ,Gd ; v1, . . . , vd)

) =
d∑

i=1

GA1(Gi ) + d +
d∑

i=1

W (vi )

+
d∑

i=1

Z(vivi+1).

Proof Consider the decomposition {G1, . . . ,Gd , v1v2, . . . , vdvd+1} of

F(G1, . . . ,Gd ; v1, . . . , vd).

Since we haveW = {v1, . . . , vd},Z = {v1v2, . . . , vdvd+1} andGA1(vivi+1) = 1 for
i ∈ {1, . . . , d}, Theorem 2.1 gives the result. 	


Given any graph H , v ∈ V (H) and an integer d > 1, let us define Fd(H, v) =
F(H, . . . , H ; v, . . . , v), where H appears d times. Theorem 3.9 has the following
corollary.

Corollary 3.10 Consider a graph H, v ∈ V (H) and an integer d ≥ 3. Denote by v1
the copy of v in the first copy of H in Fd(H, v). Then

GA1
(
Fd(H, v)

) = d GA1(H) + d + d W (v1).

Proof Note that Z(vivi+1) = 1− 1 = 0 for every i ∈ {1, . . . , d}. Theorem 3.9 gives

GA1
(
Fd(H, v)

) = d GA1(H) + d +
d∑

i=1

W (vi ) +
d∑

i=1

Z(vivi+1)

= d GA1(H) + d + d W (v1).

	

Let {Gi }di=1 be a set of finite pairwise disjoint graphs and vi ∈ V (Gi ). The bouquet

S(G1,G2, . . . ,Gd) = S(G1,G2, . . . ,Gd ; v1, v2, . . . , vd) of {Gi }di=1 with respect to
the vertices {vi }di=1 is the graph obtained from the graphs G1, . . . ,Gd by identifying
the vertices {vi }di=1 with a new vertex v. Theorem 2.1 has the following consequence.
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Theorem 3.11 Let {Gi }di=1 be a set of finite pairwise disjoint graphs and vi ∈ V (Gi ).

Then GA1
(
S(G1, . . . ,Gd ; v1, . . . , vd)

) = ∑d
i=1 GA1(Gi ) + W (v).

Proof Consider the T-decomposition {G1, . . . ,Gd} of S(G1, . . . ,Gd ; v1, . . . , vd).
Note that we have in this caseW = {v} and so Z = ∅. Hence, Theorem 2.1 gives the
result. 	


Given any graph H , v ∈ V (H) and an integer d > 1, let us define

Sd(H, v) = S(H, . . . , H ; v, . . . , v),

where H appears d times. Theorem 3.11 has the following corollary.

Corollary 3.12 Consider a graph H, v ∈ V (H) and an integer d > 1. Denote by dv

the degree of v in H. Then

GA1
(
Sd(H, v)

) = d

⎛

⎝GA1(H) +
∑

u∈NH (v)

2
√
d dudv

du + d dv

−
∑

u∈NH (v)

2
√
dudv

du + dv

⎞

⎠ .

Proof SinceW = {v}, we have NH (v)\W = NH (v). Each copy of H contributes to
W (v) with

∑

u∈NH (v)

2
√
d dudv

du + d dv

−
∑

u∈NH (v)

2
√
dudv

du + dv

,

and so Theorem 3.11 gives the result. 	
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