
J Math Chem (2016) 54:1686–1695
DOI 10.1007/s10910-016-0644-5

ORIGINAL PAPER

Interpretation of elements of the logarithm of a rotation
matrix as rotation components around coordinate axes
of a reference frame

Susumu Onaka1 · Kunio Hayashi1

Received: 21 February 2016 / Accepted: 11 May 2016 / Published online: 23 May 2016
© Springer International Publishing Switzerland 2016

Abstract Crystal orientation is an important factor when we consider microstructures
in materials. With respect to a reference frame, certain crystal orientation can be
expressed by a rotation angle � around a unit vector n = (h, k, l). Partitioning of �

into rotation components around coordinate axes of the reference frame is discussed.
For a rotation matrix R corresponding to the axis/angle pair, its logarithm ln R is a
skew symmetric tensor with three independent elements, h�, k� and l�. It is shown
that these elements can be interpreted to be sums of the divided rotation angles around
the coordinate axes. The elements h�, k� and l� of ln R called the log angles can be
used as the rotation components to evaluate crystal orientation in materials.

Keywords Crystal orientation · Rotation angle · Rotation matrix · Logarithm of
matrix · Microstructure · Dislocation

1 Introduction

Crystal orientation and how it varies is important when describing microstructures of
materials [1–6]. When assessing structures that can vary their crystal orientation (dis-
locations, for example), it is often necessary to partition a rotation angle of the crystal
orientation into components [7–9]. However, an established method for partitioning
has not been shown in previous microstructural analyses. In this work, we discuss the
partitioning of the rotation angle and show that the components around the coordinate
axes are given by the elements of the logarithm of a rotation matrix. We also show
examples of applications of the rotation components.
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Fig. 1 A model showing the
rotation of a crystal with respect
to the x−y−z reference frame
given by the axis/angle pair
(n, �)
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2 Analysis

2.1 The axis/angle pair

With respect to the x−y−z reference frame, certain crystal orientation can be
expressed by a rotation angle � around a unit vector n = (h, k, l) [10]. The set
of n and � is the well-known axis/angle pair. Figure 1 shows a model demonstrating
the crystal rotation given by the axis/angle pair. A crystal with the x ′, y′ and z′ coor-
dinate axes is located on the top of the model and the axis/angle pair determines the
primed axes with respect to the reference frame. The primed and the unprimed axes
are parallel when � is null.

The crystal orientation can also be expressed by a rotation matrix R. Matrix notation
of Rodrigues’ formula gives the elements of R corresponding to the axis/angle pair
(n, �) [10,11]:

R =
⎛
⎝

(1 − h2) cos � + h2 hk(1 − cos �) − l sin � lh(1 − cos �) + k sin �

hk(1 − cos �) + l sin � (1 − k2) cos � + k2 kl(1 − cos �) − h sin �

lh(1 − cos �) − k sin � kl(1 − cos �) + h sin � (1 − l2) cos � + l2

⎞
⎠ .

(1)

2.2 The Euler angles

Any R can be written as a product of appropriate successive rotations around coordinate
axes. Here we consider the rotation matrices Rx , Ry , and Rz which are those around
the coordinate axes x, y and z as much as θ, φ and ψ , respectively. When R is a
product of Rx , Ry and Rz in the order given by

R = Rx (θ) Ry (φ) Rz (ψ) , (2)
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Fig. 2 A goniometer-stage
model showing the rotation of a
crystal with respect to the
x−y−z reference given by (2)
with the rotation angles θ, φ and
ψ
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we have Fig. 2 as a graphical or mechanical representation of R [12]. The model in
Fig. 2 consists of three rotation parts showing Rx , Ry , and Rz connected in series.
Note the correspondence between the right-hand-side of (2) and the order of the
rotation parts in Fig. 2. Similar models have been considered by Onaka et al. [13]
as a goniometer-stage model, which is convenient to understand the combination of
rotations [12]. Equation (2) and the model shown in Fig. 2 are a set of expressions for
the same R. The matrix notation of R corresponding to the model shown in Fig. 1 is
derived in “Appendix 1”.

Equation (2) and Fig. 2 represent successive rotations around coordinate axes given
by the concept of the Euler angles. However, the product of matrices is not commutative
generally. Even if the angles θ, φ and ψ are fixed, the value of the product of Rx , Ry ,
and Rz depends on the order of the three rotations. In addition to that shown by (2) and
Fig. 2, many kinds of the Euler angles exist, depending on the selection of the rotation
axes and their order [14]. For example, the Bunge Euler angles, or the Euler angles
due to Bunge, used for texture analysis, are those given by the successive rotations in
the order of Rz, Rx and Rz . When we treat a set of the angles in the framework of the
Euler angles, it is necessary to specify the rotation axes and their order.
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2.3 Logarithm lnR of rotation matrix R

Exponential and logarithmic functions of matrices are necessary tools to consider
rotations in the framework of the group theory [15–17]. The logarithm ln R of the
rotation matrix R is a skew symmetric tensor and ln R of R given by (1) is written as
[16]

ln R =
⎛
⎝

0 −l� k�

l� 0 −h�

−k� h� 0

⎞
⎠ . (3)

The relationship between R and ln R is generally given by [17]

R = lim
p→∞

(
E + ln R

p

)p

, (4)

where E is a unit matrix. From (3) and (4), we have

R ≈ (δR)N (5)

and

δR = E + ln R
N

=
⎛
⎝

1 −l�/N k�/N
l�/N 1 −h�/N
−k�/N h�/N 1

⎞
⎠ , (6)

where N is a sufficiently large positive integer. Equation (5) means that the N (� 1)

times successive operations of δR are equivalent to R. Hence, we have Fig. 3 as a
graphical representation of R given by (5), where spherical units corresponding to δR
are stacked N times.

The operation δR given by the third side of (6) can be represented by the three parts
connected in series in the spherical unit in Fig. 3. This is because when the off-diagonal
elements in the third side of (6) are small, we have

Rx (δθ) Ry (δφ) Rz (δψ)

=
⎛
⎝

1 0 0
0 cos (δθ) − sin (δθ)

0 sin (δθ) cos (δθ)

⎞
⎠

⎛
⎝

cos (δφ) 0 sin (δφ)

0 1 0
− sin (δφ) 0 cos (δφ)

⎞
⎠

⎛
⎝

cos (δψ) − sin (δψ) 0
sin (δψ) cos (δψ) 0
0 0 1

⎞
⎠

≈
⎛
⎝

1 0 0
0 1 −δθ

0 δθ 1

⎞
⎠

⎛
⎝

1 0 δφ

0 1 0
−δφ 0 1

⎞
⎠

⎛
⎝

1 −δψ 0
δψ 1 0
0 0 1

⎞
⎠

≈
⎛
⎝

1 −δψ δφ

δψ 1 −δθ

−δφ δθ 1

⎞
⎠ . (7)
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Fig. 3 A goniometer-stage
model showing the rotation of a
crystal with respect to the
x−y−z reference given by (5)
and (6) with the log angles
h�, k� and l� y’

z’

x’
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The third and fourth sides of (7) are the results obtained by neglecting higher-order
terms of infinitesimal δθ, δφ and δψ . Equation (5) is satisfied even if the third side of
(6) is replaced with the product of matrices given by the type of second or third side
of (7). Moreover, the order of the three parts in the spherical units in Fig. 3 can be
changed since we can consider the product Rx (δθ) Ry (δφ) Rz (δψ) commutative for
infinitesimal δθ, δφ and δψ .

From the model of R shown in Fig. 3, the elements h�, k� and l� of ln R are
interpreted as the sums of the divided rotation angles around the coordinate axes. The
elements h�, k� and l� that can be called the log angles are determined uniquely for
certain R. Hence, we can treat the log angles h�, k� and l� as the rotation components
of � around the coordinate axes x, y and z.

Using the elements h�, k� and l�, we can construct a vector w written as

w = (h�, k�, l�) . (8)

Since h, k and l are the components of the unit vector n, the norm |w| is equal to the
angle �. R and its logarithm ln R can also be written as [16]

R = exp
(
ŵ

)
(9)
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R
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(n         )1 δΦ1
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δR :
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(n,      )δΦ

, (n          )2 δΦ2,

Fig. 5 Schematic illustration showing the changes of crystal orientations in a grain caused by dislocation
walls DW1 and DW2

and

ln R = ŵ, (10)

where ŵ is the skew symmetric tensor of the right-hand-side of (3) and called the hat
map of w [16]. The vector w is different from Rodrigues’ vector v [10,11,18]. The
definition of Rodrigues’ vector v and R expressed by v are shown in the “Appendix
2”.

3 Examples of applications

3.1 Changes caused by dislocations in materials

Crystal orientation changes when defects such as dislocations are included in materials.
Figure 4 show materials containing dislocations. There are grain boundaries composed
of arrays of dislocations [19]. Figure 4a, b show materials having grain boundaries
between two grains composed of the arrays of dislocations DA1 and DA2. As shown
in these figures, here we assume that the effects of DA1 and DA2 are respectively the
rotations of the upper grain with respect to the lower grain as much as ω1 around the
x-axis and ω2 around the y-axis when they exist solely. When both of the dislocations
of DA1 and DA2 are dispersed in a local region in a grain as shown in Fig. 4c,
crystal orientation changes above and below the region. When R is the rotation matrix
giving the orientation change above and below the region, we can consider that the
rotation angles ω1 and ω2 are the log angles of R. To discuss such rotations of crystal
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orientation caused by many defects in materials, the log angles considering the sums
of the divided rotation angles may be significant. In other words, the log angles can
be used as measures to discuss structures of defects in materials. Comparing other
parameters to describe rotations such as the Euler angles or the axis/angle pair [20],
this is a unique characteristic of the log angles.

3.2 Changes caused by dislocation walls in a grain

Dislocation walls in grains cause orientation changes across the walls [2,3]. Fig-
ure 5 shows two dislocation walls DW1 and DW2 and the orientation changes
δR1 : (n1, δ�1) and δR2 : (n2, δ�2) across DW1 and DW2, respectively. When
the rotation angles δ�1 and δ�2 are small, the product of δR1 and δR2 are commu-
tative and we have

δR ≈ δR1δR2 ≈ δR2δR1 (11)

and

ln δR ≈ ln δR1 + ln δR2. (12)

Then, among the following w vectors giving the log angles for each crystal rotation:

w = nδ� = δ� (h, k, l) for δR,

w1 = n1δ�1 = δ�1 (h1, k1, l1) for δR1,

w2 = n2δ�2 = δ�2 (h2, k2, l2) for δR2, (13)

we have the relationship

w = w1 + w2. (14)

These equations can be used to analyze crystal rotations caused by certain dislocation
walls. For example, when we know crystallographic directions n1 and n2, we can
evaluate the ratio of the contributions of DW1 and DW2 from w.

4 Conclusions

With respect to a reference frame, certain crystal orientation can be expressed by a
rotation angle � around a unit vector n = (h, k, l). We have discussed partitioning
of � into rotation components around coordinate axes of the reference frame. For a
rotation matrix R corresponding to the axis/angle pair, its logarithm ln R is a skew
symmetric tensor with three independent elements, h�, k� and l�. We have shown
that these elements can be interpreted to be sums of the divided rotation angles around
the coordinate axes. The elements h�, k� and l� of ln R, called the log angles can
be used as the rotation components to evaluate crystal orientation in materials.
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Appendix 1

The rotation matrix R corresponding to the model shown in Fig. 1 is written by the
successive rotations as

R = MRx (�) t M, (15)

where

Rx (�) =
⎛
⎝

1 0 0
0 cos � − sin �

0 sin � cos �

⎞
⎠ , (16)

M is the rotation matrix giving the transformation

⎛
⎝

h
k
l

⎞
⎠ = M

⎛
⎝

1
0
0

⎞
⎠ , (17)

and t M is the transpose of M. Since M is the orthogonal matrix with determinant
1, the elements of R given by (15) can be written as a function of h, k, l and �.
Calculating the right-hand-side of (15) from (16) and (17), we find it is the same with
the right-hand-side of (1).

Appendix 2

The definition of Rodrigues’ vector v for the axis/angle pair n = (h, k, l) /� is
[10,11,18]

v = tan (�/2) n = tan (�/2)

⎛
⎝

h
k
l

⎞
⎠ .

Using Rodrigues’ vector v, the rotation matrix R corresponding to this axis/angle pair
is given by [11]

R = 1

1 + t vv

[(
1 − t vv

)
E + 2v t v + 2v̂

]
,

where t v is the transpose of v and v̂ the hat map of v.
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