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Abstract A new efficient recursive numerical scheme is presented for solving a class
of singular two-point boundary value problems that arise in various physical models.
The approach is based on the homotopy perturbation method in which we establish a
recursive scheme without any undetermined coefficients to approximate the singular
boundary value problems. The convergence analysis of the present method is dis-
cussed. Several numerical examples are provided to show the efficiency of our method
for obtaining approximate solutions and to analyze its accuracy. The numerical results
reveal that the present method yields a very rapid convergence of the solution with-
out requiring much computational effort. The approximate solution obtained by the
present method shows its superiority over existing methods. The Mathematica codes
for numerical computation of singular boundary value problems are provided in the
paper.

Keywords Singular boundary value problem · Decomposition method · Homotopy
perturbation method · Spline method · Finite difference method · Oxygen-diffusion
problem · Thermal-explosion problem

1 Introduction

Singular boundary value problems (SBVPs) in ordinary differential equations have
recently attracted a lot of attention from the researchers. Such SBVPs [1–15] arise
from applied mathematics, physics, physiological science and engineering applica-
tions such as electro hydrodynamics, nuclear physics, transport processes, atomic
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structure, atomic calculation, gas dynamics, chemical reaction and thermal explosion.
Generally, it is often difficult or impossible to find an exact analytical solution for a
given nonlinear singular boundary value problem. Therefore, an accurate, efficient,
easy-to-use and fast numerical method for solving such problems is needed.

We consider the following class of singular two-point boundary value problems:

(xα y′)′ = f (x, y), (1)

y′(0) = 0, μy(1) + σ y′(1) = B, (2)

or
y(0) = A, μy(1) + σ y′(1) = B. (3)

where μ > 0, σ ≥ 0, and A, B are finite constants. The following conditions have
been imposed on f (x, y) :
C1: f (x, y) is continuous for all (x, y) ∈ {[0, 1] × �},
C2: f (x, y) is continuously differentiable with respect to y, for all x ∈ [0, 1], and

all real y,
C3: ∂ f (x, y)/∂y ≥ 0.

The problem (1)–(2) with α = 2 and f (x, y) = δy/(y + λ), δ > 0, λ > 0 arises in
the study of steady state oxygen-diffusion in a spherical cell with Michaelis–Menten
uptate kinetics [7,8]. A similar problem with α = 1 arises in the study of thermal
explosions for f (x, y) = −νey , where ν is a physical parameter [2]. This problem
also arises in the study of distribution of heat sources in the human head [9,10] for
f (x, y) = −ρe−ρλy, ρ > 0, λ > 0. Moreover, the problem (1)–(2) with α = 0, 1, 2
arise in the study of various tumour growth problems with linear function f (x, y),
[11–15].

We note that the existence and uniqueness of the solution to the problem (1) with
boundary conditions y(0) = 0, y(1) = A and with boundary conditions y′(0) = 0,
y(1) = A have been established in [16–18].

The singularity behavior that occurs at the point x = 0 is the main difficulty of the
problem (1). Various efficient numerical techniques for the solution of such problems
have been developed in the literature. Chawla et al. [19] presented a second order
finite difference method based on a uniform mesh for the solution of the problem
(1) with boundary condition y′(0) = 0, y(1) = B, for α ≥ 1. Kanth and Reddy
[20] employed cubic splines functions after modifying the Eq. (1) at the singular
point by using L’Hospital rule. In [21], Kumar and Singh applied modified decom-
position method for the problem (1) arising in various physical problems. Mittal and
Nigam [22] implemented Adomian decomposition method in stepwise manner to
obtain numerical solution of the problem (1)–(2). Kumar and Aziz [23] developed a
three-point finite difference method using Chawla’s identity [24] for the problem (1)
for the case xα f (x, y) replaced by f (x, y). Wazwaz [25] considered the variational
iteration method to study a nonlinear singular boundary value problem that arise in
various physical equations. Asaithambi and Garner [26] have developed a numeri-
cal technique for obtaining pointwise bounds for the solution of a class of nonlinear
boundary-value problems arising in physiology. Khuri and Sayfy [27] presented a
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numerical technique based on a combination of a modified decomposition approach
and cubic B-splines collocation for the solution of the class of singular BVP (1)–(2).
They have decomposed the domain of the problem into two subintervals. A modified
decomposition method based on a special integral operator was applied in the vicinity
of the singular point to remove the singularity and outside this domain the resulting
problem was tackled by applying the B-spline scheme.

To the authors knowledge there is no study on a recursive scheme based on
HPM applied to singular boundary value problem (1)–(2) or (1)–(3). Although recur-
sive scheme using Adomian decomposition method [37], optimal homotopy analysis
method [38] or modified Adomian decomposition method [27] has been developed
for solving singular two-point boundary value problems, these methods, however,
require the computation of undetermined coefficients, which increases the compu-
tational complexity. In this paper we present a new recursive numerical technique
based on the homotopy perturbation method for the approximation of a class of non-
linear singular boundary value problem (1) with boundary conditions (2) or (3). This
method does not demand the computation of undermined coefficients. First, the origi-
nal singular differential equation is transformed into an equivalent integral equation to
overcome the singular behaviour at the origin. Then the resulting equation is tackled
by the application of HPM. The boundary condition at x = 1 is imposed to eliminate
the undetermined coefficient that associated with the integral equation. Moreover, the
present method does not require any discretization or linearization of variables as
compared to other methods such as finite difference method, finite element method
or spline method. The major advantage of our method over other methods is that it
provides a direct recursive scheme to obtain approximate solution. The approximate
solution is obtained in the form of power series with easily calculable components.
Another advantage is that it requires less computational work as compared to other
existing recursive schemes [27,37,38]. The convergence analysis of the proposed
method is established in the paper. Several numerical examples are given to illustrate
the applicability and accuracy of the algorithm. The numerical results are compared
with that obtained using finite difference method, decomposition method and spline
method. Comparison shows that our method with few solution components provides
better result than the methods given in [20–24,28,33].

This article is organized as follows. In Sect. 2, we discuss the basic principles of
HPM to nonlinear differential equations. We derive a recursive scheme based on HPM
for solving the singular boundary value problem (1) with boundary condition (2) or (3)
in Sect. 3. Sect. 4 is devoted to convergence analysis. In Sect. 5, we apply the present
method to singular boundary value problem arising in various physical models of
engineering and science. In addition, we make a comparison of the numerical results
of the proposed method with the existing methods. Finally, we summarize the main
conclusions of the work in Sect. 6.

2 Review of homotopy-perturbation method

In this section, we will give a brief outline of the homotopy-perturbation method.
HPM is a combination of the classical perturbation method and the homotopy concept
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as used in topology. The method was originally introduced by He [29]. HPM has
been effectively applied to solve linear or nonlinear differential equations, fractional
differential equation and integral equations [30–32]. Themain feature of the method is
the condition of homotopy by introducing an embedment parameter p,which takes the
value from 0 to 1. If p = 0, the homotopy equation generally reduces to a sufficiently
simplified form, which yields a rather simple solution. While p = 1, it turns out to
be the original problem, and gives the required solution. We consider the nonlinear
differential equation:

G(y(x)) + f (r(x)) = 0, (4)

subject to the boundary condition

B∗
(
y,

∂y

∂n

)
= 0, rεΓ. (5)

where G represents the general differential operator, f (r) denotes an analytical func-
tion, y(x) is an unknown function, Γ is the boundary of the domain Ω and B∗ is a
boundary operator. The operator G can be divided into two parts, say L and N , where
L and N denote the linear and nonlinear operator, respectively.

Now Eq. (4) reduces to as follows

L(y(x)) + N (y(x)) + f (r(x)) = 0. (6)

According to homotopy perturbation method, we can construct a homotopy y(r, p) :
Ω × [0, 1] → R, for the Eq. (4) which satisfies the following relation

H(y(x), p) = (1 − p)[L(y(x)) − L(y0(x))] + p[G(y(x)) + f (r(x))] = 0. (7)

or

H(y(x), p) = L(y(x))− L(y0(x))+ pL(y0(x))+ p[N (y(x))+ f (r(x))] = 0. (8)

where pε[0, 1] is an embedding parameter, y0(x) is an initial approximation of Eq. (4).
If p = 0, then Eq. (8) becomes

H(y(x), 0) = L(y(x)) − L(y0(x)) = 0. (9)

and when p = 1, Eq. (8) takes the original form of Eq. (4), that means

H(y(x), 1) = G(y(x)) + f (r(x)) = 0. (10)

We note that the changing process of the parameter p from 0 to 1 is just that of y(r, p)
from y0(r, p) to y(r, p). Applying the perturbation technique, we have the following
power series presentation for y in terms of the homotopy parameter p:

y = y0 + py1 + p2y2 + p3y3 + p4y4 + · · · =
∞∑
i=0

yi p
i . (11)
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where the solution component yn are to be recursively computed.
Substituting p = 1 in (11), yields the approximate solution of (4) as follows

y(x) = lim
p→1

[y0(x) + py1(x) + p2y2(x) + p3y3(x) + p4y4(x) + · · · ],

= y0(x) + y1(x) + y2(x) + y3(x) + y4(x) + · · · =
∞∑
i=0

yi (x). (12)

3 Derivation of recursive methods

In this section, we derive a recursive scheme based on HPM for solving singular
boundary value problems (1)with boundary conditions (2) orwith boundary conditions
(3).

3.1 Method with Neumann and Robin boundary conditions

To derive the method, we set z(x) = xα y′ in Eq. (1), then integrating Eq. (1) from 0
to x , we get

z(x) = z(0) +
∫ x

0
tα f (t, y) dt. (13)

Now applying the boundary condition at x = 0, it follows that

y′(x) = 1

xα

∫ x

0
tα f (t, y) dt. (14)

Again integrating Eq. (14) from x to 1, we obtain

y(x) = y(1) −
∫ 1

x

1

ηα

(∫ η

0
tα f (t, y) dt

)
dη. (15)

We set y(1) = C∗, where C∗ is unknown. To determine the value of C∗ in Eq. (15)
we impose the boundary condition at x = 1, μy(1) + σ y′(1) = B. With the help of
the boundary condition, we obtain

y(1) = C∗ = B

μ
− σ

μ

∫ 1

0
tα f (t, y) dt. (16)

Insert Eq. (16) into Eq. (15) to get

y(x) = B

μ
− σ

μ

∫ 1

0
tα f (t, y) dt −

∫ 1

x

1

ηα

(∫ η

0
tα f (t, y) dt

)
dη. (17)
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Now, interchanging the order of integration in (17), we get

y(x) = B

μ
− σ

μ

∫ 1

0
tα f (t, y) dt −

∫ x

0

( ∫ 1

x

1

ηα
dη

)
tα f (t, y)dt

−
∫ 1

x

( ∫ 1

t

1

ηα
dη

)
tα f (t, y)dt. (18)

The HPM is extended to solving integral Eq. (18) derived from Eq. (1) with boundary
condition (2)

Now we consider Eq. (18) as

L(y) = y(x) − B

μ
+ σ

μ

∫ 1

0
tα f (t, y) dt +

∫ x

0

(∫ 1

x

1

ηα
dη

)
tα f (t, y)dt

+
∫ 1

x

(∫ 1

t

1

ηα
dη

)
tα f (t, y)dt = 0. (19)

Following the homotopy perturbationmethod,we can construct the homotopy H(y, p)
for Eq. (18) by

H(y, p) = (1 − p)F(y) + pL(y) = 0, (20)

where F(y) = y(x) − B
μ
.

If p = 0, then Eq. (20) becomes

H(y, 0) = F(y) = 0, (21)

and when p = 1, Eq. (20) turns out to be the original equation, i.e.

H(y, 1) = y(x) − B

μ
+ σ

μ

∫ 1

0
tα f (t, y) dt +

∫ x

0

(∫ 1

x

1

ηα
dη

)
tα f (t, y)dt

+
∫ 1

x

(∫ 1

t

1

ηα
dη

)
tα f (t, y)dt = 0. (22)

The nonlinear function f (x, y) is decomposed in terms of the He’s polynomial Hn(x),
as

f (x, y) =
∞∑
n=0

Hn(y0, y1, . . . , yn)P
n . (23)

where

Hn(y0, y1, . . . , yn) = 1

n!
(
dn f (x, y)

dpn

)
p=0

. (24)

Inserting Eq. (11) into Eq. (22) and then equating the identical powers p, we obtain
the following set of integral equations:
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p0 : y0(x) = B

μ
,

p1 : y1(x) = −σ

μ

∫ 1

0
tαH0(t, y) dt −

∫ x

0

(∫ 1

x

1

ηα
dη

)
tαH0(t, y)dt

−
∫ 1

x

(∫ 1

t

1

ηα
dη

)
tαH0(t, y)dt,

p2 : y2(x) = −σ

μ

∫ 1

0
tαH1(t, y) dt −

∫ x

0

(∫ 1

x

1

ηα
dη

)
tαH1(t, y)dt

−
∫ 1

x

(∫ 1

t

1

ηα
dη

)
tαH1(t, y)dt,

p3 : y3(x) = −σ

μ

∫ 1

0
tαH2(t, y) dt −

∫ x

0

(∫ 1

x

1

ηα
dη

)
tαH2(t, y)dt

−
∫ 1

x

(∫ 1

t

1

ηα
dη

)
tαH2(t, y)dt,

...

... (25)

Hence the present method can be defined by the recurrence relation

p0 : y0(x) = B

μ
,

pi : yi (x) = −σ

μ

∫ 1

0
tαHi−1(t, y) dt −

∫ x

0

(∫ 1

x

1

ηα
dη

)
tαHi−1(t, y)dt

−
∫ 1

x

(∫ 1

t

1

ηα
dη

)
tαHi−1(t, y)dt, i ≥ 1. (26)

Hence, the n-term truncated approximate series solution of the SBVP (1) with bound-
ary condition (2) can be obtained as

Yn = y0 + y1 + y2 + · · · + yn . (27)

3.2 Method with Dirichlet and Robin boundary conditions

In this subsection, we derive a recursive scheme based on the HPM for singular bound-
ary value problem (1) with boundary condition (3). To derive the method, we set
z(x) = xα y′ in Eq. (1), then integrating Eq. (1) over the interval [x, 1], we get

z(x) = z(1) −
∫ 1

x
tα f (t, y) dt. (28)
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or

y′(x) = y′(1)
xα

− 1

xα

∫ 1

x
tα f (t, y) dt. (29)

Integrating Eq. (29) from 0 to x , and applying the boundary condition at x = 0, we
obtain

y(x) = A + A∗
∫ x

0

dt

tα
−

∫ x

0

1

ηα

(∫ 1

η

tα f (t, y) dt

)
dη. (30)

We set y′(1) = A∗, where A∗ is unknown. To determine the value of A∗ in Eq. (30),
we impose the boundary condition at x = 1, namely μy(1) + σ y′(1) = B. With the
help of the boundary condition, we obtain

A∗ = 1[
σ + μ

∫ 1
0

dη
ηα

]
[
B − μA + μ

∫ 1

0

1

ηα

(∫ 1

η

tα f (t, y) dt

)
dη

]
. (31)

Inserting the value of A∗ into Eq. (30), we get

y(x) = A + 1[
σ + μ

∫ 1
0

dη
ηα

]
∫ x

0

dt

tα

[
B − μA

+μ

∫ 1

0

1

ηα

( ∫ 1

η

tα f (t, y) dt

)
dη

]
−

∫ x

0

1

ηα

(∫ 1

η

tα f (t, y) dt

)
dη.

(32)

The HPM is extended to solving integral Eq. (32) derived from original Eq. (1) with
boundary condition (3).

Now we consider Eq. (32) as

T (y) = y(x) − A − 1[
σ + μ

∫ 1
0

dη
ηα

]
∫ x

0

dt

tα

[
B − μA

+μ

∫ 1

0

1

ηα

( ∫ 1

η

tα f (t, y) dt

)
dη

]
+

∫ x

0

1

ηα

( ∫ 1

η

tα f (t, y) dt

)
dη=0.

(33)

Following the homotopy perturbation method, we construct the homotopy H(y, p)
for Eq. (32) by

H(y, p) = (1 − p)F(y) + pT (y) = 0, (34)

where F(y) = y(x) − A
If p = 0, then Eq. (34) becomes

H(y, 0) = F(y) = 0, (35)
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and when p = 1, Eq. (34) turns out to be the original equation, i.e.

H(y, 1) = y(x) − A − 1[
σ + μ

∫ 1
0

dη
ηα

]
∫ x

0

dt

tα

[
B − μA

+μ

∫ 1

0

1

ηα

( ∫ 1

η

tα f (t, y) dt

)
dη

]
+

∫ x

0

1

ηα

(∫ 1

η

tα f (t, y) dt

)
dη=0.

(36)

The nonlinear function f (x, y) is decomposed in terms of the He’s polynomial Hn(x),
as

f (x, y) =
∞∑
n=0

Hn(y0, y1, . . . , yn)P
n . (37)

where

Hn(y0, y1, . . . , yn) = 1

n!
(
dn f (x, y)

dpn

)
p=0

. (38)

Inserting Eq. (11) into Eq. (36) and then equating the identical powers p, we obtain
the following set of integral equation p0 : y0(x) = A,

p1 : y1(x) = 1[
σ + μ

∫ 1
0

dη
ηα

]
∫ x

0

dt

tα

[
B − μA + μ

∫ 1

0

1

ηα

(∫ 1

η

tαH0(t, y) dt

)
dη

]

−
∫ x

0

1

ηα

( ∫ 1

η

tαH0(t, y) dt

)
dη,

p2 : y2(x) = 1[
σ + μ

∫ 1
0

dη
ηα

]
∫ x

0

dt

tα

[
μ

∫ 1

0

1

ηα

(∫ 1

η

tαH1(t, y) dt

)
dη

]

−
∫ x

0

1

ηα

(∫ 1

η

tαH1(t, y) dt

)
dη,

p3 : y3(x) = 1[
σ + μ

∫ 1
0

dη
ηα

]
∫ x

0

dt

tα

[
μ

∫ 1

0

1

ηα

(∫ 1

η

tαH2(t, y) dt

)
dη

]

−
∫ x

0

1

ηα

(∫ 1

η

tαH2(t, y) dt

)
dη,

...

...

... (39)
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Hence the present method can be defined by the recurrence relation

y0(x) = A

y1(x) = 1[
σ + μ

∫ 1
0

dη
ηα

]
∫ x

0

dt

tα

[
B − μA + μ

∫ 1

0

1

ηα

( ∫ 1

η

tαH0(t, y) dt

)
dη

]

−
∫ x

0

1

ηα

(∫ 1

η

tαH0(t, y) dt

)
dη,

yi (x) = 1[
σ + μ

∫ 1
0

dη
ηα

]
∫ x

0

dt

tα

[
μ

∫ 1

0

1

ηα

(∫ 1

η

tαHi−1(t, y) dt

)
dη

]

−
∫ x

0

1

ηα

(∫ 1

η

tαHi−1(t, y) dt

)
dη, i ≥ 2. (40)

Hence, the n-term truncated approximate series solution of the SBVP (1) with bound-
ary condition (3) can be obtained as

Yn = y0 + y1 + y2 + · · · + yn . (41)

4 Convergence of the method

In this section, we discuss the convergence of the proposedmethod for singular bound-
ary value problem (1) with Neumann and Robin boundary conditions (2) and with
Dirichlet and Robin boundary conditions (3).

4.1 Convergence of the method with Neumann and Robin boundary condition

In this subsection, we prove the convergence of the method for solving the problem
(1) with boundary conditions (2) for α ≥ 0. For this, we write Eq. (22) in operator
form as

y = C + N (y) (42)

where C = B
μ
and

N (y) = −σ

μ

∫ 1

0
tα f (t, y) dt −

∫ x

0

( ∫ 1

x

1

ηα
dη

)
tα f (t, y)dt

−
∫ 1

x

( ∫ 1

t

1

ηα
dη

)
tα f (t, y)dt. (43)

Now we establish the existence of the unique solution of the singular boundary value
problem (1) with boundary conditions (2) in the following theorem.

Theorem 1 Let X be the Banach space with the norm ‖ z ‖= max
xε[0,1] | z(x) |, and

f (x, y) is a known function of x and y which satisfies the Lipschitz condition i.e.
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| f (x, y1) − f (x, y2) |≤ k | y1 − y2 | ∀y1, y2 ∈ X.

Further, let δ be a constant defined as

δ = k

∣∣∣∣− 1

2 + 2α
− σ

(1 + α)μ
+ α − 1

2(−1 + α2)

∣∣∣∣

if δ < 1, then the Eq. (18) has unique solution in X.

Proof For any y1, y2 ∈ X , we have

‖ N (y1) − N (y2) ‖= max
0<x≤1

∣∣∣∣ − σ

μ

∫ 1

0
tα | f (x, y1) − f (x, y2) | dt

−
∫ x

0

( ∫ 1

x

1

ηα
dη

)
tα | f (x, y1) − f (x, y2) | dt

−
∫ 1

x

( ∫ 1

t

1

ηα
dη

)
tα | f (x, y1) − f (x, y2) | dt

∣∣∣∣.
‖ N (y1) − N (y2) ‖≤ max

0<x≤1
| f (x, y1) − f (x, y2) | max

0<x≤1

∣∣∣∣ − σ

μ

∫ 1

0
tαdt

−
∫ x

0

( ∫ 1

x

1

ηα
dη

)
tαdt −

∫ 1

x

(∫ 1

t

1

ηα
dη

)
tαdt

∣∣∣∣.

Using the Lipschitz condition of f , we get

‖ N (y1) − N (y2) ‖≤ k

∣∣∣∣ − 1

2 + 2α
− σ

(1 + α)μ
+ α − 1

2(−1 + α2)

∣∣∣∣ max
0<x≤1

| y1 − y2 |,

hence we have
‖ N (y1) − N (y2) ‖≤ δ ‖ y1 − y2 ‖ . (44)

If δ < 1, then N : X → X is the contraction mapping and hence by the Banach
contraction mapping theorem Eq. (18) has unique solution in X. �


Lemma 1 Let {Sn} be a sequence of partial sum of the series solution
∞∑
i=0

yi obtained

by HPMwith given boundary condition. Then the {Sn} can be written in operator form
as Sn = C + N (Sn−1), n ≥ 1, with C = B

μ
and N is a nonlinear operator defined in

(43).

Proof Let Sn =
n∑

i=0
yi be the nth partial sum of the series solution

∞∑
i=0

yi .
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With the help of solution components defined in (26), we get

Sn =
n∑

i=0

yi ,

= B

μ
− σ

μ

∫ 1

0
tα

n∑
i=0

Hi−1 p
i−1 dt −

∫ x

0

(∫ 1

x

1

ηα
dη

)
tα

n∑
i=0

Hi−1 p
i−1dt

−
∫ 1

x

(∫ 1

t

1

ηα
dη

)
tα

n∑
i=0

Hi−1 p
i−1dt, (45)

By using He’s polynomial decomposition we get

Sn = B

μ
− σ

μ

∫ 1

0
tα f (t, Sn−1) dt −

∫ x

0

(∫ 1

x

1

ηα
dη

)
tα f (t, Sn−1)dt

−
∫ 1

x

(∫ 1

t

1

ηα
dη

)
tα f (t, Sn−1)dt. (46)

Hence the sequence generated by the method can be written as Sn = C + N (Sn−1),
n ≥ 1, with C = B

μ
= y0.

This completes the proof of Lemma 1. �

Theorem 2 Suppose that X = C[0, 1] and Y be Banach spaces with the norm ‖ z ‖=
max
xε[0,1] | z(x) |, xεX. Let N : X → Y be the nonlinear mapping defined by (43) which

satisfies the Lipschitz condition ‖ N (x1)− N (x2) ‖≤ β ‖ x1 − x2 ‖ , ∀x1, x2εX, with
0 ≤ β < 1. If we assume that ‖ y0 ‖< ∞, then the sequence Sn = C + N (Sn−1),
converges to the exact solution y. �

Proof If Sn denotes the sequence of partial sum of the series

∞∑
i=0

yi , as defined by

Sn = C + N (Sn−1), we need to prove that

‖ Sn+1 − Sn ‖≤ βn ‖ y0 ‖ . (47)

We consider the proof by induction. With the help of the hypothesis, for n = 1 we
have

‖ S2 − S1 ‖=‖ N (S1) − N (S0) ‖≤ β ‖ S1 − S0 ‖= β ‖ y0 ‖ .

So the result is true for n = 1
Now let us assume that the result is true for n = k, i.e.

‖ Sk+1 − Sk ‖=‖ N (Sk) − N (Sk−1) ‖≤ β ‖ Sk − Sk−1 ‖= βk ‖ y0 ‖ .

Now we have to prove that the result is true for n = k + 1.

‖ Sk+2 − Sk+1 ‖=‖ N (Sk+1) − N (Sk) ‖≤ β ‖ Sk+1 − Sk ‖= βk+1 ‖ y0 ‖ .
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Hence the result is true for all values of n. We complete the proof by showing that Sn
is a Cauchy Sequence on the Banach space X .

For every m, nεN , m ≤ n, using (47), we have

‖ Sn − Sm ‖ = ‖ (Sn − Sn−1) + (Sn−1 − Sn−2) + · · · + (Sm+1 − Sm) ‖
≤ ‖ Sn − Sn−1 ‖ + ‖ Sn−1 − Sn−2 ‖ + · · · + ‖ Sm+1 − Sm ‖,
≤ βn−1 ‖ y0 ‖ +βn−2 ‖ y0 ‖ + · · · + βm+1 ‖ y0 ‖ +βm ‖ y0 ‖,
≤ ‖ y0 ‖ βm(1 + β + β2 + · · · + βn−1−m),

≤ ‖ y0 ‖ βm
(
1 − βn−m

1 − β

)
. (48)

Since 0 < β < 1, 1 − βn−m < 1 and ‖ y0 ‖< ∞, we get from (48)

‖ Sn − Sm ‖≤‖ y0 ‖ βm

1 − β
.

Taking limit as n,m → ∞, we obtain

lim
n,m→∞ ‖ Sn − Sm ‖= 0.

Therefore,Sn is a Cauchy sequence in the Banach space X. This implies that the series

solution
∞∑
i=0

yi by the present method is convergent to the exact solution y. �


This completes the proof of the theorem.

4.2 Convergence of the method with Dirichlet and Robin boundary condition

In this subsection, we prove the convergence of the method for solving the problem
(1) with boundary conditions (3) for αε[0, 1). For this, we write Eq. (36) in operator
form as

y = C + N (y) (49)

where C = A and

N (y) = 1[
σ + μ

∫ 1
0

dη
ηα

]
∫ x

0

dt

tα

[
B − μA + μ

∫ 1

0

1

ηα

(∫ 1

η

tα f (t, y)dt

)
dη

]

−
∫ x

0

1

ηα

( ∫ 1

η

tα f (t, y)dt

)
dη. (50)

Now we establish the existence of the unique solution of the singular boundary value
problem (1) with boundary conditions (3) in the following theorem.
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Theorem 3 Let X be the Banach space with the norm ‖ z ‖= max
xε[0,1] | z(x) |, and

f (x, y) is a known function of x and y which satisfies the Lipschitz condition i.e.

| f (x, y1) − f (x, y2) |≤ k | y1 − y2 | ∀y1, y2 ∈ X

Further, let δ be a constant defined as

δ = k

∣∣∣∣∣∣

(
B − μA + μ

2−2α

)
(1 − α)σ + μ

+ 1 + α

2(−1 + α2)

∣∣∣∣∣∣
if δ < 1, then the Eq. (32) has unique solution in X.

Proof For any y1, y2 ∈ X , we have

‖ N (y1) − N (y2) ‖ = max
0<x≤1

∣∣∣∣ 1[
σ + μ

∫ 1
0

dη
ηα

]
∫ x

0

dt

tα

[
B − μA

+μ

∫ 1

0

1

ηα

(∫ 1

η

tα | f (x, y1) − f (x, y2) | dt
)
dη

]

−
∫ x

0

1

ηα

(∫ 1

η

tα | f (x, y1) − f (x, y2) | dt
)
dη

∣∣∣∣,
≤ max

0<x≤1
| f (x, y1) − f (x, y2) | max

0<x≤1

∣∣∣∣ 1[
σ + μ

∫ 1
0

dη
ηα

]
∫ x

0

dt

tα

×
[
B − μA + μ

∫ 1

0

1

ηα

( ∫ 1

η

tαdt

)
dη

]

−
∫ x

0

1

ηα

( ∫ 1

η

tαdt

)
dη

∣∣∣∣.

Using Lipschitz continuity of f (x, y) we get

‖ N (y1) − N (y2) ‖≤ k

∣∣∣∣∣∣

(
B − μA + μ

2−2α

)
(1 − α)σ + μ

+ 1 + α

2(−1 + α2)

∣∣∣∣∣∣ max
0<x≤1

| y1 − y2 | .

Hence we have
‖ N (y1) − N (y2) ‖≤ δ ‖ y1 − y2 ‖ . (51)

If δ < 1, then N : X → X is the contraction mapping and hence by the Banach
contraction mapping theorem Eq. (32) has unique solution in X. �
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Lemma 2 Let {Sn} be a sequence of partial sum of the series solution
∞∑
i=0

yi obtained

by the method defined by (40). Then the sequence {Sn} can be written in operator form
as Sn = C + N (Sn−1), n ≥ 1, with C = A and N is a nonlinear operator defined in
(50).

Proof Let Sn =
n∑

i=0
yi be the n-th partial sum of the series solution

∞∑
i=0

yi .

With the help of solution components defined in (40), we get

Sn =
n∑

i=0

yi ,

= A + 1[
σ + μ

∫ 1
0

dη
ηα

]
∫ x

0

dt

tα

[
B − μA + μ

∫ 1

0

1

ηα

( ∫ 1

η

tα f (t, y)dt

)
dη

]

−
∫ x

0

1

ηα

( ∫ 1

η

tα f (t, y)dt

)
dη. (52)

By using He’s polynomial decomposition we get

Sn = A + 1[
σ + μ

∫ 1
0

dη
ηα

]
∫ x

0

dt

tα

[
B − μA + μ

∫ 1

0

1

ηα

( ∫ 1

η

tα f (t, Sn−1) dt

)
dη

]

−
∫ x

0

1

ηα

( ∫ 1

η

tα f (t, Sn−1) dt

)
dη. (53)

Hence the sequence generated by the method can be written as
Sn = C + N (Sn−1), n ≥ 1, with C = A = y0. This completes the proof of

Lemma-3. �

Theorem 4 Suppose that X = C[0, 1] and Y be Banach spaces with the norm ‖ z ‖=
max
xε[0,1] | z(x) |, xεX. Let N : X → Y be the nonlinear mapping defined by (50) which

satisfies the Lipschitz condition ‖ N (x1)− N (x2) ‖≤ β ‖ x1 − x2 ‖ , ∀x1, x2εX, with
0 ≤ β < 1. If we assume that ‖ y0 ‖< ∞, then the sequence Sn = C + N (Sn−1),
converges to the exact solution y.

Proof If Sn denotes the sequence of partial sum of the series
∞∑
i=0

yi , as defined by

Sn = C + N (Sn−1), we need to prove that

‖ Sn+1 − Sn ‖≤ βn ‖ y0 ‖ . (54)

We consider the proof by induction. With the help of the hypothesis, for n = 1 we
have

‖ S2 − S1 ‖=‖ N (S1) − N (S0) ‖≤ β ‖ S1 − S0 ‖= β ‖ y0 ‖ .
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So the result is true for n = 1
Now let us assume that the result is true for n = k, i.e.

‖ Sk+1 − Sk ‖=‖ N (Sk) − N (Sk−1) ‖≤ β ‖ Sk − Sk−1 ‖= βk ‖ y0 ‖ .

Now we have to prove that the result is true for n = k + 1.

‖ Sk+2 − Sk+1 ‖=‖ N (Sk+1) − N (Sk) ‖≤ β ‖ Sk+1 − Sk ‖= βk+1 ‖ y0 ‖ .

Hence the result is true for all values of n. We complete the proof by showing that Sn
is a Cauchy Sequence on the Banach space X .

For every m, nεN , m ≤ n, using (54), we have

‖ Sn − Sm ‖ = ‖ (Sn − Sn−1) + (Sn−1 − Sn−2) + · · · · · · + (Sm+1 − Sm) ‖,
≤ ‖ Sn − Sn−1 ‖ + ‖ Sn−1 − Sn−2 ‖ + · · · + ‖ Sm+1 − Sm ‖,
≤ βn−1 ‖ y0 ‖ +βn−2 ‖ y0 ‖ + · · · + βm+1 ‖ y0 ‖ +βm ‖ y0 ‖,
≤ ‖ y0 ‖ βm(1 + β + β2 + · · · + βn−1−m),

≤ ‖ y0 ‖ βm
(
1 − βn−m

1 − β

)
. (55)

Since 0 < β < 1, 1 − βn−m < 1 and ‖ y0 ‖< ∞, we get from (55)

‖ Sn − Sm ‖≤‖ y0 ‖ βm

1 − β
.

Taking limit as n,m → ∞, we obtain

lim
n,m→∞ ‖ Sn − Sm ‖= 0.

Therefore,Sn is a Cauchy sequence in the Banach space X. This implies that the series

solution
∞∑
i=0

yi by the present method is convergent to the exact solution y.

This completes the proof of the theorem. �


5 Numerical illustrations

In this section, we illustrate the applicability of proposed recursive schemes for solving
singular boundary value problems arising in various physical models.We consider two
linear and six nonlinear problems. Numerical results are compared with few existing
methods in the literature. All numerical computations were done with MATHEMAT-
ICA.

Example 1 Consider the non-linear singular boundary value problem

(x0.5y′(x))′ = −x0.5ey(x)(0.5 + ey(x)), (56)
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Table 1 Numerical results of
maximum absolute error for
Example 1

n Present method n Method in Kumar
and Singh [21]

2 1.087 × 10−1 3 1.1 × 10−1

3 6.13 × 10−2

4 2.84 × 10−2

5 6.3 × 10−3

y(0) = log2, y(1) = 0. The exact solution is given by y(x) = log
[

2
1+x2

]
.

This problem has a singular point at x = 0 and corresponds to (1)–(3) with
f (x, y) = −ey(x)(0.5 + ey(x)) and α = 0.5.
Using the method defined by Eq. (40), we obtain the truncated 5 terms approximate

series solution of the problem (56), as given by

Y4(x) = 0.693147 − 1.00436(2x0.5) + 2.02644x0.5 − x2 − 0.0974505x2.5

+ 0.00155006x3 − 0.00445698x3.5 + 0.498335x4 + 0.19691x4.5

+ 0.09876x5 + 0.0532754x5.5 − 0.333333x6 − 0.325569x6.5

− 0.270904x7 + 0.25x8 + 0.422075x8.5 − 0.2x10.

Tomeasure the accuracy of the presentmethod against the exact solution,we determine
the maximum absolute error, as defined by

En(x) = max
xε[0,1] | Yn(x) − E(x) |

Here, E(x) is the exact solution of the problem and Yn(x) is the truncated n−terms
approximate series solution.

Table 1 shows a comparison between the maximum absolute error obtained by
our method and modified Adomian decomposition method given in [21]. Comparison
reveals that our method gives more accurate result than that of [21]. We plot exact
solution and approximate solution of problem (56) for n = 3, 4, 5 in Fig. 1, which
shows that approximate solution converges very rapidly to exact solution. Numerical
results of absolute errors for n = 3, 4, 5 are displayed in Fig. 2.
Mathematica code for Example 1
Ex1/ : Ex1[x_] :=
Module

[{Y, s} ,Clear [Y, s, x, t, p]; Y0 = Log[2];
H [p_]=Exp(Y0+ pY1+ p2Y2+ p3Y3)(0.5+Exp(Y0+ pY1+ p2Y2+ p3Y3));

Y1 = [(1/(I ntegrate[(x−0.5)]), {x, 0, 1}))(I ntegrate[(x−0.5)],
{x, 0, x})(Log[1/5] − 5 − Log[1/4]
+ [I ntegrate[(x−0.5)I ntegrate[(x0.5H [0])], {x, x, 1}], {x, 0, 1}]]
− [I ntegrate[(x−0.5)I ntegrate[(x0.5H [0])], {x, x, 1}], {x, 0, x}]]

Y2 = [(1/(I ntegrate[(x−0.5)]), {x, 0, 1}))(I ntegrate[(x−0.5)], {x, 0, x})
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Fig. 1 Comparison of approximate solution and exact solution of Example 1
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Fig. 2 Numerical result of absolute error of Example 1

([I ntegrate[(x−0.5)I ntegrate[(x0.5H ′[0])], {x, x, 1}], {x, 0, 1}]]
− [I ntegrate[(x−0.5)I ntegrate[(x0.5H ′[0])], {x, x, 1}], {x, 0, x}]]

Y3 = [(1/(I ntegrate[(x−0.5)]), {x, 0, 1}))(I ntegrate[(x−0.5)], {x, 0, x})
([I ntegrate[(x−0.5)I ntegrate[(x0.5H ′′[0])], {x, x, 1}], {x, 0, 1}]]
− [I ntegrate[(x−0.5)I ntegrate[(x0.5H ′′[0])], {x, x, 1}], {x, 0, x}]]

Y4 = [(1/(I ntegrate[(x−0.5)]), {x, 0, 1}))(I ntegrate[(x−0.5)], {x, 0, x})
([I ntegrate[(x−0.5)I ntegrate[(x0.5H ′′′[0])], {x, x, 1}], {x, 0, 1}]]
− [I ntegrate[(x−0.5)I ntegrate[(x0.5H ′′′[0])], {x, x, 1}], {x, 0, x}]]
s = Y0 + Y1 + Y2 + Y3 + Y4]
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Table 2 Numerical results of
maximum absolute error for
Example 2

n Present method Method in Kanth
and Reddy [20],
for h = 1/20

Method in Kanth
and Reddy [20],
for h=1/40

10 3.392 × 10−4 2.918 × 10−4 7.482 × 10−5

12 5.571 × 10−5

14 9.151 × 10−6

16 1.503 × 10−6

Fig. 3 Comparison of approximate solution and exact solution of Example 2

Example 2 Consider the boundary value problem

(x2y′(x))′ = x2(4y(x) − 2), (57)

y′(0) = 0, y(1) = 5.5.
The exact solution is given by y(x) = 0.5 + 5sinh2x

xsinh2 .
This problem has a singular point at x = 0 and corresponds to (1)–(2) with

f (x, y) = 4y(x) − 2 and α = 2.
Using the method defined by Eq. (26), we obtain the truncated 6 terms approximate

series solution of the problem (57), as given by

Y5(x) = 3.26999 + 1.67147x2 + 0.145654x3 + 0.52134x4

− 0.143351x5 − 0.0174015x6 + 0.0499874x7 + 0.0110523x8

− 0.00877915x9 − 0.000812356x10 + 0.000855112x11

+ 0.0000427556x12 − 0.0000394667x13 − 4

(
−1 + 1

x

)
(−0.0364135x3

+ 0.0358377x5 − 0.0124969x7 + 0.00219479x9 − 0.000213778x11

+ 9.86668 × 10−6x13).

The maximum absolute error for proposed method, together with the results of [20]
are given in Table 2. It can be seen from the Table, our method with few solution
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Fig. 4 Numerical result of absolute error of Example 2

components provides better result than the method of [20]. We plot exact solution and
approximate solution of problem (57) for n = 12, 14, 16 in Fig. 3, which shows that
the approximate solution is very good agreement with the exact solution. Numerical
results of absolute errors for n = 12, 14, 16 are displayed in Fig. 4.
Mathematica code for Example 2
Ex2/ : Ex2[x_] :=
Module

[{Y, s} ,Clear [Y, s, x, t, p]; Y0 = 5.5;
H [p_] = 4[Y0 + pY1 + p2Y2 + p3Y3] − 2;

Y1 = −I ntegrate[[I ntegrate[(x−2)], {x, x, 1}][(t2H [0])], {t, 0, x}]
−I ntegrate[[I ntegrate[(t2)], {t, t, 1}][(t2H [0])], {t, x, 1}]

Y2 = −I ntegrate[[I ntegrate[(x2)], {x, x, 1}][(t2H ′[0])], {t, 0, x}]
−I ntegrate[[I ntegrate[(t2)], {t, t, 1}][(t2H ′[0])], {t, x, 1}]

Y3 = −I ntegrate[[I ntegrate[(x2)], {x, x, 1}][(t2H ′′[0])], {t, 0, x}]
−I ntegrate[[I ntegrate[(t2)], {t, t, 1}][(t2H ′′[0])], {t, x, 1}]

Y4 = −I ntegrate[[I ntegrate[(x2)], {x, x, 1}][(t2H ′′′[0])], {t, 0, x}]
−I ntegrate[[I ntegrate[(t2)], {t, t, 1}][(t2H ′′′[0])], {t, x, 1}];

s = Y0 + Y1 + Y2 + Y3 + Y4]

Example 3 Consider the boundary value problem

(x2y′(x))′ = x2((1 − x2)y(x) − x4 + 2x2 − 7),

y′(0) = 0, y(1) = 0. (58)
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Table 3 Numerical results of
maximum absolute error for
Example 3

n Present method Method in Kanth
and Reddy [20],
for h = 1/20

Method in Kanth
and Reddy [20],
for h = 1/40

7 1.576 × 10−8 2 × 10−6 2 × 10−6

9 8.668 × 10−11

11 4.765 × 10−13

Fig. 5 Comparison of approximate solution and exact solution of Example 3

The exact solution is given by y(x) = 1 − x2.
This problem has a singular point at x = 0 and corresponds to (1)–(2) with

f (x, y) = (1 − x2)y(x) − x4 + 2x2 − 7 and α = 2.
Using the method defined by Eq. (26), we obtain the truncated 3 terms approximate

series solution of the problem (58), as given by

Y3(x) = 229

210
− 7x2

6
− x4

10
− x6

42
+ (−1 + x)x2(37785 − 46926x2 + 18810x4 − 1430x6 + 225x8)

103950

+ (−1+x)4(17252543+69010172x+6179705x2−48072x3 − 992721x4−590744x5+331735x6

2270268000

+ (−1 + x)4(10216x7 − 13638x8 − 30180x9 + 1599x10 + 546x11)

2270268000

− (−1+x)4(40559+x(162236+5x(35776+x(11096+x(−1669+2x(−68+9x(29+10x)))))))

415800
.

The maximum absolute error for the present method, together with the results of [20]
are given in Table 3. It can be seen from the Table, our method with few solution
components provides better result than the method of [20]. We plot exact solution and
approximate solution of problem (58) for n = 7, 9, 11 in Fig. 5, which shows that
the approximate solution is very good agreement with the exact solution. Numerical
results of absolute errors for n = 9, 11 are displayed in Fig. 6.
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Fig. 6 Numerical result of absolute error of Example 3

Mathematica code for Example 3
Ex3/ : Ex3[x_] :=
Module

[{Y, s} ,Clear [Y, s, x, t, p]; Y0 = 0;
H [p_] = (1 − x2)[Y0 + pY1 + p2Y2 + p3Y3] − x4 + 2x2 − 7;
Y1 = −I ntegrate[[I ntegrate[(x−2)], {x, x, 1}][(t2H [0])], {t, 0, x}]

−I ntegrate[[I ntegrate[(t2)], {t, t, 1}][(t2H [0])], {t, x, 1}]
Y2 = −I ntegrate[[I ntegrate[(x2)], {x, x, 1}][(t2H ′[0])], {t, 0, x}]

−I ntegrate[[I ntegrate[(t2)], {t, t, 1}][(t2H ′[0])], {t, x, 1}]
Y3 = −I ntegrate[[I ntegrate[(x2)], {x, x, 1}][(t2H ′′[0])], {t, 0, x}]

−I ntegrate[[I ntegrate[(t2)], {t, t, 1}][(t2H ′′[0])], {t, x, 1}]
Y4 = −I ntegrate[[I ntegrate[(x2)], {x, x, 1}][(t2H ′′′[0])], {t, 0, x}]

−I ntegrate[[I ntegrate[(t2)], {t, t, 1}][(t2H ′′′[0])], {t, x, 1}]
s = Y0 + Y1 + Y2 + Y3 + Y4]

Example 4 Consider the non-linear singular boundary value problem

(xα y′(x))′ = 5xα+3ey − (α + 4)

4 + x5
,

y(0) = ln

(
1

4

)
, y(1) + 5y′(1) = ln

(
1

5

)
− 5. (59)

The exact solution is given by y(x) = ln
(

1
4+x5

)
.

This problem has a singular point at x = 0 and corresponds to (1)–(3) with

f (x, y) = 5x3ey−(α+4)
4+x5

.
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Fig. 7 Comparison of approximate solution and exact solution of Example 4

Using the method defined by Eq. (40), we obtain the truncated 6 terms approximate
series solution of the problem (59), as given by

Y5(x) = −1.38629 − (2.x0.5) + 2x0.5 − 0.25x5 + 1.80108 × 10−7x5.5

+ 2.92602 × 10−7x6. − 8.6682 × 10−9x6.5

+ 1.5096 × 10−10x7 − 1.09122 × 10−13x7.5 + 0.03125x10

+ 3.63437 × 10−8x10.5 − 5.68814 × 10−7x11 − 1.46604 × 10−8x11.5

− 1.6555 × 10−10x12 + 3.39491 × 10−13x12.5 − 0.00520833x15

− 3.12723 × 10−7x15.5 + 6.25828 × 10−7x16

+ 1.92483 × 10−8x16.5 − 9.69024 × 10−11x17

+ 0.000976563x20 + 7.15474 × 10−7x20.5 − 3.15107 × 10−7x21

+ 3.86178 × 10−9x21.5 + 1.12667 × 10−11x22 − 0.000195312x25

− 1.15047 × 10−6x25.5 − 6.73497 × 10−8x26 − 1.08065 × 10−9x26.5

+ 0.0000406901x30 + 1.1103 × 10−6x30.5 + 2.8367 × 10−8x31

+ 4.3099 × 10−11x31.5 − 8.60943 × 10−6x35

− 3.18671 × 10−7x35.5 − 2.23453 × 10−9x36 + 1.51611 × 10−6x40

+ 3.35259 × 10−8x40.5 + 4.91628 × 10−11x41 − 1.6515 × 10−7x45

− 1.43016 × 10−9x45.5 + 9.65087 × 10−9x50 + 2.1084 × 10−11x50.5

− 2.75702 × 10−10x55 + 3.0179 × 10−12x60.

We plot exact solution and approximate solution of problem (59) for n = 5, 6 in
Fig. 7, which shows that the approximate solution is very good agreement with the
exact solution. The results of the maximum absolute error En for n = 5, 6 are depicted
in Fig. 8. Table 4 shows a comparison between the maximum absolute error obtained
by our method and Adomian decomposition method given in [22] for α = 0.25 and
α = 0.75. Comparison reveals that our method gives more accurate result than the
method in [22]. Furthermore we solve the problem (59) for α = 0.5. The results of
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Fig. 8 Numerical result of absolute error of Example 4

Table 4 Numerical results of maximum absolute error for Example 4 for α = 0.25 and α = 0.75

α Iterations Present method ADM inMittal and
Nigam [22]

ADM (with
removal) in Mittal
and Nigam [22]

0.25 5 4.290 × 10−7 8.6 × 10−6 1.96 × 10−6

0.75 5 7.688 × 10−7 7.4 × 10−6 1.67 × 10−6

Table 5 Numerical results of maximum absolute error for Example 4 for α = 0.5

n Present method N (no. of mesh pt.) Method in Chawla
and Katti [24]

Method in Kumar
and Aziz [23]

5 6.167 × 10−7 16 7.5 × 10−4 2.1 × 10−5

6 1.275 × 10−7 32 1.9 × 10−4 1.3 × 10−6

maximum absolute error for the present method, together with the results of [23] and
[24] are displayed in Table 5. It can be clearly seen that approximate solution obtained
by our method shows its superiority on the method of [23] and [24].

Example 5 Consider the nonlinear SBVP arising in the study of steady-state oxygen
diffusion in a spherical cell

(xα y′(x))′ = xα ny(x)

y(x) + k
,

y′(0) = 0, 5y(1) + y′(1) = 5. (60)

where n and k are positive constants involving the reaction rate and the Michaelis
constant, we take n = 0.76129 and k = 0.03119 [26,34,35].
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Fig. 9 The approximate solution of Example 5 for n = 6, 8

Table 6 Approximate solutions of Example 5 for α = 2

x Y4 Y6 Method in Pandey
and Singh [34]

Method in
Asaithambi and
Garner [26]

Method in Caglar
et al. [35]

0 0.8284816684 0.828483261 0.8284831497 0.8284752 0.82848327295802

0.1 0.8297045015 0.829706064 0.8297060742 0.8296982 0.82970607521884

0.2 0.8333732324 0.833374707 0.8333747157 0.8333673 0.83337471691089

0.3 0.8394885515 0.839489891 0.8394898966 0.8394831 0.83948989814383

0.4 0.8480515961 0.848052766 0.8480527684 0.8480467 0.84805277036165

0.5 0.8590639302 0.859064911 0.8590649116 0.8590596 0.85906491397434

0.6 0.8725275171 0.872528308 0.8725283056 0.8725237 0.87252830841853

0.7 0.8884446854 0.888445296 0.8884452928 0.8884408 0.88844529589927

0.8 0.9068180901 0.906818541 0.9068185369 0.9068145 0.90681854026297

0.9 0.9276506683 0.927650984 0.9276509791 0.9276474 0.92765098252660

1 0.9509455923 0.950945795 0.9509457914 0.9509432 0.95094579461056

This problem has a singular point at x = 0 and corresponds to (1)–(2) with
f (x, y) = ny(x)

y(x)+k , B = 5, μ = 5, σ = 1 and α = 2.
Using the method defined by Eq. (26), we obtain the truncated 6 terms approximate

series solution of the problem (60), as given by

Y5(x) = 0.828483 + 0.1222783x2 − 1.05879118 × 10−22x3 + 0.0001963x4

− 0.000013x6 + 8.470329 × 10−22x7 + 1.013103 × 10−6x8

− 2.11758 × 10−22x9 − 7.3678328 × 10−8x10 − 5.293955 × 10−23x11

+ 3.366697 × 10−9x12 − 6.617444 × 10−24x13 − 1.147943701 × 10−41x14.

The approximate solutions of Eq. (60) obtained using the present method for n =
4, 6 are depicted in Fig. 9. Comparison of the numerical results obtained by present
method and the methods in [26,34,35], are presented in Table 6. It is clearly evident
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Fig. 10 The approximate solution of Example 6

that the results obtained by the proposed method with few solution components are in
very good agreement with the results of [26,34,35].

Example 6 Consider the nonlinear SBVP arising in the study of the distribution of
heat sources in the human head

(x2y′(x))′ = −x2e−y,

y′(0) = 0, μy(1) + σ y′(1) = 0. (61)

This problem has a singular point at x = 0 and corresponds to (1)–(2) with
f (x, y) = −e−y , B = 0, and α = 2.
Using the method defined by Eq. (26), we obtain the truncated 6 terms approximate

series solution of the problem (61), as given by

Y5(x) = 24710088649

91945854000
− 27964817x2

256608000
− 6605983x3

384912000
− 186583x4

12247200
+ 152563x5

15309000

+ 1567x6

680400
− 1927x7

793800
− 61x8

201600
+ 61x9

226800
+ 629x10

30618000
− 629x11

33679800
− 2869x12

1010394000
+ 2869x13

1094593500

− (−1 + x)x2(−22980 + 13419x2 − 3240x4 + 305x6)

1020600

− (−1 + x)x2(6193715 − 4123152x2 + 1297296x4 − 214720x6 + 15096x8)

538876800

− (−1+x)x2(−188179537+136962826x2−50887980x4+11296285x6−1430975x8+80332x10)

30648618000
.

The approximate solutions of Eq. (61) obtained using the present method for dif-
ferent set of μ and σ are depicted in Fig. 10. Comparison of the numerical results
obtained by present method and the finite difference Method of [36], is presented in
Table 7. It is clearly evident that the results obtained by the proposed method with few
solution components are in very good agreement with that obtained in [36].
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Table 7 Approximate solutions of Example 6

x μ = 4 σ = 1 μ = 3 σ = 1 μ = 2 σ = 1 μ = 2 σ = 1
Method in Pandey
[36]

0 0.21511982142657 0.23320591421064239 0.2699399293 -

0.1 0.21378530056648976 0.23169332326288192 0.2686678831 0.2687569031

0.2 0.20968032011274923 0.2277269976421587 0.2648458760 0.2649328201

0.3 0.2028206450103804 0.22109525213778383 0.2584562193 0.2585397920

0.4 0.1931784789087995 0.21176596283695623 0.2494691512 0.2495481830

0.5 0.18071346627031787 0.19969350286484888 0.2378424054 0.2379158905

0.6 0.1653713150337292 0.1848180563620451 0.2235205875 0.2235877102

0.7 0.14708210496462987 0.16706468964918572 0.2064343356 0.2064944863

0.8 0.1257583216334141 0.14634214363077647 0.1864992393 0.1865520177

0.9 0.10129264360758558 0.12254130163058399 0.1636144765 0.1636596855

1 0.07355548595008519 0.0955332746731768 0.1376611201 0.1376987509

Table 8 Numerical results of
maximum absolute error for
Example 7

n Present method N (no. of
mesh pt.)

Method in Chawla
et al. [33]

6 3.935 × 10−4 16 2.52 × 10−3

8 6.957 × 10−5 32 1.83 × 10−4

Example 7 Consider the boundary value problem

(xy′(x))′ = −xey(x),

y′(0) = 0, y(1) = 0. (62)

The exact solution is given by y(x) = 2ln
(

A+1
Ax2+1

)
, where A = 3 − 2

√
2.

This problem has a singular point at x = 0. The problem (62) is known as the
Emden-Fowler equation of the second kind and corresponds to (1)–(2) with f (x, y) =
−ey(x) and α = 1.

Using the method defined by Eq. (26), we obtain the truncated 6 terms approximate
series solution of the problem (62), as given by

Y5(x) = 621859/1966080 − (85x2)/256 + (3x4)/128 − x6/768

+ (x2(−56 + 28x2 − 8x4 + x6))/8192

+ (x2(−210 + 120x2 − 45x4 + 10x6 − x8))/81920

+ (x2(−792 + 495x2 − 220x4 + 66x6 − 12x8 + x10))/786432.

The maximum absolute error for the present method, together with the results of [33]
are given in Table 8. It can be seen from the Table, our method with few solution com-
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Fig. 11 Numerical result of absolute error of Example 7

Table 9 Numerical results of
maximum absolute error for
Example 8

n Present method N (no. of
mesh pt.)

Method in Chawla
et al. [33]

10 1.205 × 10−4 16 3.64 × 10−4

19 1.957 × 10−5 32 2.49 × 10−5

ponents provides better result than the method of [33]. Numerical results of absolute
errors for n = 6, 8, 10 are displayed in Fig. 11.

Example 8 Consider the nonlinear singular boundary value problem describing the
equilibrium of the isothermal gas sphere

(x2y′(x))′ = −x2y5(x),

y′(0) = 0, y(1) =
√
3

4
. (63)

The exact solution is given by y(x) =
√

3
3+x2

.

This problem has a singular point at x = 0 and corresponds to (1)–(2) with
f (x, y) = −y5(x) and α = 2.
Using the method defined by Eq. (26), we obtain the truncated 6 terms approximate

series solution of the problem (63), as given by

Y5(x) = (35
√
3)/64 − (3

√
3x2)/64 + (9

√
3(−1 + x)x2(−5 + 3x2))/1024

− (9
√
3(−1 + x)3(7 + 21x + 12x2))/4096

−(27
√
3(−1 + x)x2(55 − 54x2 + 15x4))/65536

+ (27
√
3(−1 + x)3(−33 − 99x − 33x2 + 55x3 + 30x4))/131072

+ (405
√
3(−1 + x)x2(−65 + 81x2 − 39x4 + 7x6))/2097152
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Fig. 12 Numerical result of absolute error of Example 8

− (243
√
3(−1 + x)x2(8075 − 11628x2 + 7410x4 − 2380x6 + 315x8))/268435456

+ (5103
√
3(−1 + x)x2(−7429 + 11799x2 − 8970x4 + 3910x6

− 945x8 + 99x10))/8589934592 − (405
√
3(−1 + x)3(143 + x(429

+ x(78 + x(−390 + x(−165 + 7x(15 + 8x)))))))/16777216

+ (243
√
3(−1 + x)3(−4199 + x(−12597 + x(−969 + x(14535

+ x(4845 + 7x(−969 + x(−437 + 9x(19 + 10x)))))))))/536870912

− (5103
√
3(−1 + x)3(7429 + x(22287 + x2(−29716 + x(−7866

+ x(18354+x(7084+3x(−1932+x(−897+11x(23+12x))))))))))/34359738368.

The maximum absolute error for the present method, together with the results of [33]
are given in Table 9. It can be seen from the Table, our method with few solution com-
ponents provides better result than the method of [33]. Numerical results of absolute
errors for n = 6, 8, 10 are displayed in Fig. 12.

6 Conclusions

Anew recursive scheme based onHPMhas been introduced for the numerical solution
of singular two-point boundary value problems that arise in various physical models.
The removal of singularitywas achieved by transforming the original differential equa-
tion into an equivalent integral equation. Then, a recursive scheme without unknown
constants was established by using HPM to approximate the solution of the singular
boundary value problems (1)–(2) or (1)–(3). The convergence analysis of the method
was discussed in the paper.

Some numerical examples are considered to demonstrate the efficiency, reliability
and accuracy of the methods. Numerical results reveal that our method requires few
components in the power series solution to obtain accurate result. The advantage of
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the present method over the existing recursive schemes using ADM, HAM or VIM is
that it does not require the computations of undetermined coefficients. Moreover, the
present algorithm does not require linearization, perturbation or discretization of the
variables and provides accurate solution without requiring too much computational
effort.

Comparisonwasmadewith existingmethods and shows that that the presentmethod
is superior to the methods given in [20–24,28,33] . It may be concluded that the
proposedmethod is an effective, easy to implement, highly accurate and very powerful
method for solving singular boundary value problems.
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