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Abstract In this paper we introduce a non-linear model for the biodegradation of
organic pollutants in a water body. We assume that the pollutants are removed using
fungi, that need nutrients and dissolved oxygen to thrive. We show that after an initial
phase the process can be rendered entirely self-sustained, even without the constant
supply of fungi, thereby becoming economically very much appealing.

Keywords Mathematical model · Organic pollutants · Fungi · Wastewater treatment ·
Water purification

1 Introduction

Finding abundant drinkable water is becoming a major issue in this century. In this
respect, discovering cheap ways of purifying water is fundamental for addressing
and helping to solve this problem. To achieve this goal, biodegradation can be used
to remove or to transform pollutants found in the environment, dissolved in natural
bodies of water, into harmless compounds. This can be accomplished by the use of
chemical, physical or biological entities, such as microorganisms, fungi and green
plants, through the enzymes that they produce. For instance, bacteria and fungi could
help with the pollutant oxydation, because many species can produce oxygenases and
peroxydases that degrade organic pollutants, [1]. Biodegradation can especially be
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employed in the treatment of wastewater and some mathematical models are known,
[2,3].

In the last few decades, highly toxic organic compounds have been synthesized
and released into the environment for direct or indirect application over a long
period of time. Fuels, polychlorinated biphenyls (PCBs), polycyclic aromatic hydro-
carbons (PAHs), pesticides and dyes are some of these types of compound, [4,8–10].
Microorganisms have the ability to interact, both chemically and physically, with these
substances, leading either to changes in their structure or to the complete degradation
of the target molecule.

Organic matters and organo-phosphorus pesticides have relatively high water sol-
ubility and low acute toxicity. The degradation process of organic matter can be
performed either aerobically or anaerobically. In aerobic biodegradation oxygen is
needed by degradable organisms in two metabolic stages, initially to attack the sub-
strate and at the end of the respiratory chain. The biodegradation rates of many organic
pollutants are known.

The dissolved oxygen concentration is a measure of the healthy state of an aquatic
ecosystem. This concentration can be enhanced by re-aeration from the atmosphere,
photosyntetic oxygen production from aquatic plants, denitrification and external oxy-
gen inputs.

In general, oxygen is used by animals, bacteria, fungi and plants to digest nutrients
by breaking down organic matter and sugars. Dissolved oxygen is essential for life
in water bodies, as aquatic organisms use it to breathe: fish through their gills, while
water plants need it for respiration. But too high or too low a level may harm aquatic
life and degrade water quality.

Microbes as well as bacteria and fungi at the bottom of the water body decompose
organic material using dissolved oxygen, thereby substantially contributing to the
recycling of nutrients. But stratification, i.e. an excess of decaying organic material
with no or infrequent turnover, depletes dissolved oxygen. In such case anaerobic
decomposition takes over, with the release of hydrogen sulfide and methan, both
obnoxious gases.

In this paper we consider an aquatic ecosystem consisting of fungi, nutrients, pol-
lutants and dissolved oxygen. By formulating a suitable mathematical model for their
interactions [5–7], considering explicitly the oxygen in the equations, we investigate
the sustainability in time of this ecosystem.

The paper is organized as follows. In the next section we present the model. We
then analyse it, establishing the boundedness of the solutions in Sect. 3, the equilibria
in Sect. 4 and their stability in Sect. 5. A final discussion concludes the paper.

2 The mathematical model

We present a nonlinear mathematical model for removing an organic pollutant from
a water body. We consider the following quantities. P denotes the concentration of
an organic pollutant such as dye; it is assumed to be discharged into the water body
at constant rate Q. F represents the biomass density of the fungi population being
used for the removal of organic pollutant. We assume that it is supplied at constant
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rate q. N denotes the concentration of the nutrients. They can come from dead matter,
but are also assumed to be supplied with a constant rate q1. The dissolved oxygen
concentration is indicated by O . We assume that it enters into the water only via an
external input, at rate q2.

Various interaction processes can be involved in the degradation of organic pollu-
tants. We assume that they need dissolved oxygen. In particular, the fungi can be used,
but they deteriorate themselves in this water purification process. On the other hand,
they can reproduce at rate k1, but in so doing they consume both oxygen and nutrients.
The degradation process performed by fungi requires both oxygen and the pollutant.
In the absence of either one, it stops, as well as, obviously, when the fungi lack. There-
fore to model this “reaction”, the product of P , O and F is needed. On the other hand,
the fungi can process the degradation only up to a saturation level that depends on the
maximum processing rate of the two different elements: if there is too much oxygen
with respect to pollutants, a maximal rate is reached for which the process consumes
the pollutant up and leaves the redundant oxygen free. The same occurs when there
is too much pollutant, a maximal processing rate is reached for which some of the
pollutant is left untouched while oxigen is exhausted. These observations impose that
the correct modeling of the phenomenon relies on the use of a function that saturates
with respect both variables. A possible choice for such a function is known in the
literature as the Beddington–De Angelis response function. The model reads:

dP

dt
= Q − α0P − f (P, O)F (1)

dF

dt
= q − ω f (P, O)F − αF + k1FNO

dN

dt
= q1 − α1N − k1FNO

dO

dt
= q2 − α2O − λ1k1FNO − λ f (P, O)F

where all the parameters are assumed to be nonnegative and the followingBeddington–
De Angelis kinetics is used, in which k11 ≥ 0, k12 ≥ 0, k13 ≥ 0 represent suitable
constants,

f (P, O) = kPO

k11 + k12P + k13O
. (2)

As claimed, there is a constant inflowof all the substances. In addition, each equation
describes a different phenomenon. The first equation in (1) states that pollutants can
be washed out, or sink to the bottom and disappear from the ecosystem by getting
buried; in both cases, they are “naturally” removed from the water at rate α0. In the
second equation we find the fungi dynamics. They are depleted by their processing
of the pollutant. This once again is expressed by the Beddington–De Angelis kinetics
f (P, O). Further, they have a natural mortality α and, as said above, reproduce at rate
k1 by consuming oxygen and nutrients. The third equation models the nutrients. In this
ecosystem, they are introduced only by an external source, are washed out at rate α1
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and consumed by fungi to reproduce. Finally the last equation is for dissolved oxygen.
Again, it is introduced only by exhogenous means, and either washed out at rate α2,
or consumed by fungi for their reproduction or for the processing of pollutants. Note
that in the above equations ω, λ and λ1 are proportionality constants defined such that
0 < ω, λ, λ1 < 1.

3 Boundedness

Since we work with an ecological model, the variables cannot grow unbounded. In
order to have awell-posedmodel, we need to show that the system’s trajectories remain
confined within a compact set. Consider the function ϕ(t) := P(t) + F(t) + N (t) +
O(t). Summing up the equations in (1), we then have

dϕ(t)

dt
= Q − α0P − f (P, O)F + q − ω f (P, O)F − αF + k1FNO

+q1 − α1N − k1FNO + q2 − α2O − λ1k1FNO − λ f (P, O)F

= Q + q + q1 + q2 − α0P − αF − α1N − α2O +
−(1 + ω + λ) f (P, O)F − λ1k1FNO.

Setting K = min(α0, α, α1, α2) and H = Q+q+q1+q2, and dropping the remaining
terms, we have an upper bound

dϕ(t)

dt
≤ H − Kϕ(t).

Solving the corresponding differential equation, we have then the required estimate
as

ϕ(t) ≤ H

K
+

(
ϕ(0) − H

K

)
e−Kt ≤ max

{
ϕ(0),

H

K

}

from which every single variable must have the same upper bound as well.

4 Equilibrium analysis

Themodel (1) has in general only one steady state, possibly represented by coexistence
of all the involved quantities, P , F , N and O .Wewill treat this equilibrium by showing
below its stable existence via numerical simulations.

In the case that some of the external inputs are removed, the model admits fifteen
more equilibria. They can explicitly be calculated. We list thirteen of them in the
Table 1 below, specifying the conditions on the inputs under which each one of them
sussists. When these are satisfied, the equilibria are unconditionally feasible, as can
easily be seen by looking at their various component values.

In addition, there are two more equilibria, E11 and E14, with which we deal now.
To show their existence we use always the same method, the method of the isoclines.
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Table 1 The feasibility conditions for the equilibrium points

Eq. Point P F N O Feasibility conditions

E0 0 0 0 0 Q = q = q1 = q2 = 0

E1 Q/α0 0 0 0 q = q1 = q2 = 0

E2 0 q/α 0 0 Q = q1 = q2 = 0

E3 Q/α0 q/α 0 0 q1 = q2 = 0

E4 0 0 q1/α1 0 Q = q = q2 = 0

E5 Q/α0 0 q1/α1 0 q = q2 = 0

E6 0 q/α q1/α1 0 Q = q2 = 0

E7 Q/α0 q/α q1/α1 0 q2 = 0

E8 0 0 0 q2/α2 Q = q = q1 = 0

E9 Q/α0 0 0 q2/α2 q = q1 = 0

E10 0 q/α 0 q2/α2 Q = q1 = 0

E11 P11 F11 0 O11 q1 = 0

E12 0 0 q1/α1 q2/α2 Q = q = 0

E13 Q/α0 0 q1/α1 q2/α2 q = 0

E14 0 F14 N14 O14 Q = 0, O14N14 < αk−1
1

E15 P∗ F∗ N∗ O∗ P∗ < Qα−1
0

We reduce the equilibrium system obtained from (1) to two equations depending just
on two variables, by means of suitable substitutions. In our case we use the variables
P and O to define the isoclines. We then prove that the two curves intersect at one or
more points in the first quadrant, providing some conditions for this to happen, since
the densities of P and O must be nonnegative. From the values of P and O at this
intersection, say P̂ and Ô , we can establish the values of the remaining quantities, say
F̂ and N̂ . We now prove that the two isoclines intersect.

Proposition 1 Existence of E11(P11, F11, 0, O11) is always guaranteed.

Proof Solving for F the first equation of (1) we find

F11 = Q − α0P11
f (P11, O11)

. (3)

Its nonnegativity gives P11 ≤ Qα−1
0 , a condition that we will see is always satisfied.

Substituting (3) into the second and the fourth equations of (1) we obtain the isoclines:

q − ω(Q − α0P) − α
Q − α0P

f (P, O)
= 0, (4)

q2 − α2O − λ(Q − α0P) = 0. (5)
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Using (2), the isocline given by (4) becomes O(P) = �(P)ϕ(P)−1, with

�(P) = αQk11 + α(Qk12 − α0k11)P − αα0k12P
2,

ϕ(P) = α0ωkP
2 + [(q − ωQ)k + αα0k13]P − αQk13.

We note the following features: �(P) is nonnegative for P0− ≤ P ≤ P0+, with P0− =
−k11k

−1
12 , P

0+ = Qα−1
0 , while ϕ(P) is nonnegative for P < P− and P > P+,

P± = −[(q − ωQ)k + αα0k13] ± √
�

2α0ωk
,

� = (q − ωQ)2k2 + α2α2
0k

2
13 + 2αα0kk13(ωQ + q).

It turns out easily that P+ < P0+, so that the isocline (4), O(P) has a vertical asymptote
at P+ in the first quadrant and is positive only for P+ < P ≤ P0+, decreasing to zero
at P0+.

The isocline (5) is a straight line with the following properties:

• its intersections with the coordinate axes in the OP phase plane are the points

A =
(
0,

λQ − q2
λα0

)
, B =

(
q2 − λQ

α2
, 0

)
;

clearly, only one of them can lie on its respective positive semiaxis; it is A if
λQ > q2 is satisfied, or B in the opposite case.

• O is an increasing function of P because dO
dP = λα0

α2
> 0.

From (5) we find O11 = (q2 − λQ + λα0P11) α−1
2 ; since we need nonnegative quan-

tities, from O11 ≥ 0 we obtain a lower bound for P11, expressed by the maximum
between zero and the height of A, depending respectively on q2 > λQ or the opposite
condition. This result is in agreement with the increasing behavior of the isocline.

In view of the fact that they are continuous functions, with derivatives of opposite
signs, the two isoclines (4) and (5) will intersect in the positive orthant of the OP
phase space at some point P11 and O11. This point always exists if λQ < q2, while
in the opposite case, we must ensure that the abscissa of the point B lies to the left of
P0+. But it is easy to verify that this condition amounts to requiring −q2 < 0, which
is always true. Thus also in this case the intersection always exists, as claimed.

Proposition 2 The equilibrium E14(0, F14, N14, O14) exists if

O14N14 ≤ α

k1
. (6)

Proof Again solving for F the second equation of (1) we find

F14 = q

α − k1N14O14
; (7)
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for its nonnegativity, the condition (6) is immediately obtained. Summing the third,
second and fourth equilibrium equations of (1) we obtain the straight line

α2O = α1λ1N + q2 − q1λ1, (8)

which has a positive intersection with the N axis at N0 = (q1λ1 − q2)(α1λ1)
−1 when

q1λ1 > q2, while in the opposite case it intersects the O axis at O0 = (q2−q1λ1)α
−1
2 .

Summing instead the second and third equilibrium equations of (1) and using (7)
we find the function

O = α(q1 − α1N )

k1N (q1 − α1N + q)
. (9)

Note that this function is nonnegative when N ≤ q1α
−1
1 or N > (q + q1)α

−1
1 .

For the isocline given by (9), we find that O = 0 is a horizontal asymptote and
N = 0 and N1 = (q + q1)α

−1
1 are the vertical ones, more specifically N → 0+ as

O → +∞, N → +∞ as O → 0+ and as O → N+
1 . The intersection with the N

axis is at the abscissa N0 = q1α
−1
1 . Finally,

dO

dN
= α

−α2
1k1N

2 + 2k1α1q1N − k1q1(q + q1)

k21N
2(α1N − q1 − q)2

.

This derivative is easily seen to be always negative, as the roots N± of its numerator
are both complex,

N± = 1

α1
(q1 ± √−qq1).

Thus, the isocline is always decreasing.
In the first quadrant the two isoclines (9) and (8) intersect in exactly two points if

N0 < q1α
−1
1 ; but this condition always holds, because it reduces to −q2 < 0.

Proposition 3 The equilibrium E15(P∗, F∗, N∗, O∗) exists if

P∗ <
Q

α0
. (10)

Proof Solving for F the first equation of (1) we find

F∗ = Q − α0P∗

f (P∗, O∗)
. (11)

Its nonnegativity gives P∗ ≤ Qα−1
0 . Substituting (3) into the third equation of (1) and

solving for N we have

N∗ = q1 f (P∗, O∗)
α1 f (P∗, O∗) + k1O(Q − α0P∗)

, (12)
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which is always feasible if (10) holds. Substituting F∗ and N∗ into the second and
fourth equations (1) we obtain the isoclines:

q2 − α2O − λ(Q − α0P) − λ1k1q1O(Q − α0P)

α1 f (P, O) + k1O(Q − α0P)
= 0 (13)

and

q − ω(Q − α0P) − α
Q − α0P

f (P, O)
+ k1q1O(Q − α0P)

α1 f (P, O) + k1O(Q − α0P)
= 0. (14)

Now, adding (13)withλ1 times (14) and rearranging the termswe obtain a new isocline
that is easier to manage:

λ1αα0k12P
2 + (kλα0 + λ1ωkα0)P

2O − kα2PO2 + (q2k − kλQ

+ kλ1q − λ1ωkQ + λ1αα0k13)PO

+ (λ1αα0k11 − λ1αQk12)P − λ1αQk13O − λ1αQk11 = 0. (15)

Since we need (10) to hold, it is enough to study the behaviour of the isoclines in the
region of the first quadrant where 0 ≤ P ≤ Qα−1

0 . For the isocline given by (13), we
have

– an intersection point with the O axes

C =
(
q2 − λ1q1 − λQ

α2
, 0

)
;

– an intersection point with the upper bound of our region of interest

D =
(
q2
α2

,
Q

α0

)
;

– further, for 0 < O < ∞ and 0 < P ≤ Qα−1
0 , O increases as P increases because

dO

dP
= − A1

B1
> 0

where

A1 = λα0 + C1

C2
2

, B1 = −
[
α2 + C3

C2
2

]
,

C1 = λ1k1q1α0OC2 + λ1k1q1O(Q − α0P)(α1
∂ f

∂O
− k1α0O),

C2 = α1 f (P, O) + k1O(Q − α0P),

C3 = λ1k1q1(Q − α0P)C2 − λ1k1q1O(Q − α0P)(α1
∂ f

∂P
+ k1(Q − α0P)).
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Fig. 1 Plot of equation (13)

Note that C1,C2 and C3 are positive quantities. In Fig. 1 we have the graphical
representation of (13). The properties of the isocline given by (15) are the following
ones:

– its intersections with the coordinate axes in the OP phase plane are the points

E =
(

−k11
k13

, 0

)
, F =

(
0,

Q

α0

)
, G =

(
0,−k11

k12

)
.

Note that only F is of interest for us.
– P = 0 is a horizontal asymptote
– the isocline (15) has the vertical asymptote

O∞ = − λ1αk12
k(λ + λ1ω)

– P = m0O + q0 is an oblique asymptote, where

m0 = α2

α0(λ + λ1ω)

q0 = −αk12m0α0λ1 + ωQkλ1 − αk13α0λ1 + Qkλ − qkλ1 − kq2
kα2(λ + λ1ω)

– the isocline (15) intersects the upper bound P = Qα−1
0 at a second point

H =
(
q2 + λ1q

α2
,
Q

α0

)
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The isocline (15) intersects the straight line O = (q2 + qλ1)α
−1
2 at the point F and at

the point F− which lies in the fourth quadrant,

F− =
(
q2 + qλ1

α2
,− αλ1(q2k13 + qλ1k13 + α2k11)

ωkqλ21 + ωkq2λ1 + αk12α2λ1 + kλqλ1 + kλq2

)

Simple calculations give

dO

dP
(D) = −αα0λ1(Qk12 + α0k11)

Qk(qλ1 + q2)
< 0

and

dO

dP
(F) = α0R

α2Qk(qλ1 + q2)
> 0

where

R = (ωQkλ1 + αk13α0λ1 + Qkλ)(q2 + qλ1) + Qαk12α2λ1 + αk11α0α2λ1.

We provide a graphical representation of (15) in Fig. 2.
We note that H is on the right side of D, this means that p0 < 0 and that the oblique

asymptote intersects the O axes on the right side with respect to C .
In any case, considering the rectangle R in the first quadrant whose vertices are

the origin and the points D, F and F⊥, the latter denoting the orthogonal projection
of F onto the P axis, in view of the above results, we have that the isocline crosses
the boundary of R only at the vertices D and F . Since it is continuous, then in must
intersect the isocline (13).

We graphically show that the two isoclines (13) and (15) intersect at O∗ and P∗ in
Fig. 3.

5 Stability analysis

The Jacobian of (1) is

J =

⎡
⎢⎢⎣

−α0 − h(P, O)F − f (P, O) 0 g(P, O)F
−ωh(P, O)F J22 k1FO k1FN − ωg(P, O)F

0 −k1NO −α1 − k1FO −k1FN
−λh(P, O)F −λ1k1NO − λ f (P, O) −λ1k1FO J44

⎤
⎥⎥⎦ (16)

where we have set J22 = −ω f (P, O) − α + k1NO , J44 = −α2 − λ1k1FN −
λg(P, O)F and, recalling (2), for brevity

h(P, O) = ∂ f

∂P
= kO (k11 + k13O)

(k11 + k12P + k13O)2
,

g(P, O) = ∂ f

∂O
= kP (k11 + k12P)

(k11 + k12P + k13O)2
.
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Fig. 2 Plot of equation (15)

Fig. 3 Intersection point of
equations (13) and (15)

Again, since for the coexistence equilibrium no analytical results are possible, this
point will be analysed numerically. In the Conclusions we relate some simulations to
show that it can be stably achieved.

The stability analysis for all the remaining equilibria implies that most of them
are always locally asymptotically stable. In fact, we have the following results on the
eigenvalues of the Jacobian (16) evaluated at the equilibria.

The equilibria Ei , with i = 0, 1, 2, 4, 5, 8 are all locally asymptotically stable,
when they exist, because they all have the same eigenvalues as follows: −α0, −α,
−α1, −α2.
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Also, the following equilibria are unconditionally stable, since they have all negative
eigenvalues.

For E3 we find the eigenvalues −α0, −α, −α1, −α2 + λg
(
Qα−1

0 , 0
)

= −α2,

−qα−1.
For E6 instead the eigenvalues are −α0, −α, −α1, −α2 − λ1k1qq1 (αα1)

−1.
At E7 the eigenvalues are −α0, −α, −α1 and

−
(
α2 + λ1k1qq1 (αα1)

−1 + λg
(
Qα−1

0 , 0
)
qα−1

)
= −

(
α2 + λ1k1qq1 (αα1)

−1
)

.

For E9 we have instead −α0, −ω f
(
Qα−1

0 , q2α
−1
2

)
− α, −α1, −α2.

At E10 we find −α0 − h
(
0, q2α

−1
2

)
qα−1 = −α0, −α, −α1 − k1qq2 (αα2)

−1,
−α2.

We have then two conditionally stable equilibria, namely:
E12 with eigenvalues−α0,−α+k1q1q2 (α1α2)

−1,−α1,−α2. Therefore it is stable
if the following condition holds:

α >
k1q1q2
α1α2

. (17)
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Fig. 4 Equilibrium E11. Clockwise from top left: P , F , O , N . Note that N is at level zero
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Further, at E13 we find −α0, −ω f
(
Qα−1

0 , q2α
−1
2

)
− α + k1q1q2 (α1α2)

−1, −α1,

−α2 so that it is conditionally stable, requiring

k1q1q2
α1α2

< ω f

(
Q

α0
,
q2
α2

)
+ α. (18)

There are two more points for which instead the analysis can be done only partially.
They are the pollutant-free and the nutrient-free equilibria. At E14 one eigenvalue is
−α0. At E11 we find again one negative eigenvalue, − (α1 + k1F11O11). In both
these cases, stability depends just on the remaining eigenvalues, that are roots of
cubic polynomials. Their coefficients are a bit too involved to be reported here and
the corresponding Routh-Hurwitz conditions even more so. Therefore for assessing
stability of these equilibria we rely on the numerical simulations, see Figs. 4, and 5.

More specifically, the point E11 = (5.4245, 5.3546, 0.0000, 3.4062) is obtained
with the parameter values α0 = 3.28873, k = 1, k11 = 1, k12 = 1, k13 = 1,
q = 20.2613, ω = 0.796258, α = 2.28732, k1 = 2.28273, q1 = 0, α1 = 1.14407,
q2 = 13.9699, α2 = 2.79653, λ1 = 0.446216, λ = 0.441589, Q = 27.9039.

Equilibrium E14 = (0.0000, 7.3740, 1.8724, 4.6766) comes from α0 = 2.06573,
k = 1, k11 = 1, k12 = 1, k13 = 1, q = 18.3818, ω = 0.113276, α = 2.75573,
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Fig. 5 Equilibrium E14. Clockwise from top left: P , F , O , N . Note that P is at level zero
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k1 = 0.0300296, q1 = 9.02427, α1 = 3.78408, q2 = 16.81, α2 = 3.49415, λ1 =
0.241937, λ = 0.354569, Q = 0.

6 Conclusions

In this paper we introduced a non-linear mathematical model for the biodegradation of
organic pollutants in a water body, by using fungi. The analysis shows that in general
there is only the coexistence equilibrium, which is found to be locally asymptotically
stable by means of numerical simulations, when there is a constant input of all the
ecosystem components.

There are however also several particular cases. When all the inputs are absent, the
system settles to the zero state. In the other cases, when only some of the system vari-
ables are introduced into the system, in general the resulting equilibrium contains only
these variables, the remaining ones are washed out, compare Table of the feasibility
conditions. For instance if only pollutants are introduced, the equilibrium that is found,
namely E1, contains only these substances; when nutrient and fungi are inputted, we
find them at steady state in equilibrium E6, with no pollutants nor dissolved oxygen.
However, four equilibria deserve some care in the analysis. The nutrient-free equi-
librium E11 arises if nutrient is not supplied. However the analytical conditions for
its stability are not known, for which it may possibly result unstable in some circum-
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Fig. 6 Coexistence at the stable equilibrium. Clockwise from top left: P , F , O , N
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Fig. 7 Coexistence E16 is still found if the input of fungi is blocked. Thus the fungi still thrive in these
conditions

stances. Similar considerations hold for the equilibrium with no pollutants, E14. But
this is not too much interesting, because it amounts to the purification of a lake in
which pollutants will not be anymore introduced. If these immissions do not really
take place, then it gives the conditions for which the lake becomes pollution-free. Its
feasibility is conditional, provided no pollutants are supplied to the ecosystem, and
requires that the product of oxygen and nutrients must be bounded above, see (6) in
Proposition 2. Its stability howevermay ormay not hold, as the analysis is inconclusive
and we relied only on numerical experiments.

For the equilibrium with no fungi, E13, feasibility is unconditional, provided no
fungi are supplied to the ecosystem, but its stability is conditional, (18), requiring a
high fungi depletion rate.

To have both fungi and pollutants absent, at E12, they must not be supplied, and
furthermore, for stability (17) must be satisfied. Here the fungi washout rate should
even be larger than that for E13.

The coexistence equilibrium E15(P∗, F∗, N∗, O∗) requires condition (10) for fea-
sibility. This is easily seen solving for F the first equation of (1). Note however that
for q = 0, i.e. when no fungi are introduced in the lake, there is another coexistence
feasible equilibrium point E16(P16, F16, N16, O16). For feasibility, it needs again (10)
to hold.
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Fig. 8 Equilibrium E14 obtained from coexistence by stopping the input of fungi and pollutants. Here the
fungi still thrive

Finally, if we start from the equilibrium value obtained with the parameter values
α0 = 2.2841, k = 1, k11 = 1, k12 = 1, k13 = 1, q = 1.35153, ω = 0.22377, α =
3.82954, k1 = 0.70742, q1 = 21.6952, α1 = 1.06129, q2 = 19.2035, α2 = 3.69832,
λ1 = 0.0875003, λ = 0.373564, Q = 18.0617 we find the coexistence at level
E15 = (4.0278, 5.0947, 1.4628, 3.8208), Fig. 6. If we remove some of the inputs, we
reobtain all the particular cases outlined above, with two exceptions. With the choice
q = 0 we still obtain the coexistence equilibrium, instead of E11, the fungi-free
equilibrium, Fig. 7. Setting instead q = 0 and Q = 0 we find equilibrium E14 instead
of E12, the fungi- and pollutants-free point, which we should naturally expect, Fig. 8.
The former situation shows that an input of fungi may be needed to start the process,
but under suitable circumstances the process continues by itself even in absence of
the input of fungi. Alternatively, when achieved without starting from the coexistence,
this equilibrium shows that the biodegradation can also be self-sustained. This may
make the partial removal of the pollutant economically viable. The biodegradation is
only partial because the pollutants still settle at a nonzero level. But this level might
be altered, to a desirable low value, by a suitable tuning of the model parameters.
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