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Abstract Rational approach towards the QSAR/QSPR modeling requires the selec-
tion of descriptors to be computationally efficient and physically and chemically
meaningful. However, fullerenes and their derivatives represent challenging com-
pounds in terms of QSPR modeling and there is a lack of efficient and comprehensible
descriptors for them. Based on existing informational field model and simplex rep-
resentation of molecular structure approach, an outline of descriptoral representation
for fullerenes was developed. Solubility of fullerene derivatives was chosen as tar-
get property for the estimation of descriptors’ efficacy. Developed model provides
well-defined physical meanings and obtained results are interpreted in terms of basic
molecular properties.
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1 Introduction

In last years, one of the fastest growing areas of modern chemistry is the physical
chemistry of nanostructures. For example, fullerenes that have been discovered 30
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years ago [1] and their derivatives, developed over the last three decades are still in
focus of scientists because of their unique electronic structure, physical and chemical
properties [2]. Computational approaches are fast, low-cost and play an essential role
in evaluation structures and properties of many chemicals. One of the most popu-
lar methods is Quantitative Structure-Activity/Property Relationship (QSAR/QSPR)
analysis, which statistically establishes a mathematical relationship between target
experimental properties and features of chemical structure (descriptors) [3].

Recently, several attempts have been made to reflect using mathematical models
the features of fullerene’s structure. For instance, topological shape factors have been
introduced to preselect the most stable fullerene isomers [4]. However, in QSAR/QSPR
studies only quantum-chemical descriptors [5] and descriptors derived from simplified
molecular input line entry system (SMILES) were tested [6,7]. At the same time, there
are many different commercial and open source generators of descriptors: PaDEL [8],
Dragon [9], ISIDA/QSPR [10], Open3DQSAR [11], etc., but almost all of them are
applicable only to “classical”” chemicals (namely, organics) and are not able to generate
descriptors for “big” molecules (namely, fullerenes and small proteins). Most of these
tools are based on the idea of a molecular graph to generate fragments and fingerprints
and it seems that implemented algorithms are not able to compute molecular graphs
for closed spherical or ellipsoid structures (fullerenes). Therefore, specific descriptors
scalable to “big” molecules are required.

Another problem with fullerenes is that fullerenes contain many similar atoms
(carbons of fullerene’s core), and less different atoms (substitutes or functional groups).
Regular descriptors are not able to differentiate them. Development of descriptors that
allows clearly differentiate atoms could be a great challenge for computational experts.

In the current study, in order to improve existing methods of molecular representa-
tion of fullerenes, the topological informational field model combined with Simplex
Representation of Molecular Structure (SiRMS) [12,13] was applied. On this basis,
series of so-called simplex-informational descriptors [14] for fullerene derivatives
were computed. To evaluate quality of developed descriptors, QSPR model for solu-
bility of 27 fullerene derivatives in chlorobenzene was developed.

2 Computational details
2.1 Simplex-informational descriptors

The information field of molecule can be modeled as a superposition of the appropriate
fields of its independent parts, namely—atoms). In fact, such field reflects information
about the distribution of the considered property in space [12]. In accordance with
information field theory, each vertex of molecular graph is a source of information. A
fullerene graph represents a planar, 3-regular and 3-connected graph. Twelve of such
graphs are pentagons, and any remaining faces are hexagons. Inclusion of substitution
in fullerene structure can dramatically change informational field of such complex
molecular system.

Using different physical or chemical labels, one can observe changes in informa-
tional field [15]. However, full description of informational theory is out of scope of
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this paper. Thus, excellent paper on informational theory is recommended for readers
[16].

Let us set-up as starting point assumption that it is possible to obtain different infor-
mational descriptors by encoding chemical graph by using of different parameters or
labels. For this purpose, 2D Simplex Representation of Molecular Structure (SiRMS)
approach was applied [13,17,18].

Following this approach, at the first step, fullerene was represented as molecular
graph. At the next step, the vertices of graph were labelled by various physicochemical
properties: values of partial charges [19], parameters of Lennard—Jones 6—12 potential
[20], polarization parameter, H-bond donor/acceptor labels, and lipophilicity. These
properties are typically used for SiRMS-based calculations, so we decided to apply
them from informational theory calculations. Using each of these properties, various
topological information potentials (IPs) [15] were expressed by equation 1:

14/ ——
IPi:wiZj:1 M , 1)

where m is the number of all possible paths between every atom pair, 7 is the number
of atoms in the given molecule, R;; is the path length (number of bonds between the
ith and jth atoms), w; is physicochemical property on which basis IP is calculated, r
is the maximal path length between atoms for investigated set of molecules.

IP calculations were followed by re-labelling procedure. Atoms were labeled as A,
B, C, etc on the basis of type of IP near certain atom. At the last step, all molecules
in dataset were fragmentized. Typically, SIRMS-based descriptors do label fragments
of the size 4, but in current study we calculated fragments of sizes from 3 to 4 [13].
Number of simplexes of certain type (for example, A—-B-D-G) for each molecule
was set as descriptor. Simplex-informational descriptors were generated by using HiT
QSAR software [21].

2.2 Statistical analysis

After calculating sets of descriptors, the descriptors that highly correlated with each
other were eliminated. When the squared correlation coefficient between descriptors
in a pair was higher than a given limit (set here as 0.85), one of variables was deleted.
The descriptors having higher sum of squared correlation coefficients calculated in
relation to all other descriptors were excluded. In addition, descriptors with no or with
very little variance were also eliminated [22].

For assessing the ability of the model to make robust predictions, the initial dataset
was splitted into training and a test sets based on random selection considering two
rules: (a) the range of the response values of both the training set and the test set
should be covered from the lowest to the highest; (b) the highest and lowest response
values were included in the training set. Thus, initial dataset was splitted into 22
compounds for training set and 5 compounds for test set. QSPR tasks have been
solved using the PLS regression on three latent variables [22]. The statistical fit of
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a QSPR equation was assessed by correlation coefficient R? (both for training and
for test sets), cross-validation correlation coefficient Q2, and root-mean-square error
RMSE (for training, validation and test sets). Chance correlations between solubility
and selected descriptors were additionally tested by using scrambling procedure [23].
Domain of applicability (AD) for developed model was defined by means of Williams
plot [24].

3 Case study: solubility of Cgp and C7¢ derivatives in chlorobenzene

Solubility of fullerenes is very important characteristic for the development of
different crystallization, extraction, and chromatographic separation techniques of
fullerenes [2]. In current study, information on Cgg and C7¢ fullerene derivatives
solubility in chlorobenzene was extracted from literature [25]. This dataset was
already treated by means of QSPR analysis several years ago [6]. However, devel-
oped in the previous study the SMILES-based model does not allow performing
mechanistic interpretation, since SMILES codes are able to describe only presence
of chemical elements and types of covalent bonds in molecule. In addition, the
previous study provides a model without any transformations of initial values of
solubility.

The initial experimental data contains all but one soluble fullerenes. Inclusion into
dataset endpoint with such abnormal activity’s value (almost insoluble) can implicitly
destroy its descriptive and predictive abilities. At the same time, the wide variability of
small dataset allows developing models with high statistical characteristics and high
error values [26]. Thus, one insoluble compound was replaced by soluble fullerene
Ceo [27]. Original solubility (mg/ml) [25] was converted to molar (mmol/ml) and
expressed as log(S) values. Molecular structures, solubility and data transformation
are summarized in Table 1.

Chemical structures were first pre-optimized with the Molecular Mechanics Force
Field (MM+), and the resulting geometries were further refined by means of the semi-
empirical PM7 method [28]. More than a thousand simplex-informational descriptors
were generated.

As a result of PLS modeling we obtained six significant descriptors combined
into three latent variables. Developed model is characterized by quite good sta-
tistical characteristics—training set: R? = 0.939, RMSE = 0.120; validation set:
Q2 = 0.904, RMSE = 0.141; test set: R = 0.873, RMSE = 0.146; scrambling:
R? = 0.026 Q> = 0.031. A plot of observed experimentally determined versus pre-
dicted values of solubility is presented in Fig. 1. The straight line represents perfect
agreement between experimental and calculated values.

Relative influence (%) and influence trend for each descriptor are presented in
Table 2. To summarize our results, relative influences of descriptors were grouped by
initial physicochemical properties (Fig. 2). Values of each descriptor are presented in
Online Resource.

As one can see from Table 2 and Fig. 2, sum of informational descriptors based
on partial charges (S and S3) have the highest influence on the solubility. Atomic
weight-based descriptor (S;) and polarization descriptors (S5 and Sg) contributed
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Table 1 Solubility of fullerene derivatives in chlorobenzene

# Fullerene core  R1 R2 Solubility (mg/ml)  log(S) (mmol/ml)
1 Ce0 —Ph —(CH)3COOMe 50 —1.26
2 Ceo —Ph —(CH,)3COOEt 19 —1.69
3 Ce0 —-C4H3S —(CH2)3COOMe 36 —1.41
4 Ce0 —-C4H30 —(CH»)3COOMe 48 —1.19
5 Cyo —Ph —(CH»)3COOMe 80 —1.11
6 Ce0 —Ph —(CH;),COOMe 10 —1.95
7 Ce0 —Ph —(CH;)>COOEt 5 —2.26
8 Ce0 —Ph —(CH)2,COOPr 43 —1.33
9 Ceo —Ph —(CH3)2COOPr-i 22 —1.62
10 Cgo —Ph —(CH3)>,COOBu 30 —1.50
11 Cgo —Ph —(CH3),COOBn 106 —0.96
12 Cgo —Ph—-OMe —(CH3),COOMe 5 —2.27
13 Cy —Ph —(CH3),COOMe 12 —1.93
14 Cy —Ph —(CH),COOEt 10 —2.01
15 Cy —Ph —(CH3)2COOPr 35 —1.47
16 Cy —Ph —(CH2)2,COOBu 30 —1.55
17 Cego —C4H3S —(CH),COOPr 45 —1.32
18  Cego —C4H3S —(CH3),COOBu 70 —1.13
19 Cqp —C4H3S —(CH)>,COOPr 130 —0.91
20 Cyo —-C4H3S —(CH3),COOBu 124 —0.93
21 Cgo —Ph —CH5CH3 31 —1.46
22 Cgo —Ph -Bn 23 —1.58
23 Cgo —-C4H3S —CgH13 25 —1.56
24 Cgqo —-CH,COOMe  -CH,COOMe 4 —2.36
25  Cgo —COOEt —COO(CH37)2,0Me 11 —1.94
26 Ceo -H —-COOCgH|7 9 ~2.00
27 Cego - - 7 —2.01

almost equally. However, atomic weight-based descriptor has positive contribution
in PLS model (increasing predicted property), while polarization-based descriptors
contributed negatively (Table 2). Lipophilicity-based informational descriptor (S4)
also has negative impact.

Let us take a closely look at developed model. Descriptor S; (27 %) describes
positive influence of informational atomic weights of vertices in molecular graph.
Descriptors Sz (21 %) and S3 (19 %) have positive impacts in the modeled PLS equa-
tion. These descriptors are based on information in molecular system, induced by
charges. Charge distributions occurred by presence of heteroatoms (S, O, N) in the
aromatic rings or chains. For instance, same derivatives of Cgo with different aromatic
substituent demonstrate differences in solubility. Figure 3 presents common functional
groups for these derivatives.
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Fig. 1 Plot of experimentally determined (observed) versus predicted values of (S). Blue dots represent
compounds from training set, red squares—test set (Color figure online)

Table 2 Relative influence of
informational simplex
descriptors

Physicochemical property Descriptor Influence trend Percentage

Atomic weight S + 27
Partial charges Sa + 21
S3 + 19
Lipophilicity S4 — 10
Polarization Ss — 15
N - 8

As one can see from Table 1 for derivatives 1, 3, and 4 solubility decreases as
follows: furan (4) > benzene (1) > thiophene (3). Similar dependency is observed for
derivatives 8 and 17: benzene (8) > thiophene (17). Thus, the charge-weighted infor-
mational descriptors point to the significant importance of electrostatic interactions of
solvating species, related to their high polarity.

Descriptor S4 reflects informational lipophilicity of fragments [-C—C=] in fullerenes
Ceo and Cy7g. Fullerene Cy¢ includes more [-C—C=] fragments than Cgg. Similarly,
C7¢ derivatives have higher solubility than same Cgg derivatives (Table 1). Solubility
and lipophilicity are co-dependent properties, so one can conclude that descriptor S4
directly reflects dissolution properties of studied fullerenes. Comparison of solubility
for similar C7¢ and Cgq derivatives is presented in Table 3.

Descriptors S5 and S¢ reflect influence of some polar groups and aromatic
fragments. Since chlorobenzene is a polar aprotic solvent it can enforce inflict inter-
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M Partial charges M Atomic weight M Polarization Lipophilicity

Fig.2 Diagram of relative contributions towards fullerenes’ solubility in chlorobenzene (in %) of different
physicochemical properties
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Fig. 3 Common functional groups for fullerene Cg( derivatives: a common part for compounds 1, 3, 4; b
common part for compounds 8 and 17.

Table 3 Comparison between Cg( and C7( derivatives solubility

R1 R2 Ceo Cyo Difference for
Cep and Cyq
No  log(S) ) No  log(S) ) (observed/predicted)
observed/predicted observed/predicted
—Ph —(CHp)3COOMe 1 —1.26/—1.38 5 —1.11/-1.32 0.15/0.06
—Ph —(CH),COOMe 6 —1.95/—1.87 13 —1.93/—1.98 0.02/0.11
—Ph —(CH3),COOEt 7 —226/-2.29 14 =2.01/-2.11 0.25/0.18
—Ph —(CH3)>,COOPr 8 —1.33/-1.30 15 —1.47/-1.48 0.14/0.18
—Ph (CH7),COOBu 10 —1.50/—1.46 16  —1.55/—1.60 0.05/0.14
—C4H3S —(CH),COOPr 17 —1.32/—1.32 19 —0.91/-091 0.41/0.41
—C4H3S —(CH3),COOPr 18 —1.13/—1.13 20 —0.93/-0.85 0.20/0.28
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actions, which are relevant to solvation process. Interactions between polar groups
of fullerene’s derivatives and solvent are among the factors responsible for solvation.
These descriptors are related to interaction between solvent’s aromatic ring and similar
hexagonal structural motifs in fullerene [2].

Thus, developed here model has better statistical representation than mentioned
above SMILES-based model [6], and in addition, it has strong mechanistic interpre-
tation.

One can conclude that the chemical information encoded by six simplex-
informational descriptors reflects the variation of the experimental solubility of
fullerene derivatives in a satisfactory manner, and allowed a proper characterization of
structurally heterogeneous compounds from both the training and test sets. It involved
theoretical descriptors that have a direct interpretation. The statistical parameters of
the proposed model compare fairly well with developed previously models, based on
the considered here dataset. In addition, informational descriptors are potentially use-
ful for ADME predictions (ADME stands for “absorption, distribution, metabolism,
and excretion” abbreviation in pharmacokinetics and pharmacology).

4 Conclusions

Two different methods: simplex approach and the informational field [14] theory
were simultaneously applied describing structure features of fullerene derivatives.
Fullerene’s molecular graphs were differentiated using informational potentials of the
influence of near and far surroundings. Due to this fact the set of descriptors becomes
more diverse. Proposed here simplex informational descriptors were evaluated in terms
of mechanistic interpretation and were recognized as reliable descriptors for chemoin-
formatics studies.

Based on introduced descriptors we have analyzed quantitative structure-solubility
relationships for set of fullerene derivatives and compared this model with the other,
reported in the literature. The developed methodology of structural representation
is potentially useful for QSAR/QSPR studies of fullerenes ADME evaluations. The
QSPR solvation models, based on simplex informational descriptors are fast and have
reasonable predictive power.
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