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Abstract In this work, we propose an effective numerical technique for a class of
Lane-Emden equation which arises in chemistry and other branches. This technique
is the combination of variational iteration and homotopy perturbation. It produces
approximate solution in the form of a series, which is very handy from computational
point of view. Accuracy of the proposed method is revealed by test examples.

Keywords Nonlinear singular boundary value problem - Homotopy perturbation
method - Variational iteration method - He’s polynomials - Series solutions

1 Introduction

We consider the following class of two point nonlinear singular boundary value prob-
lems (SBVPs)

/
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where «, B, ay, by, c1 are real constants and o > 1. We assume that f(x, u) is con-
tinuous and Lipschitz in D = {(x, u) € [0, 1] x R}. Various real life problems [1-7]
are governed by nonlinear singular boundary value problem (SBVP) (1). Below we
mention few of these real life problems which are our test examples also.

(i) Equilibrium of isothermal gas sphere:
Chandrasekhar [1] derived the following two point nonlinear SBVP (o« = 2 and
f(x,u) = u”), where y is a physical constant. Here we consider the case, when
y =5.

2
— ') =)=, 0<x<l,
X

3 @)
u'0)=0, u(l)= \/;

(i) Thermal explosion in cylindrical vessel:
Chamber [2] derived the following two point nonlinear SBVP, which arises in
the thermal explosion

" 1 / _u
—u(x)—)—cu(x)—e, 0<x<l, 3)
W'(0)=0, u(l)=0.

(iii) Thermal distribution in the human head:
Duggan and Goodman [5] derived the following two point nonlinear SBVP which
describes the thermal distribution profile in the human head

2
—u'x) - W) =e", O0<x<l,
X

4)
W(0) =0, 2u(l)+u'(1)=0.

(iv) Radial stress on a rotationally symmetric shallow membrane cap:
The following two point nonlinear SBVP arises in the study of radial stress on a
rotationally symmetric shallow membrane cap [6,7]

1 1
— ==, O0<x<l1,
8u?z 2 5)
W'(0)=0, u(l)=1.

) - ) =
X

Extensive literature is available for both analytical ([8—12] and the references their in)
and numerical results ([13-20] and the references their in).

Recently, variational iteration method and its modified version have been studied by
several researchers [21-25]. These methods give better results for linear problems but
it suffers for most of the nonlinear problems [19,31]. Wazwaz et al. [31] showed that
VIM is more impractical for solving second kind Lane—Emden equation. To overcome
this disadvantage, we propose this technique. It gives approximate solution in the form
of a series. To increase the accuracy of the solution obtained by our technique we can
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compute more number of terms which is otherwise difficult. The convergence analysis
and the error estimate of the proposed method are also discussed.

The prime motive of this work is to derive an effective numerical technique for
a class of SBVP (1). The proposed technique is based on the concept of Variational
Iteration Method (VIM) coupled with Homotopy perturbation method (HPM) [26,27].
In VIM [25], an iterative scheme for nonlinear SBVPs

L)+ Nu) = g(x) (6)
is defined as
Up41(xX) = up(x) + / M) [Lup(t) + Nuy(t) — g(t)] dt (7
0

where L is a linear differential operator, N is a nonlinear operator, and g(x) is an
inhomogeneous term. It is easy to see that we will get the best solution if

X

/ 7O [Litn (1) + Nun(t) — g(0)] dt, ®)
0

is minimized. For minimization we use Homotopy perturbation method [27].

2 Homotopy perturbation method (HPM)

Actually, Homotopy perturbation method (HPM) is combination of homotopy analysis
and perturbation method, which mainly removes the restrictions on small parameter
for perturbation methods. Homotopy plays an important role in differential topology,
which is basically used to solve the nonlinear algebraic equations. In this analysis, a
homotopy H : [0, 1] x R — R (see [28] and the references there in)

Hx,p)=pf(x)+ (A —-p)x —a)=0, x e R, p€[0,1],

is constructed for nonlinear algebraic equation f(x) = 0, where p is an imbedding
parameter and x — a = 0 is a simple algebraic equation. It is clear that, when we vary
p from O to 1, the homotopy H(x, p) is varied from, (x — a) to f(x),i.e.,at p = 1,
we get the solution of nonlinear algebraic equation f(x) = 0. This process is called
deformation, and we say that (x — a) & f(x) are homotopic.

By using the homotopy analysis [28] and elimination of small parameter ([27] and
the references there in), He [27] proposed a new perturbation method for nonlinear
differential equations

Aw) — f(r) =0, reQ, ©)
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with boundary condition

ou
B (u —) =0, rerl, (10)
on

here A = L + N is a general differential operator, where L and N are linear and
nonlinear differential operators, respectively. B is a boundary operator, f(r) is a
known analytic function and I" is the boundary of the domain 2. So, Eq. (9) can be
written as

L)+ N@w) — f(r) =0, reQ. (11)

Now we employ the ideas of homotopy analysis and construct the homotopy v(r, p) :
Q x [0, 1] — R, which satisfies

H,r,p) =1 —=pJILW) = L)l + p[AW) — f(N]=0, pel0,1], reg,
12)

which is equivalent to
H(v,r, p) = L(v) — L(uo) + pL(uo) + p[N(v) — f(r)] =0, 13)

where p € [0, 1]is an embedding parameter, and ug is an initial guess of (9), satisfying
the initial conditions. From (13), we have

H,r,0) = L) — L(up) =0, (14)
H,r,1) =Lv)+ N(@)— f(r)=0. (15)

Itis clear from (14) and (15), that L (v) — L(u¢) and L(v)+ N (v) — f (r) are homotopic.

Now, we introduce perturbation and take p as a small parameter. We expand the
solution of Eq. (13) as a power series of p given by

v:vo—i—pvl—i-pzvz-i-"-, (16)

where v;, i = 0, 1,2, ... are unknowns to be determined. At p = 1, we obtain the
approximate solution of Eq. (9) given by

virb) =u(r) =vo+vi+vo+---. (17)

Now, we write the nonlinear term in integral powers of parameter p given as

o0
N@) =) p'Hi = Hy+ pHi + p*Hy + - , (18)
i=0

where H,,’s are defined as
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nvap (Zp ”’)

In literature H,,’s are also known as He’s polynomial [29].
Finally, we substitute (16) and (18) into Eq. (13), collect coefficients of different
powers of p and equating them to zero, we get

H,(vo,...,v,) =

, n=0,1,2.... (19)
p=0

0 L(vo) — L(ug) = 0,

" L) + L(uo) + Ho — f(r) =0,
20 L(») + H =0,

3:L(v3) + Hy =0,

TS

(20)

Pn+1 : L(vy1) + H, =0,

Now using the above system of equations we compute v;, i =0, 1,2, ... and Z?io Vi
to get the solution v(r, 1) = u(r) of the nonlinear equation (9).

2.1 Variational iteration method (VIM)

The iterative scheme for nonlinear SBVP (1) is given by (see [21])

X

trr ) =y + [ 1 (=it = S @) = ) i, @

0

where = di
Following the analysis of [25], we arrive at stationary conditions given by

ar(x)
I+ Ax(x) — =0, (22)
Alx) =0, (23)
_)\’”(t)_i_a(t)\l(t)t—z_)h(l)) = 0. (24)

By using the stationary conditions, the value of the Lagrange multipliers can be
easily obtained. It is given as follows

t“ t

— , Va>1,
x-11l—a) (-0
t(x

At = .

lim — , fora = 1.
a—>1|x" 11 —a) (11—«

@ Springer



236 J Math Chem (2016) 54:231-251

3 HPM & VIM

In this section we combine the two techniques HPM and VIM together and solve a
class of two point nonlinear singular boundary value problems. Here we construct
homotopy with the help of VIM. We follow an intuitive route [30] for the construction
of the homotopy.

To get the solution of the nonlinear SBVP (1), we couple the concept of HPM with
VIM, i.e., we consider the following homotopy (Appendix 7) for Eq. (21)

X

H(x,v,p) =0 = p)luo —v]+ P/?»(t)[Lv(t) + Nv(r) — g(n)]dt =0, (25)
0

where p € [0, 1] is the embedding parameter, and u((x) is the initial guess satisfying
the initial conditions. It follows from (25) that

H(x,v,0) =v—ug=0, (26)
H(x,v, 1) = /A(t)[Lv(t) + Nv(t) — g(t)]ldt = 0. 27
0

As embedding parameter p is varied from O to 1, v(p, x) changes from u(x) to the
best approximation of Eq. (21).
We expand v(p, x) in a power series of p, where we take p as a small parameter,

]

v(p,x) = pv. (28)

i=0
At p = 1, we get the best solution of nonlinear differential Eq. (6),

v(l,x) = u(x) = Z Vi (29)
i=0

Now using He’s polynomials, we decompose the nonlinear term [see Eq. (18)], i.e.,

N@w)=> p'H. (30)
i=0

Substituting (28) and (30) into (25), and comparing the coefficients of same powers
of p we get
p° 1 vo = uo(x)
X

p' v = //\(t)[LVO + Ho — g(1)]dt,
0
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X
P2 vy =y +/x(t)[Lv1 + Hildt,
0

X

P"H “Vngl =V +/)\(t)[LVn + H,ldt,

0
(€29
We solve these set of equations to obtain the series solution
oo
w= lim u, = > v (32)

i=0

where u, = E V.

Addltlonally, for the nonlinear SBVP (1), we choose ug = A, where A =
> 20 Aip', where p is a small parameter. Making use of this initial approximation,

we can write the Eq. (25) as
X

1I=pIA—-v]+ p//\(t)[Lv(t) + Nv(r) — g()]dr =0,
0
where A = 3700 A;p' andv = >0 v;p'.
Now by collecting the coefficients of different powers of p and equate them to zero,
we get

0.
P v =ug

1

p o vi=wvo+ (A —Ag) + [ MO)[Lvo(t) + Ho(r) — g(r)ldr,

PP m=vi+ (A — A+ [ AO)[Lvi (1) 4+ Hy(1)]dt

/
0/ (33)

X

pn+1 D Untl =V + (An+l - An) +/)\(t)[LVn(t) + Hn(t)]dtv
0

We use equations labeled as Eq. (33) to compute our solution.
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4 Accuracy and efficiency

The accuracy and efficiency of proposed technique are discussed in this section. Here,
we study the existence and uniqueness of the solution of SBVP (1) and examine the
convergence analysis and error estimate for the proposed technique.
We consider the norm
lu| = max |u(x)], ue€X,
0<x<l

where X = C[0, 1] is a Banach space.
Further assume that there exist Ny > 0 such that for all f(x, y), f(x,z) € D

|f(x,y) = f(x, )] = Noly —zl, (34)

where D = {(x, y) € [0, 1] x R}.

4.1 Existence and uniqueness of solutions

Theorem 4.1 The nonlinear singular boundary value problem SBVP (1) where
f(x, u) satisfies the Lipschitz condition (34) and Ny < 2(1+«), has a unique solution.

Proof Let y; and y, be two distinct solutions of nonlinear SBVP (1), so they will
satisfy the Eq. (27) , i.e.,

X

o
/A(t)[y{/(t) + 7yi (1) + f(t, yDldt =0, (35)
0
where L = —5722 — %%, N = —f(t,_) and g(r) = 0. Similarly, we can define it for
y2.
Now, Integration by parts and stationary conditions (22)—(24), yield
X
Y1) = v — / A0 £, y1)dr. (36)
0
Similarly,
X
y2(x) = vo —/)»(t)f(t, y2)dr. 37
0

Making use of Egs. (36)—(37), we get
Iy1 —y2l = /k(t) Lf @ y) — f@ y2)lde|,

0

X

max, [y1 — 2| = Jmax /A(t) Lf @ y1) — f(t, y2)]dt|,

0<x<
0
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= max [f(, y1) — f(t, yz)l (max /k(t)dt ,
0<r<1
0

2
X
ly1 — 21l < No lly1 —y2|| Jnax ‘

242

Hence, we have
Iyt =yl < vyt — y2ll,

where y = zivga < 1. This gives that y; = y,. Hence, the theorem is proved. O

4.2 Convergence analysis

Now, to show the convergence of proposed technique, we use Eq. (21) and stationary
conditions (22)—(24), and deduce,

Up41 = Up — / (( A (1) + i )) 1y (1) +)“f(t’ un)) dt. (38)
0

Similarly, we have

X N i
Uy = i1 — / ((—A,(z) + t(t))um(r) +Af(z,un1>) a. (39
0

Now,
[ A - A
lunt1 —un| = / ((_)\tt(t) +a(l‘t(§%) (up — up—1)
0
+ 20 (£ w0) = Fa,wamn)) ) do
= | (s (7. = Ft.u-) ) .
0
or

s g1 — )] = / 20 (7 )~ 6 uy0) ) dr

0

X

< max |f(t,un) — f(t, up—1)| max / Ayt | .
0<r<l1 0=<x<l

0

@ Springer



240 J Math Chem (2016) 54:231-251

As f satisfies the Lipschitz condition, so we get

2
X
u —uy|| < Ng max |u, — u,—1| max
” n+1 n” = 00§t§1| n n ]|0§x§l 21 2a ,
<vy leey — up—1ll.
Hence, we have
”un+1 —uyll < Y ey — ttn—1ll, (40)

where y < 1.

Theorem 4.2 Let v, (x), u(x) € Xand further we assume that ||vy|| is a finite, then we
have [[vp41ll < yllvall, v < 1, forn =0, 1,2, ..., andthe sequence {u, = Y ;_ vi}
converges to the solution of SBVP (1).

Proof As {u,} is the sequence of partial sum of the series (32), i.e.,
up =vo + vy,

uz =vo+vi + vy,

Up =V + v +v2+ -+ vy,

which gives
Vppl = Upgl — Up, n=1,2,3,---.
Now with the help of (40), we can write
Va1l = llunt1 — unll < ¥ llup — up—1ll = ¥ llvall -
Hence, we obtain
s = wnll = st < v Ivall < y2 vt < - < 9" ol
To show the convergence of the sequence {u,}, we use Cauchy criterion

ey, — umll = 1(up — un—1) + Wn—1 — up—2) + -+ + (Ums1 — un)|l
< Gtn = ttn— )| + 1@t — ttp—2) || + -+ | W1 — )l
< y" ol + ¥ lvoll + - 4 ™ lwoll
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I A

y 1y + vy ol

ym+l (1 _ J/n—m)
1 —

IA

lvoll -

As 0 < y < 1, we have

m+1
1—

IIvoll- (41)

lup — umll <

Now taking limit m — oo, we get
lun — umll — 0.

Thus, the sequence {u, } is a Cauchy sequence in Banach space X, so the series > "7 v;
is convergent. O

4.3 Error estimate

Theorem 4.3 The maximum absolute truncation error in the computation of the series
solution (32) of SBVP (1) is given by

<
01;13;(1 u(x) — ZU‘ =< || vol| .
Proof From inequality (41), we have
ym+l
lun — umll < lvoll s (42)
-y

where n > m. If we fix m and varies n — oo, then we get

u(x) — Z v

m+1

max =< ||V0||

0=<x<l1

This completes the proof. O

5 Numerical illustrations
5.1 Problem 1: Equilibrium of isothermal gas sphere

Consider the nonlinear SBVP (2). The exact solution of this problem is u#(x) = (1 +
%2)_%. Using (33) and (2), we obtain the value of vy, v, ... as
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Table 1 Numerical values of

Aj,wherei =0,1,2,... Ap =0.866025, A5 =0.00329187, A1 =0.000291152
A1 =0.0811899, Ag =0.00191103, A1 =0.000190205
Ay =0.0266404, A7=0.00115173, A1 =0.000125714
A3 =0.0117741, Ag =0.000713747, A3 =0.00008391

Ay =0.00597904, Ag =0.000451962 A4 =0.0000564804

vy = Ay,
1 5.2

V] = A1 — EAOX ,
vy = iAgx‘* — §AIA‘O‘XZ + Ay,

24 6

1 13,6 3 8.4 5 4.2 5 2,432

V3 = E(—S)AO‘X + gA]AOX — EAZAOX — §A1A0X + As,

3547x% 65 3 3
V4 = W(%S — 43—2A1A(])2.x6 + §A2A3x4 + EA%AS.XA

5 10 5

- 8A3A3x2 - ?AlAzAgxz - §A%A3x2 + Ay,

TAF X0 5954,A00x% 65 26 650 116 3, 5.4
=— — A AP — —=A2A ZA3A
" 6912 10368 a3z 20 T gy AiAg X g Asdpx

7 5 5 10

+ 3A1 A A0t + EA?Agx“ —~ 6A4A3x2 - §A§A3x2 - ?A1A3A8x2
5

— 5AA,A%x% — 8A‘l‘on2 + As,

(43)

We have also computed other components, but due to lack of space we have not listed.

Using boundary conditions of (2), we get the values of A; (Table 1)

Hence, by using (43) and Table 1, we can write an approximate series solutions
containing 15-terms i.e., u = > 12 v;.

In Table 2, we show the efficiency of this numerical technique. Here, we have
discussed the approximated series solutions containing respectively 6, 10, 12 terms
and their corresponding absolute errors, which shows a systematical decline in absolute
errors. In Table 3 we compare our numerical results with the result of [25].

5.2 Problem 2: Thermal explosion in cylindrical vessel
Consider the nonlinear two point SBVP (3). The exact solution of this SBVPis u(x) =

2 In (%), where C = 3 — 24/2. By employing the Egs. (33) and (3), we obtain
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Table 2 Numerical solutions and absolute error for problem (2)

X Approximations Exact solution Absolute error

ue uio u12 ae aio a2
0 0.996812  0.99942 0.999736 1 0.003188  0.00058 0.000264
0.1 0.995216  0.997771 0.99808 0.998337 0.003121 0.000566  0.000257
02 0990472 0.992869  0.993159  0.993399 0.002927  0.00053 0.00024
03 0982703  0.984856  0.985115  0.985329 0.002626  0.000473  0.000214
04 0972106 0973952  0.974172  0.974355 0.002249  0.000403  0.000183
0.5  0.95894 0.960444  0.960622  0.960769 0.001829  0.000325  0.000147
0.6 0943513  0.944664  0.9448 0.944911 0.001398  0.000247  0.000111
0.7 0926161 0.926972  0.927067  0.927146 0.000985  0.000174  7.9E—05
0.8 0907234 0907735  0.907793  0.907841 0.000607  0.000106  4.8E—05
0.9  0.887079  0.887308  0.887335  0.887357 0.000278  4.9E—05 2.2E-05
1 0.866025  0.866025  0.866025  0.866025 0 0 0

Table 3 Numerical solutions and absolute error for problem (2)

x  Approximations Exact solution Absolute error

Proposed Solution Solution U4 for y; [25] for y3 [25]

method (y2)in[25] (y3)in[25]

(u14)
0 0.999877 0.993678 1.000392358 1 0.000123 0.006322  0.000392358
0.1 0.998217 0.992067  0.998726589 0.998337 0.00012  0.00627 0.000389589
0.2 0.993287 0.987282  0.993778768 0.993399 0.000112  0.006117  0.000379768
0.3 0.985229 0.979461 0.985693317  0.985329 1E-04 0.005868  0.000364317
0.4 0.97427 0.968827  0.97469805  0.974355 8.5E—05 0.005528  0.00034305
0.5 0.9607 0.955679  0.961086726 0.960769 6.9E—05 0.00509 0.000317726
0.6 0.944859 0.940377  0.945197991 0.944911 5.2E—05 0.004534  0.000286991
0.7 0.927109 0.923325  0.927393267 0.927146 3.7E—-05 0.003821  0.000247267
0.8 0.907819 0.904958  0.908035953 0.907841 2.2E—05 0.002883  0.000194953
0.9 0.887346 0.885714  0.887473778 0.887357 1.1IE-05 0.001643  0.000116778
1 0.866025 0.866025  0.866025404 0.866025 0 0 4.03784E-07

Table 4 Numerical values of

Aj, wherei =0,1,2,... Ap=0 As =0.00153809
A1=025 Ag = 0.000587463
As =0.046875 A7 =0.000233786
A3 =0.0130208 Ag = 0.000095889

Ayq =0.00427246
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Table 5 Numerical solutions and absolute error for (3)
X Approximations Exact Absolute error
solution

ug Uue ug as ae as
0 0314168 0.316294 0.316624  0.316694  0.002526 0.0004 TE—05
0.1 0.310782 0.312872 0313196  0.313266  0.002484 0.000394 TE—05
0.2 0.300656 0.302642 0.30295 0.303015  0.002359 0.000373 6.5E—05
0.3 0.283886 0.285707 0.285987  0.286047  0.002161 0.00034 6E—05
04 0.260628 0.262232 0.262479  0.262531  0.001903 0.000299 5.2E—05
0.5 0.231095 0.232446 0.232653  0.232697  0.001602 0.000251 4.4E-05
0.6 0.195552 0.196628 0.196792  0.196827  0.001275 0.000199 3.5E—05
0.7 0.15431 0.155103 0.155223  0.155248  0.000938 0.000145 2.5E—05
0.8 0.107716 0.108229 0.108306  0.108323  0.000607 9.4E—-05 1.7TE—-05
0.9 0.0561473 0.0563936  0.0564308 0.0564386 0.0002913  4.5E—05 7.8E—06
1 —8.32667E—17 4.16334E—17 7.1205E—17 0 8.32667E—17 4.16334E—17 7.1205E—17

the components {v;} of the series solutions of SBVP as

Vo =

v =

V) =

n =

vy =

Ag,
Al — l,\12f3A"
2 ,

1 1
—szeAU + axz (eAO (erxz + 16) — 16€A0A1) + Aj,

1 1
7szeA° + 6—4x2 (eA“ (eA“x2 + 16) — 16eA“A1)
e0x” (x“e”0 (x~ (270 +e70)+36)+36A1 (x° (— (e70+e +38A1—16)+ 2

A0x2 (x2e40 (x2 (2040 +€40) +36) +36A4 (x? (— (eA0+e10))+8A1 —16)+576A,)
- +As,
2304

1 1
— szeA‘) + axz (eA“ (eA°x2 + 16) — 16eA°A1)

eM0x2 (x2e0 (x2 (240 +¢40) +36) +36A4 (x2 (— (€40 +e10))+8A; —16)+576A,)

2304
Ag 42

e (76)6663"“ — xe2o (lleA”xZ 1284, + 128)

147456
— x%e (62A°x4 — 64eM (6A1 — 1)x2 + 1152 ((A; —2) Ay + 2A2))
+64 (62A0A1x4 — 18¢% (A] (BA| — 2) + 245) x>
+96 (—6A; + Ay (A1 —3) A] + 6A2) + 643))) + Ay,

(44)

Making use of boundary conditions of (3), we obtain the values of Ag, A1, Az, ...
(See Table 4). Hence, by using (44) and Table 4, we can write an approximate series
solutions of SBVP, containing 9-termsi.e.,u = ?:O v;.In Table 5, we have discussed
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the approximated series solution (containing different terms) for SBVP (3) and their
corresponding absolute errors, which shows a systematical decline in absolute errors.

5.3 Problem 3: Thermal distribution in the human head

Consider the nonlinear SBVP (4). By employing the Eqgs. (33) and (4), we obtain the
components {v;} of the series solutions of SBVP u as

Vo = Ao,

I _
vy =A1 — ge A0y2,

1 1
v = —%6_2A0x4 + ge_AUA1x2 + Az,
1 1
V3 = —Eoe_z‘%x4 + ge_AUAlx2
e7340 (—63¢40 (241 + 1) x* + 6306240 (A} (A; +2) — 24) x? + 4x°) A
7560 >
1 1
vy = 7@672on4 + 667A0A1x2 (45)
€340 (—63eM0 (247 + 1) x* + 630240 (A1 (A1 +2) — 2A2) x? + 4x°)

7560

674A0

"~ 22680x

(—12er GA + 1) x7 4378240 (A2 4 A; — A7) x°

61x°
— 6306¥0 (642 + Ay (A1 (A +3) — 642) + 643) x° + %) + As,

Making use of boundary conditions of (4), we obtain the values of Ay, A1, Aa, ...
(See Table 6).

Hence, by using (45) and Table 6, we can write an approximate series solutions of
SBVP, containing 11-terms, i.e., u = Z}go v;.

To check the efficiency of our technique for this problem we use absolute residual
error because exact solution is not available. The absolute residual error measures that
how well the approximate solution satisfies nonlinear SBVP (4).

R _ " 2 / —Up 0 1

n = —un(x)—;un(x)—e , <x <1

Table 6 Numerical values of

A;, wherei =0,1,2, ... Ap=0 Ag = —0.0145847  Ag = —0.0011053
Ay =0.333333 A5 =0.00712792 Ag = 0.000627972
Ay = —0.0861111  Ag = —0.00369133  Aj9 = —0.000363262
Az =0.032672 A7 =0.00199019
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Table 7 shows the numerical values of residual error R,, n = 7,8, 10 and their
systematical decay. We also compare our results with the results in [14] and [5].

5.4 Problem 4: Rotationally symmetric shallow membrane cap

We consider the nonlinear SBVP (5). By employing the Eqgs. (33) and (5), we obtain
the components {v;} of the series solutions of SBVP u as

Vg = Ao,
x2 x2
v = —m + A+ 16’
x? x* A1x2
= 153643 o1aand T 3243 T
x© 11x° 13x° 5A;x%
V3 =

- 7t 6 3 6
32768A;  589824A;  4718592A5 = 6144A;
Ax? Apx? SA%x2

7 3 7
51240 3247 644}

B x0 N 11x° 13x6 5A1x*t
32768A5  589824A5 471859248  6144A
2,2
4 3 4
SI245  32A3  64A}
2

— (SAg (520A0x4 + 41604, x*
1509949440A}

—320A3x2 (480A1 — 4804, + 11x2)

— 643 (320415 (2404, + 1127) +51x°)

+ 576043 (6441 (244, +42) — 644, (484) +27) + x*)
+ 28843 (804, (324, (1641 + ) +2%) +x°)

— 589824048 (Ay — A3) + 101x6) - 85x6) + Ag,

Making use of boundary conditions of (5), we obtain the values of Ag, A, Az, .. .(See
Table 8).

Hence, by using (46) and Table 8, we can write an approximate series solutions
of SBVP, containing 10-terms, i.e., u = Z?:o v;. Similar to above problem, exact
solution of this problem (5) is also not known. So, again we check the efficiency of
our technique with the use of absolute residual error.
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Table 8 Numerical values of A;, wherei =0, 1,2, ...

Ag =1 Ay = 1.13249 x 1077 Ag =9.7943 x 10~12
A = —0.046875 As = —6.18833 x 1078 Ag = 5.23386 x 10713
Ay = 0.000976563 Ag = —3.29419 x 1072

Az = 0.0000336965 A7 =1.10069 x 10~12

Table 9 Numerical solutions and absolute residual error for (5)

X ug Solution Absolute residual error
in [25] R R; Rg Ry

0 0.954135  0.952148432  1.70634E—09  2.13697E—10  1.90742E—11  3.86774E—13
0.1  0.954589  0.95263173 1.52099E—09  2.08909E—10  1.79321E—11  3.28515E—13
0.2 0.95595 0.954081048  1.02873E—09  1.93842E—10  1.48054E—11  1.81022E—13
0.3 0.95822 0.956494659  3.95944E—10  1.6746E—10 1.05031E—11  1.04916E—14
04 0961403 0.959869678  1.74014E—10  1.30779E—10  6.09157E—12  1.14464E—13
0.5 0965503  0.964202058  5.21019E—10  8.86357E—11  2.53958E—12  1.58318E—13
0.6 0970526  0.969486581  5.89803E—10  4.90143E—11  3.81084E—13  1.3195E—13

0.7 0976479  0.975716845  4.44409E—10  1.9698E—11 4.40037E—13  7.64944E—14
0.8 0983369  0.982885249  2.24681E—10 4.11388E—12  4.29934E—13  2.99205E—14
0.9 0991206 0.990982981  6.17023E—11  4.23439E—13  1.74638E—13  6.60583E—15

11 1 0 0 0 5.55112E—17
Ro= |—u/(x)— 20/ () — —— 4+ 5|, 0<x<1
n= Uy (0) = () — o5+ ol X .

n

Table 9 shows the numerical values of residual error R,, n = 6,7, 8,9 and their
systematical decay. Also we compare our result with the result of [25].

6 Conclusion

In this paper, we have applied proposed Homotopy perturbation method coupled with
Variational Iteration Method to nonlinear singular boundary value problems arising
in chemistry and other branches. The proposed method is convergent and provides us
approximate solutions which are very close to exact solution or best solution, known
so far. This method can be preferred over finite difference method as it does not require
matrix inversion. Using absolute and residual errors, we show the computational power
of proposed method.

Acknowledgments This work supported by Seed Grant provided by DST (SERB), New Delhi, India,
File No. SR/S4/MS/805/12.

@ Springer



J Math Chem (2016) 54:231-251 249

7 Appendix

Construction of homotopy for the nonlinear SBVP (1) is discussed in this section.
We define the (n + 1)th approximate solution for SBVP (1) as (see Sect. 2.1)

X

Un+1(x) = up(x) + / AO[Luy(t) + Nun(r) — g(1)ldt, (47)
0
where Lu, = —u;, — Suy, Nu, = —f(t, u,) and g(t) = 0.
We introduce v = > 2, pivi, N(w) = Z?io p' H; and the nth approximate solu-
tion u, = > I _ov;. Also note that N(vg) = Hp, N(vo + vi) = Hy + H; and
N (Xigvi) = 2o Hi.

Substituting these values into (47), we get

n+1 n X n n
(Z v,-) = (Z v,-) +/,\(t) |:L (Z v,) (1) + N(Z v,-) (1) — g(t)i| dr.
i=0 i=0 0 i=0 i=0

(48)
Now, after solving the above equation for different values of n, we get
Vo = Uug
X
v = / AOILvo(t) + Ho(t) — g(0)]dr,
0
X
vy =g +/?»(t)[LV1(t) + Hy(1)]dt,
0 (49)

X

Vn+1 = Vn +/)‘(t)[Lvn(t) + H,(t)ldt,
0

Which yields

o0
V(X,P)=Zpivi=vo+pv1+p2v2+-~-+p"vn+-~-
i=0
X

-~ p/)»(f)[Lvo Y Ho — g(0)ds
0
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+ | pPvi+p / ALy (1) p + Hy (1) pldt
L 0

+ | pPvtp / AD[Lva () p* + Ho (1) p*ldt | + (50)
L 0
A P+ p / AL () p" + Hy () p"1dt | +--- .

0
That gives
(1= p)uog—vl+p / AD[Lv(1) + Nv(t) — g(t))dr = 0.
0

Hence, we get the following homotopy

X

Hx,v,p) = —p)lug—v]l+ p/)\(t)[Lv(t) + Nv(t) — g(®)]dt = 0.
0
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