
J Math Chem (2016) 54:120–136
DOI 10.1007/s10910-015-0553-z

ORIGINAL PAPER

Bogdanov–Takens singularity for a system of
reaction–diffusion equations

Hongxia Wu1 · Xiaoqin P. Wu2

Received: 28 April 2015 / Accepted: 29 August 2015 / Published online: 5 September 2015
© Springer International Publishing Switzerland 2015

Abstract In this manuscript, we provide a framework of the Bogdanov–Takens sin-
gularity for general reaction–diffusion equations. The explicit conditions for this
singularity are established and the corresponding normal form up to the second order
terms is derived. As an application of our framework, the Schnackenberg model is
presented to illustrate the theoretical results.
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1 Introduction

In this manuscript, we study the Bogdanov–Takens singularity of general diffusion-
reaction equations

∂u

∂t
= D̃

∂2u

∂x2
+ Au + R(u, μ), (1)
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where u = (u1, . . . , un)T is a function of (x, t) ∈ (0, 1) × R
+ together with the

boundary conditions

uk(0, t) = uk(1, t) = 0, k = 1, 2, . . . , n, (2)

and μ = (μ1, . . . , μm)T ∈ R
m is a bifurcation parameter. In (1), we assume that

D̃ =

⎛
⎜⎜⎜⎝

D1 0 · · · 0
0 D2 · · · 0
...

...
...

...

0 0 · · · Dn

⎞
⎟⎟⎟⎠ , A =

⎛
⎜⎝
a11 · · · a1n
...

...
...

an1 · · · ann

⎞
⎟⎠ ,

are two n × n constant matrices with Di > 0 and ai j ∈ R, i, j = 1, 2, . . . , n and
R(u, μ) a C3(Rm+n,Rn) function satisfying R(0, μ) = 0 and Du(0, μ) = 0. Clearly
(0, . . . , 0)T is a trivial equilibrium of (1). Sys. (1) defines an infinite dimensional
dynamical system {R+, ϕt

μ} on a functional space

H = (H2(0, 1) ∩ H1
0 (0, 1))n

with normal ‖u‖ = 〈u, u〉1/2. See [2,4] for detail. Here

〈u, v〉 = 1

1 + π2 + π4

n∑
k=1

∫ 1

0

(
ukvk + ∂uk

∂x

∂vk

∂x
+ ∂2uk

∂x2
∂2vk

∂x2

)
dx .

Let L = (L2(0, 1))n . Then H ↪→ L . Define L : H → L by

Lu = D̃
∂2u

∂x2
+ Au. (3)

Then L is a linear operator and Eq. (1) becomes

{
∂u
∂t = Lu + R(u, μ),

u(0, t) = u(1, t) = 0, u(x, 0) = u0(x).
(4)

In order to study the dynamical behavior of Sys. (4), we have to investigate the
distribution of eigenvalues of L . There are some critical cases we have to address:

1. L has a pair of purely imaginary eigenvalues and the others have negative real
parts. Then Sys. (4) undergoes a Hopf bifurcation. If n = 2, Haragus and Iooss
[2] and Kuznetsov [4] gave algorithms to calculate the normal form for the Brus-
selator model. In the literature, there are lots of publications which discuss Hopf
bifurcation for different types of reaction–diffusion equations ([5,6]).

2. L has a double zero eigenvalue (a zero eigenvalue with multiplicity 2) and the
others have negative real parts. For general reaction–diffusion equations, to the
authors’ knowledge, this has not been studied in the literature.
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Note that, for a double zero eigenvalue, the corresponding Jordan block is either
(
0 0
0 0

)
or

(
0 1
0 0

)
. In this research, we only focus on the latter case, which means that the

algebraic and geometric multiplicities of the eigenvalue zero are 2 and 1, respectively.
This is so-called Bogdanov–Takens (BT) singularity. We will use the normal form
theory to transform Eq. (4) to a system of planar ordinary differential equations whose
dynamical behavior is well-known. In this manuscript, for simplicity, we try to derive
the terms of normal form up to order 2 for BT singularity in case of m = n = 2.

In 1979, J. Schnakenberg [7] introduced a system of partial differential equations
describing the trimolecular reactions between two chemical products X and Y and
two chemical sources A and B which are in the following form:

A � X, B → Y, 2X + Y → 3X. (5)

Let u1 and u2 be the concentrations of two chemical products X and Y , respectively.
Then the dimensionless form of the equations of (5) can be written as

{
∂u1
∂t = D1

∂2u1
∂x2

+ a − u1 + u21u2, x ∈ (0, 1), t > 0,
∂u2
∂t = D2

∂2u2
∂x2

+ b − u21u2, x ∈ (0, 1), t > 0.
(6)

Here D1 and D2 are the diffusion coefficients of the chemicals X and Y , respectively,
and a and b the concentrations of A and B, respectively. For simplicity, we assume that
u = (u1, u2)T is a function of (x, t) ∈ (0, 1) ×R

+. The reason to study the reaction–
diffusion version of the Schnakenberg model is the assumption that the products are
not homogeneously mixed during the reaction. As in [2] and [4], in this research, we
use the following Dirichlet boundary conditions

u1(0, t) = u1(1, t) = a + b, u2(0, t) = u2(1, t) = b

(a + b)2
. (7)

Note that with these boundary conditions, the equilibrium E(a+b, b
(a+b)2

) is a trivial
solution of (6) and that, after shifting it to 0, (6) with (7) becomes the form of (4). We
can find the conditions such that the equilibrium point is asymptotically stable. But we
are more interested in periodic solutions, namely the reaction repeats cyclically. This
leads to study Hopf singularity. But the condition for Hopf singularity is not always
satisfied. For BT singularity, we still can obtain limit cycles under small perturbations
of the critical values a∗ and b∗ of a and b (see Sect. 3) despite the fact that the condition
for Hopf singularity is violated.

Recently, the reaction–diffusion Schnakenberg model has been studied extensively.
In [1], Grampin et al. obtained the frequency-doubling sequence of Sys. (6) in the
exponentially growing domain and pattern transitions by activator peak splitting.
In [3], Iron et al. studied the stability of symmetric N -peaked steady-states which
can be reduced to computing two matrices in terms of the diffusion coefficients D1
and D2 and the number N of peaks. In [5], Liu et al. showed that Sys. (6) has spa-
tially nonhomogeneous periodic orbits bifurcating from the equilibrium point. In this
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manuscript, we will apply our result for Eq. (4) to the Schnakenberg model (6) to
obtain BT bifurcation and the corresponding bifurcation diagram.

The rest of this manuscript is organized as follows. In Sect. 2, the explicit conditions
are obtained such that the linearized system has a zero eigenvalue with algebraic
multiplicity 2 and geometric multiplicity 1 (BT singularity); moreover, the normal
form theory in [2] is applied to compute the terms of the normal form of BT singularity
for Sys. (4) up to the second order. In Sect. 3, we apply the result in Sect. 2 to the
Schnackenberg model (6) to study BT bifurcation.

2 Bogdanov–Takens bifurcation and computation of the normal form

For simplicity, we set m = n = 2. Note that the set {sin(kπx) : k ∈ N} forms a basis
of H1

0 (0, 1). Let

u(x) =
∞∑
k=1

(
u1k
u2k

)
sin(kπx) ∈ H

be the solution of the eigenvalue problem

Lu = λu, λ ∈ C.

Here
(u1k
u2k

) ∈ R
2 is constant, k = 1, 2, . . .. Then we have

∞∑
k=1

(
λ + D1n2π2 − a11 −a12

−a21 λ + D2k2π2 − a22

) (
u1k
u2k

)
sin(kπx) = 0

from which we know that λ satisfies

Pk(λ) ≡ λ2 + rkλ + sk = 0

where

rk = π2(D1 + D2)k
2 − tr(A),

sk = D1D2π
4k4 − π2(D1a22 + D2a11)k

2 + det(A).

Clearly two roots of Pk have negative real parts if and only if

rk > 0, sk > 0

which are equivalent to

π2(D1 + D2)k
2 > tr(A), D1D2π

4k4 + det(A) > π2(D1a22 + D2a11)k
2,

respectively.
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Noting that {rk} is strictly increasing. We assume that det(A) > 0. By a2 + b2 ≥
2ab, we have

D1D2π
4k4 + det(A) ≥ 2π2k2

√
D1D2 det(A)

and hence if 2
√
D1D2 det(A) ≥ D1a22 + D2a11, we have sk ≥ 0.

Now we study the distribution of roots of P1(λ). Note that r1 > 0 is equivalent to

π2(D1 + D2) > tr(A).

If r1 = 0 and s1 > 0, then P1(λ) has a pair of purely imaginary roots ±i
√
s1. If

r1 = s1 = 0, then P1(λ) has a double zero root. Note that r1 = s1 = 0 is equivalent
to

{
a11 + a22 = π2(D1 + D2),

D1D2π
4 + a11a22 − a21a12 = π2(D1a22 + D2a11).

If, in addition to the assumptions up to now, we also assume that a12a21 < 0, then the
values of the diagonal elements will be real and can be expressed as follows

a11 = π2D1 ± √−a12a21, a22 = π2D2 ∓ √−a12a21

From this, we have

sn = (n2 − 1)π2[(n2 − 1)π2D1D2 + √−a12a21(D1 − D2)]

and hence {sn} is strictly increasing.
Let us make the following assumption

(H1). det(A) > 0, π2(D1 + D2) > tr(A), and 2π2√D1D2 det(A) − (D1a22 +
D2a11) > 0;

(H2). det(A) > 0, π2(D1 + D2) = tr(A), and 2π2√D1D2 det(A) − (D1a22 +
D2a11) > 0;

(H3). a12a21 < 0, 3π2D1D2 + √−a12a21(D1 − D2) > 0.

Thus we have the following result.

Theorem 2.1 If (H1) holds, then all eigenvalues of L have negative real parts and
hence (0, 0) is stable. If (H2) holds, then L has a pair of purely imaginary roots ±ω0i
and all other eigenvalues have negative real parts and hence Sys.(4) undergoes Hopf
bifurcation. Under (H3), if

a11 = π2D1 + √−a12a21, a22 = π2D2 − √−a12a21,

or

a11 = π2D1 − √−a12a21, a22 = π2D2 + √−a12a21,
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then L has a double zero eigenvalue and all other eigenvalues have negative real parts
and hence Sys.(4) undergoes BT bifurcation.

Now we compute the normal form of BT bifurcation under the assumption (H3).
Note that the first part of (H3) is

a12a21 < 0.

Without loss of generality, we assume that

a12 = δ2, a21 = −γ 2

where δ > 0, γ > 0 and then

a11 = π2D1 + √−a12a21 = π2D1 + γ δ, a22 = π2D2 − √−a12a21 = π2D2 − γ δ.

Hence

A =
(

π2D1 + γ δ δ2

−γ 2 π2D2 − γ δ

)
.

Let

q1 = (δ2,−γ δ)T sin(πx),

q2 = (δ2, 1 − γ δ)T sin(πx),

p1 = 2

δ2
(1 − γ δ,−δ2)T sin(πx),

p2 = 2

δ
(γ, δ)T sin(πx).

It is easy to check that

Lq1 = 0, Lq2 = q1, L
T p1 = p2, L

T p2 = 0

and

〈p1, q1〉 = 〈p2, q2〉 = 1, 〈p1, q2〉 = 〈p2, q1〉 = 0.

Note that, according to [2], for BT singularity, through the change of variable from
u = (u1, u2) to z = (z1, z2) by

u = z1q1 + z2q2 + 
μ(z1, z2),

Equation (4) can be transformed into the following normal form up to order 2

⎧⎨
⎩
ż1 = z2
ż2 = ν1z1 + ν2z2 + a1z21 + b1z1z2

+O(|μ|2 + |μ|(|z1| + |z2|)2 + (|z1| + |z2|)3),
(8)
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In this case, let


μ(z1, z2) = 
101(μ)z1 + 
011(μ)z2 + 
200z
2
1 + 
110z1A2 + 
020z

2
2.

For simplicity, write R(u, μ) as

R(u, μ) = R11(u, μ) + R2(u, u) + o((|u| + |μ|)3)

where R11(u, μ) : R2×R
2 → R

2 and R2(u, v) : R2×R
2 → R

2 are linear symmetric
maps of u, v and μ respectively. Replacing u by z1q1 + z2q2 + 
μ(z1, z2) in Eq. (4)
and comparing the terms with order O(z1) and O(z2), we obtain

ν1q2 = L
101 + R11(q1, μ), (9)

ν2q2 + 
101 = L
011 + R11(q2, μ), (10)

Similarly comparing the terms with orderO(z21),O(z1z2), andO(z22), and terms with
order O(A3

1),O(z21z2), O(z1z22), and O(z32), respectively, we obtain

a1q2 = L
200 + R20(q1, q1), (11)

b1q2 + 2
200 = L
110 + 2R20(q1, q2). (12)

From (9) and (10), we have

ν1 = 〈p2, R11(q1, μ)〉 ,

ν2 = 〈p2,−
101 + R11(q1, μ)〉 ,

and from (11) and (12), we have

a1 = 〈p2, R20(q1, q1)〉 ,

b1 = 〈p2,−2
200 + 2R20(q1, q2)〉 .

Remark 2.1 In this manuscript, for simplicity, we only calculate the coefficients of
the normal form up to order 2. For the coefficients of the normal form order 3, the
computation is complicated and we omit the detail.

In order to determine ν1, ν2, a1 and b1, we need the following lemma which solves
a system of differential equations with boundary value problems.

Lemma 2.1 Let a, b, c, d be constants. Then the system of DEs

{
Lu = (a

b

)
sin(πx) + (c

d

)
sin2(πx),

u1(0) = u1(1) = u2(0) = u2(1) = 0,
(13)

has a solution if and only if the following solvability condition holds

3πaγ + 3πbδ + 8cγ + 8δd = 0. (14)
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Moreover for D = D1 = D2, if the condition (14) holds, Eq. (13) has at least one
solution

u1(x) = 1

72π5D2
[9π3aγ δx2 sin(πx) + 9π3bδ2x2 sin(πx) − 36πcγ δ

+16π(2x − 1) cos(πx)

×
(
−2cγ δ + 3π2cD − 2δ2d

)
+ 4π cos(2πx)

(
cγ δ + 3π2cD + δ2d

)

−96π2cD sin(πx) + 36π3cD + 64cγ δ sin(πx) + 24π2cγ δx sin(πx)

+72π4D2C sin(πx) − 36πδ2d + 64δ2d sin(πx) + 24π2δ2dx sin(πx)],
u2(x) = − 1

72π5D2δ2
[4πδ cos(πx)(9π3aγ Dx

+ δ
(
3π2D(3πbx + 4d)+8γ δd(1 − 2x)

)
+8cγ

(
3π2Dx + γ δ(1 − 2x)

)
)

− 72π5aD2 sin(πx) + 18π3aγ Dδ sin(πx)

+ 9π3aγ 2δ2x2 sin(πx) + 18π3bDδ2 sin(πx) + 9π3bγ δ3x2 sin(πx)

− 36πcγ 2δ2 − 192π4cD2 sin(πx)

− 4πδ2 cos(2πx)
(
3π2Dd − γ (cγ + δd)

)

+ 32π2cγ Dδ sin(πx)

+ 64cγ 2δ2 sin(πx) + 24π2cγ 2δ2x sin(πx) + 72π4γ D2δC sin(πx)

− 36π3Dδ2d + 128π2Dδ2d sin(πx) − 36πγ δ3d + 64γ δ3d sin(πx)

+ 24π2γ δ3dx sin(πx)]

where C is an arbitrary constant.

Proof Since LT p2 = 0, we have 〈p2, Lu〉 = 〈LT p2, u〉 = 0 and hence obtain

〈p2,
(
a

b

)
sin(πx) +

(
c

d

)
sin2(πx)〉 = 0

or

3πaγ + 3πbδ + 8cγ + 8δd = 0

and hence the condition (14) holds. For D1 = D2, suppose the condition (14) holds,
we can solve Sys. (13). In fact, Sys. (13) is equivalent to the following system

⎧⎨
⎩

Du′′
1 + (π2D + γ δ)u1 + δ2u2 = a sin(πx) + c sin2(πx),

Du′′
2 + (π2D − γ δ)u2 − γ 2u1 = b sin(πx) + d sin2(πx),

u1(0) = u1(1) = u2(0) = u2(1) = 0.
(15)

Let the Laplace transforms of u1(x) and u2(x) beU1(s) andU2(s), respectively. Then,
after taking the Laplace transform from both sides the first and second equations of
(15), we have
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(D(π2 + s2) + γ δ)U1 + δ2U2 − Du′
1(0) = aπ

π2 + s2
+ 2cπ2

4π2s + s3
,

−γ 2U1 + (D(π2 + s2) − γ δ)U2 − Du′
2(0) = bπ

π2 + s2
+ 2dπ2

4π2s + s3
.

Solving for U1(s) and U2(s) from the above system of DEs and taking the inverse
Laplace transform for each and using the condition u1(0) = u2(0) = 0, we obtain the
expressions of u1 and u2 in the lemma. ��

Nowweuse the result of this lemma to calculate the coefficients of ν1, ν2, a1, b1, a2,
b2. Let

R11(u, μ) =
(
r11 r12
r21 r22

) (
u1
u2

)
,

R20(u, v) =
(

ρ20u1v1 + 1
2ρ11(u1v2 + u2v1) + ρ02u2v2

η20u1v1 + 1
2η11(u1v2 + u2v1) + η02u2v2

)
,

where ri j (i, j = 1, 2) are linear functions of μ1, μ2. Let us compute ν1,
101 in (9)
first.

Lemma 2.2 In fact, we have

ν1 = γ δ(r11 − r22) − γ 2r12 + δ2r21,

ν2 = r11 − γ r12
δ

.

Proof Rewrite Eq. (9) as

L
101 = ν1q2 − R11(q1, μ).

It is easy to easy to see

ν1q2 − R11(q1, μ) =
(

δ(δν1 − δr11 + γ r12)

(1 − γ δ)ν1 − δ2r21 + γ δr22

)
sin(πx).

Thus set

a = δν1 − δr11 + γ r12, b = (1 − γ δ)ν1 − δ2r21 + γ δr22, c = d = 0

in Lemma 2.1 and hence the solvability condition (14) becomes

δ(δν1 − δr11 + γ r12)γ + ((1 − γ δ)ν1 − δ2r21 + γ δr22)δ = 0.

From this we solve for ν1 to get

ν1 = γ δ(r11 − r22) − γ 2r12 + δ2r12
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and hence

a = δ[−δr11 + γ r12 + δ(γ δr11 − γ 2r12 + δ(δr21 − γ r12))].

By setting c = d = 0 in Lemma 2.1, it is easy to compute the expressions of 
101 =(u1
u2

)
in Eq. (9), which is the following

u1 = C

π
sin(πx), u2 = aπ − γ δC

πδ2
sin(πx)

where C = u′
1(0) is an arbitrary constant. The solvability of (10) gives

ν2 = 〈p2,−
101 + R11(q1, μ)〉 = γ11 − γ r12
δ

.

This completes the lemma. ��

Next we compute a1 and b1.

Lemma 2.3 In fact, we have

a1 = 8δ

3π
[γ 2δ(η02 − ρ11) + γ δ2(ρ20 − η11) + δ3η20 + γ 2ρ02],

b1 = 8δ

3π
(2δρ20 − 2γ η02 + δη11 − γρ11).

Proof Rewrite Eq. (11) as

L
200 = a1q2 − R20(q1, q1).

It is easy to see that

a1q2 =
(

a1δ2

a1(1 − γ δ)

)
sin(πx), R20 =

(
δ2(γ 2ρ02 − γ δρ11 + δ2ρ20)

δ2(η2ρ02 − γ δη11 + δ2η20)

)
sin2(πx).

Thus in Lemma 2.1,

a = a1δ
2,

b = a1(1 − γ δ),

c = δ2(γ 2ρ02 − γ δρ11 + δ2ρ20),

d = δ2(γ 2η02 − γ δη11 + δ2η20).
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From the solvability condition (14), it is not hard to solve a1 and the expression of

200 = (u1, u2)T in Eq. (11). In fact, we have

u1 = 1

72D2π4 [−9δ2(π(−3 + 4Dπ2)x cos(πx) − (−3 + 4Dπ2+π2x2) sin(πx))a1

+ 4((−9Dπ2 + 9γ δ + 4(3Dπ2 − 2γ δ) cos(πx) − (3Dπ2 + γ δ) cos(2πx)

−6πxγ δ sin(πx))c1 − δ2(−9 + 8 cos(πx) + cos(2πx) + 6πx sin(πx))c2
+ 9Dπ(πxδ cos(πx)(γ u′

1(0) + δu′
2(0))

+ sin(πx)(2Dπ2u′
1(0) − δ(γ u′

1(0) + δu′
2(0)))))],

u2 = 1

72D2π4 [9(πx(−3δδ + 4Dπ2(−1 + γ δ)) cos(πx)

+((3 − π2x2)γ δ − 4Dπ2(−1 + γ δ) sin(πx))a1 + 4(γ 2(−9 + 8 cos(πx)

+ cos(2πx) + 6πx sin(πx))c1 + (−9Dπ2 − 9γ δ + 4(3dπ2 + 2γ δ) cos(πx)

+ (−3Dπ2 + γ δ) cos(2πx) + 6πxγ δ sin(πx))c2
+ 9Dπ(−πxδ cos(πx)(γ u′

1(0) + δu′
2(0))

+ sin(πx)(2Dπ2u′
2(0) + γ 2u′

1(0) + γ δu′
2(0)))))].

where

u′
2(0) = 1

36Dπ2γ δ
(9(−3πγ δ + 4Dπ2(−1 + γ δ))a1

+ 64γ 2c1 + 96Dπ2c2 + 64γ δc2 − 36Dπ2γ 2u′
1(0)),

with u′
1(0) a arbitrary constant. Using this, we obtain

b1 = 〈p2,−2
200 + 2R20(q1, q2)〉 = 8δ

3π
(2δρ20 − 2γ η02 + δη11 − γρ11).

��

Remark 2.2 If D1 �= D2, the expressions of ν1, ν2, a1, b1 are the same. However the
computation is more complicated, here we omit the details.

3 Example: the Schnakenberg model

In this section, we use the result in Sect. 2 in the Schnakenberg Model (6). First we
shift the equilibrium point E(a + b, b

(a+b)2
) to (0,0) by letting u1 = a + b+ v1, u2 =

b
(a+b)2

+ v2. Then Sys. (6) becomes
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⎧⎨
⎩

∂v1
∂t = D1

∂2v1
∂x2

+ b−a
a+b v1 + (a + b)v2 + b

(a+b)2
v21 + 2(a + b)v1v2 + v21v2, x ∈ (0, 1), t > 0,

∂v2
∂t = D2

∂2v2
∂x2

− 2b
a+b v1 − (a + b)2v2 − b

(a+b)2
v21 − 2(a + b)v1v2 − v21v2, x ∈ (0, 1), t > 0.

(16)

with the boundary conditions

v1(0, t) = v1(1, t) = v2(0, t) = v2(1, t) = 0.

Let

A =
( b−a

a+b (a + b)2

− 2b
a+b −(a + b)2

)
.

Hence

a11 = b − a

a + b
, a12 = (a + b)2, a21 = − 2b

a + b
, a22 = −(a + b)2.

It is easy to check that det(A) = (a + b)2 > 0. In order to seek BT bifurcation, we
have to assume that the second part of the assumption (H3) is satisfied. Let

a12 = (a + b)2 = δ2, a21 = − 2b

a + b
= −γ 2

and then δ = a + b and γ =
√

2b
a+b . Letting

a11 = π2D1 + γ δ, a22 = π2D2 − γ δ

we obtain

a = a∗ ≡ π2D2(1 − π4D2
1 + 2π2D2)

2(1 + π2D1 − π2D2)3/2
, b = b∗ ≡ (π + π3D1)

2D2

2
√

(1 + π2D1 − π2D2)3/2
.

and hence

δ = π2D2√
π2D1 − π2D2 + 1

, γ = π2D1 + 1√
π2D1 − π2D2 + 1

.

Nowweapply the result in Sect. 2 by using (a, b)near (a∗, b∗) as bifurcation parameter
to perform center manifold reduction and hence obtain the normal form. Let

a = a∗ + μ1, b = b∗ + μ2.
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Then Sys. (6) becomes

∂v

∂t
= D

∂2v

∂x2
+ Av + R(v, μ) + O(|μ|2 + |μ|2v + |μ||v|2) (17)

where

D =
(
D1 0
0 D2

)
,

A =
(

γ δ δ2

−γ 2 −γ δ

)
,

R(v, μ) = R11(v, μ) + R20(v, v) + R30(v, v, v).

Here

R11(v, μ) =
(
r11 r12
r21 r22

) (
v1

v2

)
,

R20(u, v) =
(

ρ20u1v1 + 1
2ρ11(u1v2 + u2v1) + ρ02u2v2

η20u1v1 + 1
2η11(u1v2 + u2v1) + η02u2v2

)
.

Thus

r11 =
(
π2D1 − π2D2 + 1

)
μ1 − π2

(
π2D2

1 + D1 + D2
)
μ2

π2D2

√
π2D1 − π2D2 + 1

,

r21 = −
(
π2D1 − π2D2 + 1

)
μ1 − π2

(
π2D2

1 + D1 + D2
)
μ2

π2D2

√
π2D1 − π2D2 + 1

,

r12 = 2π2D2μ2√
π2D1 − π2D2 + 1

, r22 = − 2π2D2μ2√
π2D1 − π2D2 + 1

,

ρ20 = −η20 = (1 + π2D)2

π2D
, ρ11 = −η11 = 4π2D, ρ02 = η02 = 0.

From Lemmas 2.2 and 2.3, we obtain the coefficients in the normal form (8)

ν1 = γ δ(r11 − r22) − γ 2r12 + δ2r12

= − (1 + π2D1)(1 + π2D1 − π2D2)μ1 + (−1 + π4D2
1 + +4π2D2 + 2π4D1D2)μ2√

1 + π2D1 − π2D2

,

ν2 = r11 − γ r12
δ

= − (1 + 2π2D1 + π4D2
1 + 2π4D2

2)μ1 + (−1 + π4D2
1 + 2π2D2 + 2π4D2

2)μ2

π2D2

√
1 + π2D1 − π2D2

,

a1 = 8δ
(
γ 3ρ2 + γ 2δη2 − γ 2δρ11 − γ δ2η11 + γ δ2ρ20 + δ3η20

)
3π
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= 8π3(1 + π2D1)D2
2(1 + π2D1 − 4π2D2)

3
√
1 + π2D1 − π2D2

3 ,

b1 = 8δ

3π
(2δρ20 − 2γ η02 + δη11 − γρ11)

= 16πD2(1 + π4D2
1 − 2π2D2 − 2π4D2

2 + 2π2D1 − 2π4D1D2)

3
√
1 + π2D1 − π2D2

3 .

It is easy to check that

det
∂(ν1, ν2)

∂(μ1, μ2)
= −4(1 + π2D1 − π2D2) �= 0.

Therefore the map (μ1, μ2) → (ν1, ν2) is regular and hence the transversality holds.
Thus we have the following result.

Theorem 3.1 If a = a∗, b = b∗, then the Schnakenberg model (16) undergoes BT
bifurcation.

Equation (17) is equivalent to the following truncated system

{
ż1 = z2,
ż2 = ν1z1 + ν2z2 + a1z21 + b1z1z2.

(18)

The complete bifurcation diagram of (18) can be found in [4]. Here we are more
interested in periodic orbits which are described in the following lemma (see [8]).

Lemma 3.1 Assume that a1b1 �= 0. Define

H =
{
(ν1, ν2) : ν2 = b1

a1
ν1 + O(ν2), ν1 > 0

}
,

HL =
{
(ν1, ν2) : ν2 = 6b1

7a1
ν1 + O(ν21 ), ν1 > 0

}
.

For (ν1, ν2) small enough, when (ν1, ν2) is in the region between the curves H and
HL, Sys.(18) has a unique stable periodic orbit.

Upon using the expressions of (ν1, ν2), we have the following result.

Theorem 3.2 Assume that a1b1 �= 0. Define

H =
{
(μ1, μ2) : μ2 = − 1

τ1
[(π2D1 + 1)2(π4D2

1 + 2(2π4D2 + π2)D1

−14π4D2
2 + 4π2D2 + 1)]μ1 + O(|μ|2), μ1 > 0

}
,

HL =
{
(μ1, μ2) : μ2 = − 1

τ2
(π2D1 + 1)(5π6D3

1 + π4(28π2D2 + 15)D2
1

+ (−86π6D2
2 + 56π4D2 + 15π2)D1 + 8π6d32 − 86π4D2

2 + 28π2D2 + 5)μ1

+O(|μ|2), μ1 > 0
}

.
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Here

τ1 = π8D4
1 + 2

(
2π8D2 + π6

)
D3
1 − 14π6D2

(
π2D2 − 1

)
D2
1

−2
(
10π6D2

2 − 8π4D2 + π2
)
D1 − 8π6D3

2 − 6π4D2
2 + 6π2D2 − 1,

τ2 = 5π8D4
1 + 2π6

(
14π2D2 + 5

)
D3
1 − 86π6D2

(
π2d2 − 1

)
D2
1

+2π2
(
4π6D3

2 − 58π4D2
2 + 44π2D2 − 5

)

×D1 − 5
(
8π6D3

2 + 6π4D2
2 − 6π2D2 + 1

)
.

For (μ1, μ2) small enough, when (μ1, μ2) is in the region between the curves H and
HL, Sys.(17) has a unique stable periodic orbit.

Example 3.1 Theorem 3.2 gives us the condition of (μ1, μ2) so that the Schnakenberg
model (6) has a stable periodic solution; namely the reaction repeats cyclically. Now
we give a numerical example to illustrate this. Choose D1 = 0.01, D2 = 0.02 and
then

a∗ = 0.06868411401512152, b∗ = 0.1392348499288601.

Easy calculation shows that

H =
{
(μ1, μ2), μ2 = 37.540424086156456μ1 + O(|μ|2)

}

HL =
{
(μ1, μ2), μ2 = 89.21928378011161μ1 + O(|μ|2)

}
.

Let μ1 = 0.000001, μ2 = 0.00633799 and hence

a = a∗ + μ1 = 0.06878411401512152, b = b∗ + μ2 = 0.1455728353221735.

It is not hard to check that (μ1, μ2) is between H and HL (Fig. 1). Now we use the
following initial condition

u1(x, 0) = a + b + 0.001 sin(6πx), u2(x, 0) = b

2(a + b)2
− 0.001 sin(3πx).

to numerically solve Sys. (6). The graph of the solution of Sys. (6) is shown in Fig. 2.
From this, we can see the repeated pattern in the direction of the time t , which verifies
the result of Theorem3.2 and hence concludes that Sys. (6) has a unique stable periodic
orbit. Note that in this model, the critical concentrations a∗ and b∗ of A and B are
very important since they determine the BT bifurcation and hence the dynamical
behavior of Sys. (6). Small purterbations of a∗ and b∗ result in the change of the
dynamical behavior. If (μ1, μ2) is in the region between H and HL , a stable periodic
orbit bifurcates from the equilibrium point E ; otherwise the bifurcation diagram is
different and here we omit the detail.
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Fig. 1 (μ1, μ2) = (0.000001, 0.00633799) lies between the curves H and HL

Fig. 2 u1(0, x) = 2 sin(5πx), u2(t, x) = 10 sin(10πx). The unique stable orbit for (μ1, μ2) =
(0.000001, 1.08982 × 10−8)

4 Conclusion

BT bifurcation is one of so-called codimension 2 bifurcations. Hopf bifurcation is
codimension 1 bifurcation and has been studied extensively for many special models
of reaction–diffusion equations (see [2,4–6]). However, the study of BT bifurcation
for reaction–diffusion equations in the literature has not often been seen. In this man-
uscript, we found the explicit conditions such that BT bifurcation occurs for general
reaction–diffusion equations and then performed the center manifold reduction to cal-
culate the coefficients of the corresponding normal form up to order 2 (a1b1 �= 0).
Note that, if a1 = b1 = 0, we have to calculate the coefficients of order 3 in the
normal form. Since the calculation of those coefficients is very complicated, we omit
the detail.

As one application, our result was used to study BT bifurcation for the Schnack-
enberg model. It is worth noting that most of the research of this model done so far is
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based on one of two parameters a and b (for example, see [5]). In this manuscript, we
used both to study BT bifurcation. We believe that our results will shed light on the
study of the mechanisms of dynamical behaviors of reaction–diffusion equations.
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