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Abstract Let G be a graph that admits a perfect matching. A forcing set for a perfect
matching M of G is a subset S of M , such that S is contained in no other perfect
matchings ofG. The smallest cardinality of a forcing set ofM is called forcedmatching
number, denoted by f (G, M). Among all perfect matchings of G, the maximum
forcing matching number is called the maximum forcing number of G, denoted by
F(G). In this paper, we show that the maximum forcing numbers of cylindrical grid
P2m × C2n+1 is m(n + 1) by choosing a suitable independent set of this graph. This
solves an open problem proposed by Afshani et al. (Australas J Combin 30:147–160,
2004). Moreover, we obtain that the maximum forcing numbers of two classes of
toroidal 4–8 lattice and two classes of Klein bottle 4–8 lattice are all equal to the
number of squares pq.
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1 Introduction

For a simple graphG, we say thatM is a per f ect matching ofG if it is a set of disjoint
edges in G that covers all vertices of G. Each vertex is uniquely paired with another
via an edge of M . A forcing set for a perfect matching M of graph G is a subset
S of M such that S is contained in no other perfect matchings of G. The smallest
cardinality of forcing sets of M is called the forcing number of M , and is denoted
by f (G, M). The maximum (resp. minimum) forcing number of G is the maximum
(resp. minimum) value of forcing numbers of all perfect matchings of G, denoted by
F(G) [resp. f (G)]. The forcing spectrum for a graph G is a set collecting the forcing
matching numbers of all perfect matchings of G.

In chemistry, the perfect matching is called Kekulé structure. The study of Kekulé
structure of benzenoid systems plays an important role in the study of total π -electron
energy, resonance energy and other chemical properties of benzenoid hydrocarbons.
The notion of forcing number originally arose in chemistry in 1987 in the study of
molecular resonance structures [9], and is called innate degree of freedom in chemistry.
Chemists once found that the Kekulé structure with larger innate degree of freedom
contributes more to the stability of molecular in [14]. Later in [7], Harary introduced
the concept of the forcing number of a perfect matching and of other concepts in
graphs. Since then, papers have appeared on the forced orientation number of graphs
[3,6], dominating set [4], geodetics [5], and polynomial [24].

There has been some study on forcing sets and forcing number of perfect match-
ing of some graphs. The benzenoid systems (the carbon skeletons of benzenoid
hydrocarbons) with minimum forcing number one were determined in [11,18–
20]. The minimum forcing number of a graph has been extensively studied in
[1,10,13,15,16,22]. Adams et al. [1] showed that determining smallest forcing set
of a perfect matching of a bipartite graph with maximum degree three is an NP-
complete problem. Afshani et al. [2] proved that the smallest forcing number problem
of graphs is NP-complete for bipartite graphs with maximum degree four.

Recently, the study of maximum forcing number of a graph draws our interest. Xu
et al. [17] showed that the maximum forcing number of a hexagonal system is equal to
its Clar numbers, applying this result, they obtained that the maximum forcing number
of a hexagonal system can be computed in polynomial time. Afshani et al. [2] obtained
the maximum forcing numbers of two classes of Cartesian product.

Theorem 1.1 [2] Let Pm × Pn admit a perfect matching. Then F(Pm × Pn) = �m
2 � ·

� n
2 �.

Theorem 1.2 [2] For any integer k, n ≥ 1,

F(P2k × C2n) = kn and F(P2k+1 × C2n) = kn + 1.

Then they proposed a problem: what is the maximum forcing number of non-
bipartite graph P2m × C2n+1?

For some graphs, the forcing spectra of them are presented, such as hypercubes [1],
tubular BN-fullerene graph [8], even polygonal chain [21], hexagonal system [23] and
C3 × P2n [12].
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The rest of the paper is organized as follows. In Sect. 2, we proposed “deleting an
independent set” method to investigate the maximum forcing number of graphs. By
this method, we show that the maximum forcing number of the cartesian product of
P2m and C2n+1 is m(n + 1) in Sect. 3, which answers an open problem proposed by
Afshani et al. in [2]. In Sect. 4, we first study the distribution of cycles in two classes
of toroidal 4–8 lattice after deleting an independent set, then combining Lemma 2.2
obtain that the maximum forcing numbers of them are both equal to the number of
squares pq. In the similar way, we present the maximum forcing numbers of two
classes of Klein bottle 4–8 lattice in Sect. 5, which are both pq, too.

2 Preliminary

So far, there are no effective method for computing the maximum forcing number
of a graph. In this section, we will consider it from the perspective that deleting an
independent set S of G and arrive in the aim to delete a forcing set of any perfect
matching of G. This idea has already been shown in the paper [13].

The following lemma gives a characterization of forcing set for some perfectmatch-
ing of a graph.

Lemma 2.1 [2] Let G be a graph and M be a perfect matching of it. Then S ⊆ M
is a forcing set of M if and only if it contains at least one edge of each M-alternating
cycle.

The following lemma will be often used in the proof of the main results.

Lemma 2.2 Let G be a connected graph admitting a perfect matching. Let S be an
independent set of G. If G − S has no alternating cycle about some perfect matching
of G, then F(G) ≤ |S|.
Proof For any perfectmatchingM ofG, let A be the set of all the edges inM which are
incident with some vertex in S. We claim that A is a forcing set of M . If not, suppose
that there is an M-alternating cycle C in G − A by Lemma 2.1. Since C does not pass
through any vertex of S, C is also an M-alternating cycle of G − S, a contradiction.
So f (G, M) ≤ |A| = |S|. By the arbitrariness of M , we obtain F(G) ≤ |S|. ��

3 The maximum forcing number of P2m × C2n+1

Definition 3.1 The cartesian product of G and H , written G × H , is the graph with
vertex set V (G) × V (H) specified by putting (u, v) adjacent to (u′, v′) if and only if

(1) u = u′ and vv′ ∈ E(H), or
(2) v = v′ and uu′ ∈ E(G).

Now we show the result of open problem proposed by Afshani et al. in [2].

Theorem 3.2 F(P2m × C2n+1) = m(n + 1).
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Proof Let P2m = u1u2 · · · u2m and C2n+1 = v1v2 · · · v2n+1. Denote the vertices of
P2m ×C2n+1 by (ui , v j ) (1 ≤ i ≤ 2m, 1 ≤ j ≤ 2n + 1). For any i (1 ≤ i ≤ 2m), we
call the cycle induced by {(ui , v j )| 1 ≤ j ≤ 2n+1}i-th cycle. For any k (1 ≤ k ≤ m),
let

Mk = {(u2k−1, vi )(u2k, vi )| 1 ≤ i ≤ 2n + 1}.

Then M0 = M1 ∪ M2 ∪ · · · ∪ Mm is a perfect matching of P2m × C2n+1. We will
illustrate that f (G, M0) = m(n + 1). For any 1 ≤ k ≤ m, let

Sk = {(u2k−1, vi )(u2k, vi )| i is odd and i ≤ 2n + 1}.

Let S = S1 ∪ S2 ∪ · · · ∪ Sm , then S is contained in no other perfect matchings of
P2m × C2n+1. Hence S is a forcing set of M0 with size m(n + 1).

Next we show the minimality of S. By contrary, let S0 be any forcing set of M0
and |S0| < m(n + 1), there will be an integer i (1 ≤ i ≤ m) such that Mi has at
most n edges of S0 by Pigeonhole Principle. There will be an M0-alternating cycle of
size 4 in the subgraph induced by vertices of (2i − 1)-th cycle and 2i-th cycle. That
is there will be M0-alternating cycle in P2m × C2n+1 − S0, by Lemma 2.1, S0 is not
a forcing set of M0, a contradiction. Hence S is a minimum forcing set of M0, and
f (P2m × C2n+1, M0) = m(n + 1).
For convenience, we denote the graph in Fig. 1b by unit . Let

A := {(ui , v j )| j �= 2n + 1, i and j are both odd; or j = 2n + 1, i is even},

see Fig. 1a. Then A is an independent set. Let G = (P2m × C2n+1) − A. In the
following, we claim that G has no alternating cycle about some perfect matching of
P2m × C2n+1. In G, the length of every internal face is eight, which is the boundary
of the unit. Let C be any cycle of G, obviously C is an even cycle. Let H denote the
subgraph of P2m × C2n+1 induced by the vertices on C and inside C . It is easy to
see that H can be filled with units one by one from down up and from left to right.
Suppose that there are k units in H , denote the subgraph by Hi after adding the i-th

1 1,u v
2 1,u v 3 1,u v 4 1,u v 5 1,u v 8 1,u v7 1,u v6 1,u v

1 2,u v
1 3,u v
1 4,u v
1 5,u v
1 6,u v
1 7,u v

1 8,u v
1 9,u v(a)

(b)

Fig. 1 a P8 × C9 and b unit
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1kH 1kH

(a) (b)

Fig. 2 Illustration two types of Hk generated from Hk−1

unit, then H = Hk . In the following, we prove that the number of internal vertices of
H is odd by induction.

H1 contain one unit, the number of internal vertex is 1. Suppose that for i < k, the
number of internal vertices of Hi is odd. Now we show that Hk contains odd number
of internal vertices. The k-th unit added to Hk−1 has two types as Fig. 2. In Fig. 2a,
the number of internal vertices of Hk is two more than Hk−1. In Fig. 2b, the number
of internal vertices of Hk is four more than Hk−1. Therefore, no matter what type it
happens, the number of added internal vertex is even, and it does not change the parity
of the number of internal vertex in Hk−1. So the number of internal vertex in C is odd,
and there is no perfect matching M of P2m ×C2n+1 such that C is M-alternating. By
the arbitrariness of C , we know that G has no alternating cycle about some perfect
matching of P2m × C2n+1. By Lemma 2.2, F(P2m × C2n+1) ≤ m(n + 1).

Summing up, we obtain that F(P2m × C2n+1) = m(n + 1). ��

4 The maximum forcing number of toroidal 4–8 lattice

4.1 R-type toroidal 4–8 lattice TR( p, q, t)

A R-type toroidal 4–8 lattice is generated from a p×q-rectangle Q of the 4–8 lattice.
A p × q-rectangle Q considered here has two horizontal sides and two vertical sides:
two horizontal sides pass p octagons centers, and two vertical sides pass q octagons
centers (see Fig. 3). In order to form a R-type toroidal 4–8 lattice, first identify two
vertical sides of Q to form a tube, then identify the top side of the tube with its bottom
side after rotating it through t octagons. Conveniently, we denote this toroidal 4–8
lattice by TR(p, q, t).

In TR(p, q, t), all the vertices of it can be covered by squares. If the segment
joining centers of two squares parallels horizontal side of Q, we call the two squares
are in the same row, if the segment joining centers of two squares parallels vertical
side of Q, we call that the two squares are in the same column. From left to right
denote all columns by L0, . . . , L p−1. From down up, denote all row by R0, . . . , Rq−1.
Then we denote the square by i j which locates the intersection of Li and R j , where
i ∈ Zp := {0, 1, . . . , p − 1} and j ∈ Zq := {0, 1, . . . , q − 1}. From the left vertex
of square i j anticlockwise, denote the four vertices of it by ai j , bi j , ci j and di j ,
respectively.
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Fig. 3 TR(6, 3, 2) and the label of vertices

Now we define p paths l0, l1, . . . , l p−1 of TR(p, q, t). For any i (0 ≤ i ≤ p − 1),
let

li := bi0ci0di0bi1ci1di1 · · · bi,q−1ci,q−1di,q−1.

bi0 and di,q−1 are the head and tail of li , respectively. For li and l j , if the head of l j is
adjacent to the tail of li , we say l j is the successor of li . In TR(p, q, t), the successor
of li is li+(p−t).

Lemma 4.1 Let T ′
R be the graph obtained from TR(p, q, t) by deleting A = {ai j | 0 ≤

i ≤ p − 1 and 0 ≤ j ≤ q − 1}. Then the number of cycles in T ′
R is d = (t, p).

Proof All paths li (0 ≤ i ≤ p − 1) in TS(p, q, t) constitute T ′
R . For any cycle C in

T ′
R , suppose that C contains g columns: li , li+(p−t), . . . , li+(g−1)(p−t). Then li+g(p−t)

coincides with li , and we have

[i + g(p − t)] − i ≡ 0 (mod p) �⇒ gt ≡ 0 (mod p),

That is, the number of columns that C contains is the minimum integer g which
satisfies formula gt ≡ 0 (mod p). Since gt ≡ 0 (mod p), there exists integer λ such
that gt = λp.

In the following, we first prove that the maximum common divisor of g and λ is
1, that is, (g, λ) = 1. Suppose, to the contrary, that (g, λ) = d1 > 1. Assume that
g = d1g1, λ = d1λ1. Put g = d1g1, λ = d1λ1 into gt = λp, we obtain g1t = λ1 p,
which contradicts the minimality of g. Hence (g, λ) = 1.

Since d = (t, p), assume that t = dt1, p = dp1 and (t1, p1) = 1. Put t = dt1 and
p = dp1 into gt = λp, we obtain gt1 = λp1. We claim that g = p1. Suppose, to the
contrary, that g �= p1, we assume g = lp1.

Case 1. l is fraction. Let l = n
m (m > 1 and m, n are integer and (m, n) = 1).

Put g = lp1 into gt1 = λp1, we have λ = lt1. By g = lp1 = n
m p1, λ = lt1 = n

m t1,
(m, n) = 1 and g, λ are both integer, we know that m is the common divisor of p1
and t1, which contradicts (p1, t1) = 1.
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Case 2. l is integer (l > 1). Similarly, put g = lp1 into gt1 = λp1, we have λ = lt1.
Since g = lp1, l is the common divisor of g and λ, which contradicts (g, λ) = 1.

By Cases 1 and 2, we obtain g = p1.
So the number of cycles is p

g = p
p1

= d = (p, t). ��
Lemma 4.2 Let d = (p, t). For li (0 ≤ i ≤ p − 1) of TR(p, q, t), any d consecutive
paths are on d different cycles.

Proof We investigate any d consecutive paths li , li+1, · · · , li+(d−1). Suppose that l j
and lk are on the same cycle (i ≤ j < k ≤ i + (d − 1)), then there exists integer ν

such that j + ν(p− t) ≡ k (mod p), that is, −νt ≡ k − j (mod p). According to this,
there exists integer μ such that μp − νt = k − j .

By d = (t, p), we assume t = dt1, p = dp1 and (t1, p1) = 1. Put t = dt1, p = dp1
intoμp−νt = k− j , we obtain (μp1−νt1)d = k− j . Since 1 ≤ k− j ≤ d−1 < d,
then there does not exist integersμ, p1, ν, t1 such that (μp1−νt1)d = k− j . So l j and
lk are on different cycles. By the arbitrariness of j and k, we obtain the conclusion. ��

Theorem 4.3 F(TR(p, q, t)) = pq.

Proof First we select an independent set A′ of TR(p, q, t) such that TR(p, q, t) − A′
has no alternating cycle about some perfectmatching of TR(p, q, t). Let A = {ai j | 0 ≤
i ≤ p − 1 and 0 ≤ j ≤ q − 1}.

Case 1. d = (p, t) = 1. Let A′ = A. We know that all li (0 ≤ i ≤ p− 1) construct
unique cycle in TR(p, q, t) − A′, denoted by C . In TR(p, q, t) − C there are only
isolated vertices ai j (0 ≤ i ≤ p − 1 and 0 ≤ j ≤ q − 1). Hence there does not exist
alternating cycle about some perfect matching of TR(p, q, t).

Case 2. d = (p, t) > 1. Let M be any perfect matching of TR(p, q, t). In
TR(p, q, t) − A, let li (0 ≤ i ≤ d − 1) be on cycle Ci . For any two adjacent cycles,
without loss of generality, suppose they are C0 and C1, it is impossible that they are
both M-alternating cycles. Since if not, there is no edge of M to cover vertex a10. If
C0 is not M-alternating (see Fig. 4). We set

A1 = {bi0| 1 ≤ i ≤ d − 1}.

1

1

2

2 4

3

3 8

4

5

5

760

6 7 8 0

Fig. 4 Illustration the proof of Case 2 by TR(9, 3, 3)
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For any square which do not contain vertices of A1, select ai j and they constitute A2.
Let A′ = A1 ∪ A2. In TR(p, q, t) − A′, there is unique cycle C0 and there does not
exist M-alternating cycle. If C1 is not M-alternating, let

A′
1 = {bi0| 2 ≤ i ≤ d}.

For any square which do not contain vertices of A′
1, select ai j and they constitute A′

2.
Let A′ = A′

1 ∪ A′
2. In TR(p, q, t) − A′, there is unique cycle C1 and there does not

exist M-alternating cycle.
Combining Cases 1, 2 and Lemma 2.2, we can obtain that

F(TR(p, q, t)) ≤ pq.

On the other hand, we can find perfect matching M0 of TR(p, q, t) such that
f (TR(p, q, t), M0) ≥ pq: the restriction of M0 on each square of TR(p, q, t) is
M0-alternating. Since there are pq independent M0-alternating squares, by Lemma
2.1, f (TR(p, q, t), M0) ≥ pq.

Summing up, we can obtain F(TR(p, q, t)) = pq. ��

4.2 S-type toroidal 4–8 lattice TS( p, q, t)

A S-type toroidal 4–8 lattice is generated from a p × q parallelogram P of the 4–8
lattice. A p × q-parallelogram P considered here has two horizontal sides and two
lateral sides: two lateral sides pass q continuous octagons centers; two horizontal sides
pass p pairs squares and octagons centers. In order to form S-type toroidal 4–8 lattice:
first identify two lateral sides of P to form a tube, then identify the top side of the tube
with its bottom side after rotating it through t pairs squares and octagons. Conveniently
we denote S-type toroidal 4–8 lattice by TS(p, q, t).

In TS(p, q, t), all the vertices of it can be covered by squares. If the segment joining
centers of two squares parallels horizontal side of P , we call the two squares are in
the same row; If the segment joining centers of two squares parallels lateral side
of P , we call the two squares are in the same column. From left to right denote all
columns by L0, L1, · · · , L p−1. From down up, denote all rows by R0, R1, · · · , Rq−1.
Thus we denote the square by i j which locates the intersection of Li and R j , where
i ∈ Zp := {0, 1, · · · , p − 1} and j ∈ Zq := {0, 1, · · · , q − 1}. From the left-upper
vertex of square i j anticlockwise, denote the four vertices of it by ai j , bi j , ci j and di j ,
respectively. See Fig. 5.

We denote path di0bi1ci1di1bi2ci2di2 · · · bi,q−1ci,q−1di,q−1bi0ci0 by Ii (0 ≤ i ≤
p − 1). The vertices di0 and ci0 are called the head and tail of Ii , respectively. For Ii
and I j , if the head of I j is adjacent to the tail of Ii , we say I j is the successor of Ii .
The successor of Ii is Ii+(p−t) in TS(p, q, t).

And denote path di0ai0ci−1,1di−1,1ai−1,1ci−2,2di−2,2ai−2,2 · · · ci−(q−1),q−1
di−(q−1),q−1ai−(q−1),q−1ci−q,0 by II i (0 ≤ i ≤ p − 1). The vertices di0 and ci−q,0
are called the head and tail of II i , respectively. For II i and II j , if the head of II j
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Fig. 5 TS(6, 3, 1) and the label of vertex

is adjacent to the tail of II i , we say II j is the successor of II i . The successor of
II i is II i+(p−q−t) in TS(p, q, t).

Lemma 4.4 Let T ′ be the graph obtained from TS(p, q, t) by deleting A = {ai j |
0 ≤ i ≤ p − 1 and 0 ≤ j ≤ q − 1}. Then the number of cycles in T ′ is d = (t, p).

Lemma 4.5 Let d = (t, p). For Ii (0 ≤ i ≤ p − 1) of TS(p, q, t), any d consecutive
paths are on d different cycles.

The proof of Lemmas 4.4 and 4.5 is the same as Lemmas 4.1 and 4.2 respectively.

Lemma 4.6 Let T0 be the graph obtained from TS(p, q, t) by deleting B = {bi j | 0 ≤
i ≤ p − 1 and 0 ≤ j ≤ q − 1}. Then the number of cycles in T0 is d = (p, t + q).

Proof Obviously T0 is the induced graph of p paths II0, II1, . . . , II p−1. For
any cycle C in T0, suppose that C contains g paths: II i , II i+(p−q−t), . . . ,

II i+(g−1)(p−q−t), where II i+g(p−q−t) coincides with II i . So we have

i + g(p − q − t) − i ≡ 0 (mod p) → g(q + t) ≡ 0 (mod p).

That is, the number of column thatC contains is theminimum integer g which satisfies
formula g(q + t) ≡ 0 (mod p). For g(q + t) ≡ 0 (mod p), there exists integer λ

such that g(q + t) = λp.
In the following, we prove that (g, λ) = 1. Suppose, to the contrary, that (g, λ) =

d1 > 1. Let g = d1 f1, λ = λ1d1 and (g1, d1) = 1. Put g = d1 f1 and λ = λ1d1 into
g(q + t) = λp and obtain g1(q + t) = λ1 p, which contradicts the minimality of g.
Hence (g, λ) = 1.

Since d = (t + q, p), assume that t + q = t1d, p = dp1 and (t1, p1) = 1. Put
t +q = t1d and p = dp1 into g(q+ t) = λp, we obtain gt1 = λp1. We claim g = p1.
Suppose, to the contrary, that g �= p1, then assume g = lp1.

Case 1. l is fraction. Let l = n
m (m > 1 and mn are integer and (m, n) = 1).

Put g = lp1 into gt1 = λp1, we have λ = lt1. Since (m, n) = 1, g = lp1 = n
m p1,

λ = lt1 = n
m t1 and g, λ are both integer, we know that m is the common divisor of p1

and t1, which contradicts that (p1, t1) = 1.
Case 2. l is integer (l > 1). Similarly, put g = lp1 into gt1 = λp1 and obtain

λ = lt1. By g = lp1 and λ = lt1, we know that l is common divisor of g and λ, which
contradicts (g, λ) = 1.
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By Cases 1 and 2, we obtain g = p1. By the arbitrariness of cycle C , we have the
number of cycles in T0 is

p
g = p

p1
= d = (p, t + q). ��

Lemma 4.7 Let d = (p, t + q). For II i (0 ≤ i ≤ p − 1) of TS(p, q, t), any d
consecutive paths are on d different cycles.

Proof We investigate d consecutive paths: II i , II i+1, . . . , II i+(d−1). By contrary,
suppose that II j and IIk are on the same cycle (i ≤ j < k ≤ i + d − 1), then there
exists ν such that j + ν(p− q − t) ≡ k (mod p), that is, k − j ≡ −ν(q + t) (mod p).
Thus there is some integer μ such that k − j = μp − ν(q + t). In what follows, we
prove that it is impossible. By d = (p, t + q), we assume that t + q = t1d, p = p1d
and (t1, p1) = 1. Put t + q = dt1 and p = p1d into k − j = μp − ν(q + t), we
have k − j = (μp1 − νt1)d. Since 1 ≤ k − j ≤ d − 1 < d, then there does not exist
integers ν, p1, μ, t , such that (μp1 − νt1)d = k − j . Therefore, II j and IIk are on
different cycles. By the arbitrariness of j and k, we obtain the conclusion. ��
Lemma 4.8 For p > 1 and q > 1, F(TS(p, q, t)) ≤ pq.

Proof We select an independent set A0 such that TS(p, q, t) − A0 has no alternating
cycle about some perfect matching of TS(p, q, t). Conveniently, let A = {ai j | 0 ≤
i ≤ p − 1 and 0 ≤ j ≤ q − 1}.

Case 1. d = (p, t) = 1.
Let A0 = A. We know that all Ii (0 ≤ i ≤ p − 1) construct the unique cycle C

in TS(p, q, t) − A0. However, in TS(p, q, t) − C there are only isolated vertices ai j
(1 ≤ i ≤ p − 1 and 1 ≤ j ≤ q − 1). Hence there does not exist alternating cycle
about some perfect matching of TS(p, q, t).

Case 2. d = (p, t) > 1.
Let M be any perfect matching of TS(p, q, t). In TS(p, q, t)− A, let Ii be on cycle

Ci (0 ≤ i ≤ p − 1). For any two adjacent cycles, without loss of generality, suppose
they are C0 and C1, it is impossible that they are both M-alternating cycles. Since if
not, there is no edge of M to cover vertex a10. If C0 is not M-alternating, we set

A1 = {bi1| 1 ≤ i ≤ d − 1}.

For any square of the rest which do not contain vertices in A1, select ai j and they
constitute A2. Let A0 = A1 ∪ A2. In TR(p, q, t) − A0, there is unique cycle C0 and
there does not exist M-alternating cycle. If C1 is not M-alternating cycle, let

A′
1 = {bi1| 2 ≤ i ≤ d}.

For any square of the rest which do not contain vertices in A′
1, select ai j and they

constitute A′
2. Let A0 = A′

1 ∪ A′
2. In TR(p, q, t) − A0, there is unique cycle C1 and

there does not exist M-alternating cycle.
Combining Cases 1, 2 and Lemma 2.2, we can obtain that F(TS(p, q, t)) ≤ pq. ��
For convenience, we call the cycles generated by Ii (resp. II i ) (0 ≤ i ≤ p − 1)

I-type (resp. II-type).
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Fig. 6 Illustration the proof of the case d1 > d2 by TS(6, 1, 3)

1 2 3 4 5 6 70 111098
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Fig. 7 Illustration the proof of the case d2 > d1 by TS(12, 1, 3)

Lemma 4.9 For q = 1, F(TS(p, q, t)) ≤ p.

Proof Suppose that the number of I-type cycles is d1 = (p, t) and the number of
II-type cycles is d2 = (p, t + 1) by Lemmas 4.4 and 4.6. Obviously d1 �= d2.

If d1 > d2 (see Fig. 6), let A1 = {a00, b00, a10, b10, . . . , ad1−1,0, bd1−1,0}. Let L1
be the set of paths which are all successors of I0, I1, . . . , Id1−1. Let

A2 = {ai0| Ii /∈ L1 and d1 ≤ i ≤ p − 1}.

Let A = A1 ∪ A2. In TS(p, 1, t) − A, all I-type cycles and II-type cycles are
destroyed. There are no alternating cycles about some perfect matching of TS(p, 1, t).

If d2 > d1 (see Fig. 7), let A′
1 = {a00, bp−1,0, a10, b00, a20, b10, . . . , ad2−1,0,

bd2−2,0}. Let L2 be the set of paths which are all ancestors of II0, II1, . . . , IId2−1.
Let

A′
2 = {bi0| II i /∈ L2 and d2 ≤ i ≤ p − 1}.

Let A = A′
1 ∪ A′

2. In TS(p, 1, t) − A, all I-type cycles and II-type cycles are
destroyed. There is no alternating cycles about some perfect matching of TS(p, 1, t).

Summing up, we obtain F(TS(p, 1, t)) ≤ |A| = p by Lemma 2.2. ��
Lemma 4.10 If p = 1, F(TS(1, q, 0)) ≤ q.

Proof Let A0 = {d00, a01, . . . , a0,q−1}, see Fig. 8. In TS(1, q, 0) − A0, there is no
cycles. By Lemma 2.2, we know F(TS(1, q, 0)) ≤ |A0| = q. ��

By Lemmas 4.8, 4.9 and 4.10, we can obtain the following Theorem.

Theorem 4.11 F(TS(p, q, t)) = pq.

Proof For TS(p, q, t), we can always find perfect matching M0 such that
f (TS(p, q, t), M0) ≥ pq: the edges in M0 result that every square in TS(p, q, t)
is M0-alternating.

Combining Lemmas 4.8, 4.9 and 4.10, we have F(TS(p, q, t)) = pq. ��
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Fig. 8 Illustration the proof of
Lemma 4.10 by TS(1, 6, 0)
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Fig. 9 KR(6, 2, 3) and the label of vertex

5 The maximum forcing number of Klein bottle 4–8 lattice

Let Q be defined as Sect. 4. 1. A Klein bottle 4–8 lattice KR(p, q, t) is generated from
Q by the following boundary identification: first identify two vertical sides along the
same direction, then identify the bottom side to the top side along the reverse directions
with a torsion t . In KR(p, q, t), all the vertices can be covered by squares, see Fig. 9.
Similarly, we define all the vertices and paths l0, l1, · · · , l p−1 of KR(p, q, t) as them
in TR(p, q, t). For 0 ≤ i ≤ t , li and lt−i form a cycle. For t + 1 ≤ i ≤ p − 1, li and
l p+t−i form a cycle.

Theorem 5.1 F(KR(p, q, t)) = pq.

Proof First we prove that F(KR(p, q, t)) ≤ pq. Let M be any perfect matching of
KR(p, q, t).

Case 1. t ≥ 1.

Let A1 = {bi,0| 1 ≤ i ≤ p − 1}. For any square of the rest which do not contain
vertices of A1, we select ai j and they constitute A2. Let A = A1 ∪ A2. In KR − A,
there is no M-alternating cycle.
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Fig. 10 KS(6, 2, 2) and the label of vertex

Case 2. t = 0.

Let l0 and l1 be on cycles C0 and C1, respectively. Then C0 and C1 are not both
M-alternating cycle, otherwise, there is isolated vertex. If C0 is not M-alternating, let

A1 = {bi,0| 1 ≤ i ≤ p − 1}.

For any square of the rest which do not contain vertices of A1, we select ai j and they
constitute A2. Let A = A1 ∪ A2. If C1 is not M-alternating, let

A′
1 = {bi,0| 2 ≤ i ≤ p − 1 or i = 0}.

For any square of the rest which do not contain vertices of A′
1, we select ai j and they

constitute A′
2. Let A = A′

1 ∪ A′
2. In KR(p, q, t) − A, there is no M-alternating cycle.

By Cases 1, 2 and Lemma 2.2, we know F(KR(p, q, t)) ≤ pq.
On the other hand, let M0 be a perfect matching of KR(p, q, t) such that each

square is M0-alternating cycle, by Lemma 2.1, f (KR(p, q, t), M0) ≥ pq.
Summing up, we obtain F(KR(p, q, t)) = pq. ��

AS-typeKlein bottle 4–8 lattice KS(p, q, t) is generated from P (defined as Sect. 4.
2) by the following boundary identification: first identify two lateral sides along the
same direction and then identify the two horizontal sides along the reverse directions
with a torsion t , see Fig. 10. Similarly, we define all the vertices as them in TS(p, q, t).

We denote path di0bi1ci1di1bi2ci2di2 · · · bi,q−1ci,q−1di,q−1bi0 by Li (0 ≤ i ≤
p − 1). For 0 ≤ i ≤ t , Li and Lt−i form a cycle. For t + 1 ≤ i ≤ p − 1, Li and
Lp+t−i form a cycle.

Denote path ai0ci−1,1di−1,1ai−1,1ci−2,2di−2,2ai−2,2 · · · ci−(q−1),q−1di−(q−1),q−1
ai−(q−1),q−1ci−q,0 by L′

i (0 ≤ i ≤ p − 1). For 0 ≤ i ≤ p − 1, L′
i and L′−i−q+t

form a cycle.
In KS(p, 1, t), there is always multiple edge, and in this paper, we consider simple

graph. Here we only investigate the case q > 1 for KS(p, q, t).

Theorem 5.2 For q > 1, F(KS(p, q, t)) = pq.

Proof First we prove F(KS(p, q, t)) ≤ pq. Let M be any perfect matching of
KS(p, q, t).
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Case 1. t ≥ 1.

Let A1 = {bi,1| 1 ≤ i ≤ p−1}. For other squares which does not contain vertex of
A1, we select vertex ai j and they constitute A2. Let A = A1 ∪ A2. In KS(p, q, t)− A,
there is no cycles.

Case 2. t = 0.

LetL0 andL1 be on cyclesC1 andC ′
1. CyclesC1 andC ′

1 are not bothM-alternating
cycles. If C1 is not M-alternating cycle, let

A1 = {bi,1| 1 ≤ i ≤ p − 1}.

For other squares which does not contain vertex of A1, we select vertex ai j and they
constitute set A2. Let A = A1 ∪ A2. If C ′

1 is not M-alternating, let

A′
1 = {bi,1| 2 ≤ i ≤ p − 1 or i = 0}.

For other squares which do not contain vertex of A′
1, we select vertex ai j and they

constitute A′
2. Let A = A′

1 ∪ A′
2. In KS(p, q, t) − A, there is no cycles.

By Cases 1, 2 and Lemma 2.2, we know F(KS(p, q, t)) ≤ pq.
On the other hand, letM0 be a perfect matching of KS(p, q, t) such that each square

is M0-alternating cycle, by Lemma 2.1, f (KS(p, q, t), M0) ≥ pq. Hence we obtain
F(KS(p, q, t)) = pq. ��
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14. M. Randić, D. Vukičević, Kekulé structures of fullerene C70. Croat. Chem. Acta 79, 471–481 (2006)

123



32 J Math Chem (2016) 54:18–32

15. M. Riddle, The minimum forcing number for the torus and hypercube. Discrete Math. 245, 283–292
(2002)

16. H. Wang, D. Ye, H. Zhang, The forcing number of toroidal polyhexes. J. Math. Chem. 43, 457–475
(2008)

17. L. Xu, H. Bian, F. Zhang, Maximum forcing number of hexagonal systems. MATCH Commun. Math.
Comput. Chem. 70, 493–500 (2013)

18. F. Zhang, X. Li, Foricng bonds of a benzenoid system. Acta Math. Appl. Sin 12(2), 209–215 (1996).
(English series)

19. F. Zhang, X. Li, Hexagonal systems with forcing edges. Discrete Math. 140, 253–263 (1995)
20. F. Zhang, H. Zhang, A new enumeration method for Kekulé structures of hexagonal systems with

forcing edges. J. Mol. Struct. (Theochem) 331, 255–260 (1995)
21. H. Zhang, X. Jiang, Continuous forcing spectrum of even polygonal chain. Acta Math. Appl. Sinica

(English series) (accepted)
22. H. Zhang, D. Ye, W. Shiu, Forcing matching numbers of fullerene graphs. Discrete Appl. Math. 158,

573–582 (2010)
23. H. Zhang, K. Deng, Spectrum of matching forcing numbers of a hexagonal system with a forcing edge.

MATCH Commun. Math. Comput. Chem. 73, 457–471 (2015)
24. H. Zhang, S. Zhao, R. Lin, The forcing polynomial of catacondensed hexagonal system. MATCH

Commun. Math. Comput. Chem. 73, 473–490 (2015)

123


	The maximum forcing number of cylindrical grid, toroidal 4--8 lattice and Klein bottle 4--8 lattice
	Abstract
	1 Introduction
	2 Preliminary
	3 The maximum forcing number of P2mtimesC2n+1
	4 The maximum forcing number of toroidal 4--8 lattice
	4.1 R-type toroidal 4--8 lattice TR(p,q,t)
	4.2 S-type toroidal 4--8 lattice TS(p,q,t)

	5 The maximum forcing number of Klein bottle 4--8 lattice
	References




