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Abstract Several characteristic features of the least squares method when solving the
quantum QSPR fundamental equation are discussed.
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1 The QQSPR fundamental equation involving a QMP and a collection
of different properties

The quantum QSPR (QQSPR) fundamental equation can be deduced from the col-
lective distances [1-3], which can be defined by taking into account the geometrical
structure of any QMP [4], which is nothing else that a geometrical picture associated
to the DF tag set, forming a quantum object set [5].

The general QQSPR form of the fundamental equation can be written as [4]:

VI =1, Mg :JTI%ZCUPAPI, (D
P

where M is the number of molecules involved belonging to a QMP and possessing
known values of some property 7, which can be supposed that are collected in the

B Ramon Carbé-Dorca
ramoncarbodorca@ gmail.com

Institut de Quimica Computacional i Catalisi, Universitat de Girona, 17071 Girona, Catalonia,
Spain

Departamento de Quimica, Universidad Técnica Particular de Loja, 1101608 Loja, Ecuador

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10910-015-0521-7&domain=pdf

1652 J Math Chem (2015) 53:1651-1656

set IT = {m; |I = 1, Mg }. On the QQSPR equation right side the set of coefficients
O ={wp|P =0,2,3, ...} might be determined to an arbitrary order. Finally, the set of
matrix elements A = {Ap; |P =0,2,3, ... AI =1, Mg } correspond to the Pth order
element of the collective QMP condensed index associated to the /th molecule [3].

The collective QMP condensed indices can be obtained from the expression of the
Pth order QMP collective moment, related to QMP collective distances [6,7], which
can be basically constructed with the origin shifted DF set, see for example reference
[8], expression:

VPiup =MD (o1 = pc)” )
L

where pc, the QMP centroid, is simply defined as the arithmetic mean [8]:
pc=M"" Z OL-
L

Note that the total number of QMP DF vertices: M, might be different from those
which possess a known property attached, Mx. In fact, the total number of QMP
vertices M = Mg + My, can be split into those Mg with known property attached
and those My with unknown property values.

Condensing expression (2) corresponds to obtain the integral of the DF moment
[2,3]:

VP {up) =M™ Z<(,0L - pc)P>
L

and then it can be written:
VP L=1,M: Ap = ((or = pO)").
It can be also easily shown [4] that solving Eq. (1) to obtain the coefficients in the
set: O, becomes equivalent to describe some QQSPR operator €2, which generally
speaking can fulfill:
VL=1,M:(QpL) =mp,

supposedly known the DFsetP = {p; |L = 1, M }, associated to the QMP DF vertices.
This quantum mechanical expectation value expression above will also hold, whenever

the QQSPR operator can be written as a linear combination of a set of Hermitian
operators:

Q Za)pﬂp;
J3

where, besides the elements of the coefficient set O, it must be taken into account that:

Qo=1IrA21 =0
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and
VP =0,2,3.AL=1,M: (QP,OL) = Apr.

In order to solve Eq. (1) one can set up an equivalent matrix equation, which can be
written with the same form, but using only the Mg elements of the condensed QMP
collective indices, associated to known properties:

Alw) = |x) (3)

where it has been used the formerly defined matrix A, the column vectors collecting
the QQSPR operator coefficients: |[w) = {wp} and the set known property values:
|m) = {1 =1, Mk }.
Equation (3) can be solved via a least squares procedure, which provides the inter-
mediate equation:
ATAw) =AT |n), 4)

obtained by multiplying Eq. (1) on the left by the transpose matrix: A”. The well-
known optimal result for the coefficients of the QQSPR operator might be easily
obtained via:

~1
lw) = (ATA) AT |n). 5)
2 General QQSPR equation
Equation (3) and the least squares optimal solution (5) can be easily generalized when,
instead of the property column vector |1t), a set of properties is known in form of a

matrix, whose columns are vectors corresponding to the set of Q different properties,
that is:

I ={ng)[R=1, 0}
Therefore, the coefficient vector |w) associated to the QQSPR operator might be
transformed into a matrix, whose columns correspond to a QQSPR operator adequate
to every property considered:

W={lwg)IR=1,0}.
Within this general formalism, Eq. (3) becomes:

AW =11 (6)

and the corresponding optimal solution in the least squares sense will be converted

into: |
W= (ATA)7 AT %)
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3 Estimating unknown property values and the nature of the optimal
least squares solution of the QQSPR equation

Equation (7) can be used in Eq. (6) in order to obtain unknown properties for some of

QMP DF vertices, which have not been attached to any known property, and then it
can be written:

~1
AgW ~ Ty — Ay (A,T<AK) ATTg ~ M. ®)
This result corresponds to an expression, which indicates that the unknown estimated

property values just become the result of transforming, via a matrix operator, the known
ones. To see how this statement can hold, it is sufficient to construct the matrix:

-1
Tux = Auv (AkAx) Ak ©)
then, it is straightforward to write:
Tyx g = My;
therefore, the matrix (9) corresponds to the matrix expression of some operator, which

is able to transform vectors belonging to the known property values set into vectors
which belong to the unknown property values set.

4 Accuracy of the least squares solution of the QQSPR fundamental
equation

When it is used the same matrix Ag into Eq. (6) instead of Ay, then expression (8)
can be rewritten as:

-1
AxW ~ g — Ag (A,@AK) AT T ~ Te
and thus, whenever it can be written:
Oy ~ M, (10)
also it can be obtained:
—1 —1
Ak (AQAK) AT, — I ~ 0 — (AK (AﬁAK) AL — 1) Mg ~ 0.

Taking into account that the original property matrix is not null by construction, so:
ITx # 0, then it can be also considered that necessarily:

Ax (AQAK)_1 AL —1~0 - Ag (A,T(AK)_I AT ~ T Tyg ~ L

@ Springer



J Math Chem (2015) 53:1651-1656 1655

Then it can be easily deduced that the accuracy of the calculation, represented by the
Eq. (10), and which has to be associated to the endomorphism:

_ yycalc
Trx Mg = O,

has to be obviously associated to the nearness of the endomorphism Tgx to the unit
matrix. This will be exactly fulfilled when the matrix Ag becomes non-singular, and
thus it might be written:

(A,T(AK)_I =AY (Ai)_1 - Txx =L (11)

In this case, because Eq. (11) holds, then Eq. (7) can be written in a simplified form
as:

W= AT,
therefore Eq. (8) can be also simplified in this circumstance to:
AyW ~ Iy — ApA' g ~ My
and the transformation operator (9) now could be written simply as:

Tyx = AUA[_<1.

5 Conclusions

Constructing a QMP, where some DF vertices might be also associated to a set of
property values, an approximate set of operators can be obtained. This can be done
just constructing the QQSPR fundamental equation and solving it via a general least
squares technique. The QQSPR operators can be employed afterwards to evaluate the
properties of the remnant QMP DF vertices possessing unknown property values.

In setting up and solving in this way the problem, one has several points to note,
which can be found among the characteristics of QQSPR fundamental equation results

[4]:

1. Nothing opposes to the fact that a general QQSPR equation might be built using
known molecular property values attached to some QMP DF vertices. Its solution
permitting to obtain a set of Hermitian operators, which can be further used to
estimate values of molecular properties, unknown in other molecular structures
forming the QMP.

2. This previous fact corresponds to establishing a causal relationship between QMP
structures and aromaticity descriptors [9].

3. The basis of this relationship is based into quantum mechanical theoretical grounds.

Whenever Eq. (6) can be solved yielding results of the recomputed properties
within reasonable error limits, and the expression (7) defining the QQSPR operators
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is reachable, then one can be confident that there has been obtained a global theoret-
ical expression, which permits to estimate unknown values of molecular properties,
constructed within the quantum mechanical limits of the theory.
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