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Abstract Using the model of cyclic polyenes CN HN with a nondegenerate ground
state, N = 4ν + 2 (ν = 1, 2, . . .), as a prototype of extended linear metallic-like
systems we explore the cluster structure of the relevant wave functions. Based on the
existing configuration interaction and coupled cluster (CC) results, as obtained with
the Hubbard and Pariser–Parr–Pople Hamiltonians in the entire range of the coupling
constant extending from the uncorrelated Hückel limit to the fully correlated limit, we
recall the breakdown of the CCD or CCSD methods as the size of the system increases
and the strongly correlated regime is approached. We introduce the concept of the
indecomposable quadruply-excited clusters which arise for ν > 1 and represent those
connected quadruples that do not possess any corresponding disconnected cluster
component. It is shown via explicit enumeration that the ratio of the number of these
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indecomposables relative to that of the decomposables depends linearly on the size of
the polyene N , so that the limit of the ratio of the number of indecomposables relative
to the total number of quadruples approaches unity as N → ∞. We then briefly outline
the implications of these results for the applicability of CC approaches to extended
systems and provide a qualitative argument for an even more extreme behavior of
hexa-excited, octa-excited, etc., clusters as N → ∞.

Keywords Linear chain models · Cyclic polyenes · Coupled cluster approach
(CCA) · Cluster analysis · Decomposable and indecomposable connected quadruples ·
CCA to extended linear fermionic chains

Mathematics Subject Classification 81Q05 · 81Q80 · 81V55 · 81V70 · 92E10

1 Introduction

Quantum chemical methods that are based on the coupled cluster (CC) Ansatz for the
wave function represent nowadays often used, highly accurate and reliable approaches
to the electronic structure of molecular systems (see, e.g., [1–7]; for a historical
overview, see [8,9]). This is particularly the case for closed-shell (CS), non-degenerate
ground states where the single reference (SR) CC methods have been successfully
applied, even though much progress was also made in handling of quasi-degenerate
and open-shell (OS) systems, including excited states, by relying on multi-reference
(MR) CC approaches (see, e.g., [10]). Nonetheless, the exploitation of CC Ansätze
for quasi-degenerate or highly-degenerate states is far from being settled.

The correlation problem is particularly challenging for one-dimensional (1D)
extended systems, such as found in metallic-like linear chains. The restriction to
one dimension was initially employed for the sake of simplicity, as in the case of
the pioneering work of Bethe [11] on the Heisenberg model [12] of a linear chain of
spin- 1

2 particles, which introduced what is nowadays referred to as the Bethe Ansatz.
Seven years later this effort was extended by Hulthén [13], who considered the ground
state of an antiferromagnetic case of the Heisenberg model, while relying on Bethe’s
Ansatz. However, this Ansatz (also referred to as the Bethe-Hulthén scheme; for a nice
brief overview of these developments see, e.g., [14]) was not revived until a quarter
of a century later for the 1D model of interacting spinless bosons [15] and five years
later for the fermionic case, where one has to account for the spin-degree of freedom,
requiring a generalization to the nested Bethe Ansatz [16]. The latter was also crucial
for the handling of the Hubbard lattice model of electrons with short-range on-site
interaction via Lieb–Wu equations [17,18]. The 1D fermionic problem then led to
a formulation of the Yang–Baxter equations [16,19], which opened the way to the
wealth of applications in statistical mechanics and solid-state physics, ranging from
superconductivity and neutron scattering to quantum entanglement, quantum field the-
ory, as well as to the introduction of quantum groups and string theory. Very recently
it is also providing a testing ground for a realization of various models for the trapping
of atoms in optical lattices [20]. There exists nowadays a very rich literature on these
topics, including various review papers [14,21] and monographs (see, e.g., [22–30]).
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An excellent model example of such 1D extended systems is provided by the so-
called cyclic polyenes CN HN , N = 2n = 4ν + 2, ν = 1, 2, 3, . . ., when ν → ∞.
These systems have a nondegenerate CS ground state and may also be regarded as
linear metals with Born-von Kármán cyclic boundary conditions. When described
by semi-empirical Hamiltonians, such as the Hubbard or Pariser–Parr–Pople (PPP)
Hamiltonian, one can in fact vary the degree of quasi-degeneracy by varying the cou-
pling constant via the scaling of the resonance (or hopping) integral β characterizing
its one-electron component (see below). In this way we can achieve a continuous
transition from a non-degenerate, uncorrelated case (β → ∞) to a degenerate, com-
pletely correlated state (β = 0). Moreover, when relying on the Hubbard Hamiltonian,
the geometry of these systems is irrelevant. Another great advantage of the Hubbard
Hamiltonian description is the possibility to compare the CC energies with the exact
ones obtained by solving the pertinent Lieb-Wu equations [31,32] (see also the Appen-
dix to [33]). Unfortunately, the corresponding wave functions that are based on the
Bethe Ansatz are not easily accessible to analysis. Yet, the dependence of the Hubbard
correlation energies on the coupling constant is qualitatively the same as that obtained
with the more realistic PPP Hamiltonian. For these reasons the cyclic polyene model
was widely studied using various approaches accounting for the correlation effects
(see, e.g., [34–42] and references therein).

The SR CC approaches—even when truncated to only doubles (i.e., CCD, which is
in this case equivalent to CCSD)—work reasonably well for small finite polyenes away
from the fully correlated limit (i.e., for small coupling constants or large β values),
while their performance rapidly deteriorates when approaching the fully correlated
limit. For example, for the PPP model of the smallest N = 6 polyene (i.e., the benzene
molecule) the error in the CCD energy1 for the spectroscopic value of the resonance
integral (β ≈ −2.4 eV) amounts only to about 3 %, yet it rapidly increases to about
80 % in the fully correlated limit (β = 0). For the next N = 10 polyene, this error
at β = 0 amounts already to about 1,000 % and for the N = 14 ring CCD breaks
down completely at about β ≈ −1.75 eV (−1.37 eV for the Hubbard model) before
reaching the fully correlated limit [34]. Extending CCD to CCDTQ (≡ CCSDTQ)
helps to some extent, yet the same difficulties as found with CCD remain and are only
shifted to larger cycles or larger coupling constants [43].

As is well known, the main reason for the success of the SR CC methods is the fact
that for non-degenerate systems the quadruply-excited configurations are reasonably
well approximated by their disconnected components given by the products of corre-
sponding pair clusters. In the language of the CC formalism, the exact wave function
is represented in the exponential form, |�〉 = exp(T )|�〉, with |�〉 representing an
independent particle model (IPM) wave function, most often realized by a Hartree-
Fock (HF) wave function. The cluster operator T is then given by the sum of one-,
two-, three-, etc., up to the N -body components, T = ∑N

i=1 Ti , so that, symbolically,
we can describe the above mentioned property as T4 � 1

2 T 2
2 . Nonetheless, the impor-

1 Note that in view of the high symmetry of cyclic polyenes all singly-excited clusters vanish so that CCD
is equivalent with CCSD.
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tance of connected quadruply-excited amplitudes constituting T4 increases with the
increasing quasi-degeneracy.

Now, already for the N = 10 polyene we find an interesting phenomenon, namely
the existence of connected quadruples that have no corresponding disconnected coun-
terpart, as first pointed out in the context of the cluster analysis of its full configuration
interaction (FCI) wave function [44]. We shall refer to such quadruples as indecom-
posable ones in order to distinguish them from their decomposable counterparts that
possess the corresponding disconnected quadruply-excited component given by the
product of relevant pair clusters. We shall see that this phenomenon arises thanks to a
high symmetry of our models and cannot arise in asymmetric systems.

In view of the fact that cyclic polyenes may be regarded as a model of linear metals,
it is of interest to explore the relative importance of indecomposable and decomposable
clusters, particularly in the N → ∞ limit, as manifested by the trend in their relative
occurrences. For example, designating the number of quadruples for the N = 4ν + 2
polyene by Q(N ) and, similarly, the number of decomposable and indecomposable
quadruples by Qdec(N ) and Qindec(N ), respectively, it would be of interest to find
out how these quantities depend on the size of the polyene N and, in particular, to
determine the limits like

lim
N→∞

Qindec(N )

Q(N )
or lim

N→∞
Qindec(N )

Qdec(N )
. (1)

This information should help us to better understand the cluster structure of the cor-
responding wave functions and enable us to assess the capability of CC approaches
to describe this type of systems. For large values of N we can also expect the impor-
tance of higher than quadruples and a similar behavior of their decomposable and
indecomposable components.

2 Basic notation

Unlike the ab initio approaches that rely on nonorthogonal atomic orbitals (AOs)
to define a truncated finite-dimensional Hilbert space employed, the semi-empirical
approaches utilize a minimum basis set of hypothetical orthonormal AOs. We can thus
employ the standard second quantization formalism associated with these basis sets as
in the case of molecular orbitals (MOs) given as linear combinations of AOs. We shall
label AOs by lower case Greek letters, e.g., |μ〉, |ν〉, etc., and MOs by the lower case
letters of the Latin alphabet, e.g., |a〉, |b〉, etc., designating generic MOs by |i〉, | j〉,
etc. The corresponding spin-orbitals, given by a simple product of an orbital and a spin
function |σ 〉, σ = ± 1

2 , will then be designated by the corresponding capitals, e.g.,
|M〉 = |μ〉|σ 〉 or |A〉 = |a〉|σ 〉. The corresponding creation and annihilation operators
are then designated as X†

A ≡ X†
aσ and X A ≡ Xaσ , respectively. We also define the

orbital unitary group, U(N ), generators Ei j as (see, e.g., [45,46])

Ei j =
∑

σ

X†
iσ X jσ , (2)
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so that we can express the relevant spin-independent electronic Hamiltonian involving
at most two-body interactions

H =
∑

i

zi +
∑

i< j

vi j , (3)

in the following second-quantized form

H =
∑

i, j

〈i |z| j〉
∑

σ

X†
iσ X jσ + 1

2

∑

i, j,k,l

〈i j |v|kl〉
∑

σ,τ

X†
iσ X†

jτ Xlτ Xkσ

=
∑

i, j

〈i |z| j〉Ei j + 1

2

∑

i, j,k,l

〈i j |v|kl〉 (
Eik E jl − δ jk Eil

)
, (4)

with i, j, k, l representing either the effective, hypothetical AOs μ, ν, etc., or MOs
a, b, c, etc., either set being orthonormal.

3 Semiempirical π -eletron Hamiltonians

The π -eletron systems can be conveniently described by the semi-empirical Hamil-
tonian Hπ of the PPP type (see, e.g., Sec. VI of [45])

Hπ =
∑

μ,ν

zμν Eμν + 1

2

∑

μ,ν

γμν

(
EμμEνν − δμν Eμν

)
, (5)

with indices μ, ν = 1, 2, . . . , N labeling the atomic sites and the AO unitary group
generators Eμν defined as in Eq. (2). Like any π -electron semi-empirical Hamiltonian,
it is defined directly by specifying the one- and two-electron parameters zμν and γμν ,
respectively, rather than by selecting some actual spin orbital basis set as is the case of
ab initio model Hamiltonians. For the two-center Coulomb-type two-electron integrals
one invokes the zero differential overlap approximation [47], so that only the Coulomb-
type integrals γμν ≡ 〈μ(1)ν(2)|r−1

12 |μ(1)ν(2)〉 are required.
The diagonal one-electron parameters zμμ are approximated by relying on the

Goeppert-Mayer and Sklar approximation (see, e.g., [47])

zμμ = αμ −
∑

ν 
=μ

Zνγμν, (6)

where αμ is the so-called Coulomb integral (usually approximated by the valence
state ionization potential) and Zμ designates the number of π -electrons contributed
by the μ-th atomic site. For the one-electron off-diagonal parameters zμν (μ 
= ν) one
invokes the tight-binding approximation, so that in view of the DNh (or simply CN )
point group symmetry of our models (see Sec. 4 below) we can write

zμ,μ±1 = β and zμν = 0 otherwise, (7)

with all indices taken modulo N .
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When we include the internuclear repulsion term
∑

μ<ν ZμZνγμν , we can thus
rewrite the Hamiltonian (5) as follows

Hπ =
∑

μ

αμ +
∑

μν

′
βEμν +

∑

μ<ν

γμν

(
Eμμ − Zμ

)
(Eνν − Zν)

+1

2

∑

μ

γμμEμμ

(
Eμμ − 1

)
, (8)

where the prime on the second summation symbol implies the sum over nearest neigh-
bors only. For cyclic polyenes each atomic site contributes only one electron (Zμ = 1)

and all one-center Coulomb integrals are equivalent, so that

αμ = α1 = 0 and γμμ = γ11, (9)

with α1 = 0 defining the origin of the energy scale. Thus, finally, for the case of cyclic
polyenes we can write the Hamiltonian (5) or (8) in a simple form (see, e.g., Eq. (6.19)
of [45])

Hπ = β
∑

μ

(
Eμ,μ+1 + E†

μ,μ+1

)
+ 1

2

∑

μ,ν

γμν(nμ − 1)(nν − 1), (10)

where we designated the μth site occupation number operator by nμ ≡ Eμμ.
The one-electron part of Hπ is thus proportional to the resonance integral β whose

reciprocal value can be viewed as a coupling constant, so that by varying β from zero
to large negative values (in practice −5 or −10 eV) we can explore the whole range
of the correlation effects from the fully or strongly correlated limit to the weakly or
uncorrelated limit, respectively. We note that the strongly or fully correlated limit
(β → 0) corresponds to the strong coupling or a low density regime (rs → ∞) in the
parlance of the electron-gas model and, similarly, the weakly correlated limit (|β| →
∞) corresponds to the high-density limit (rs → 0). The physical (spectroscopic)
value of β for the standard Coulomb integral approximations amounts to about −2.4
or −2.5 eV.

Various approximations are used for the two-electron Coulomb repulsion parame-
ters γμν , the most common one for the PPP Hamiltonian being the Mataga–Nishimoto
parametrization [48], i.e., a modified point charge approximation

γμν = e2/(Rμν + c), c = e2/γ00, (11)

with one center integral γ00 ≡ γμμ given by the so-called I –A approximation [47] (for
the PPP Hamiltonian γ00 = 10.84 eV) and Rμν designating the internuclear separation
between the atomic sites μ and ν (with the nearest neighbor site separation taken as
1.4 Å). The geometry of the model implies that γμν = γμ+κ,ν+κ = γ0,μ−ν .

In the Hubbard Hamiltonian only the on-site interactions are allowed, so that γμν =
γ δμν , with γ = 5 eV, roughly corresponding to the difference (γ00 − γ01) in the
PPP model [49]. In solid state texts the resonance integral β is referred to as the
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hopping integral t = |β| and the on-site repulsion integral γ11 ≡ γ is designated by
U . The relevant parameter defining the correlation strength is thus U/β. As already
mentioned, the actual geometry of the model is irrelevant in this case since only the
on-site Coulomb integral γ and the nearest-neighbor hopping term β play the role.

4 Cyclic polyene model

As already pointed out above the π -electron cyclic polyene model is useful when
exploring the correlation effects in one-dimensional systems. The limiting case of
infinitely large polyenes may then be regarded as a model of polyenic chains and the
same model may also be thought of as a model of a linear metal with Born-von Kármán
cyclic boundary conditions. In fact, this model is essentially equivalent to the model
of an electron in a box with suitable boundary conditions [50–52].

Our hypothetical systems thus represent a π -electron model of cyclic polyenes
CN HN having a non-degenerate ground state (N = 2n = 4ν + 2, ν = 1, 2, . . .) with
carbon atomic sites located at the vertices of a regular N -gon. In view of the Bloch
theorem the MOs |a〉, a = 0, 1, 2, . . . , (N − 1), are completely determined by the
symmetry of the system

|a〉 =
(

1/
√

N
) N−1∑

μ=0

exp (iωaμ)|μ〉, ω = 2π/N . (12)

The one- and two-electron matrix elements of the Hamiltonian take a very simple form
in the MO basis, namely (cf. [34])

〈a|z|b〉 = 2βδab cos(ωa),

〈ab|v|cd〉 = K (a − c)δa+b,c+d , (13)

where

K (a) = K (−a) = N−1
N−1∑

μ=0

γ0μ exp(iωaμ)

= N−1

⎡

⎣γ00 + (−1)aγ0n + 2
n−1∑

μ=1

γ0μ cos(μaω)

⎤

⎦ , (14)

with all indices or arguments taken modulo N .
In order to distinguish MOs that are defining a CS ground-state IPM wave function,

referred to as the occupied MOs, from the virtual or unoccupied ones, we shall label
the former ones by the subscripted and the latter ones by the superscripted indices,
i.e., as a1, a2, etc., and a1, a2, etc., respectively. The Hartree-Fock orbital energies εa

are then
εa = 〈a| f |b〉δab = 2β cos(ωa) + N K (0) −

∑

a1

K (a − a1), (15)
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with the summation extending over the occupied (or hole) MOs a1 (−ν ≤ a1 ≤ ν)

defining the HF sea. We note that the Bloch MOs (12) are pairwise degenerate, εa =
ε−a ≡ εN−a , except when a = 0 or a = n.

The expressions for the one-and two-electron matrix elements of the Hamiltonian
Hπ and for the orbital energies take on a particularly simple form when we rely on the
Hubbard Hamiltonian. Since only on-site Coulomb integrals are involved, the actual
geometry of the molecular framework is irrelevant, just as in the case of the Hückel
Hamiltonian. Thus, the quantities K (a) are independent of the orbital label,

K (a) ≡ K = γ /N , (16)

and the orbital energies are essentially those of the Hückel model, i.e.,

εa = 2β cos(ωa) + 1

2
γ (17)

5 Coupled cluster method

In contrast to the linear SR configuration interaction (CI) Ansatz for the exact wave
function |�〉,

|�〉 =
N∑

i=0

Ci |�〉, C0 ≡ 1̂, (18)

the SR CC method relies on the exponential Ansatz

|�〉 = exp
( N∑

i=0

Ti

)
|�〉, (19)

where |�〉 designates a single-determinantal IPM (usually HF) wave function. We
employ the intermediate normalization 〈�|�〉 = 1 in both cases. The CI and CC
i-body operators Ci and Ti (i = 1, 2, . . . , N ), respectively, are expressed as linear
combinations of i-body excitation operators Gi (�) with coefficients representing the
corresponding CI and CC amplitudes c(i)

j and t (i)j ,

Ci =
∑

j

c(i)
j Gi (� j ) and Ti =

∑

j

t (i)j Gi (� j ). (20)

Labeling the spin orbitals |A〉 that are occupied and unoccupied in the reference IPM
wave function |�〉 by the subscripted and superscripted labels Ak and Ak , respectively,
the excitation operators Gi (� j ) are given by

Gi (� j ) =
i∏

k=1

(X†
Ak X Ak ), � j ≡

{

Ak, Ak |k = 1, . . . , i

}

. (21)
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The CI and CC operators Ci and Ti are then related as follows

Ci = Ti +
∑

λ�i

∏

j

(
n j !

)−1
T

n j
j , (22)

where the summation extends over all nontrivial partitions λ of i, λ � i , as given
by the solutions of the Diophantine equation i = ∑i−1

j=1 jn j . Here Ti ’s represent
the connected cluster components, while the product terms on the right hand side of
(22) represent the disconnected components. When Brueckner MOs are employed,
the C1 = T1 components vanish, so that the first disconnected component appears in
the quadruply-excited C4, C4 = T4 + 1

2 T 2
2 .

The main benefit of the exponential cluster Ansatz (19) stems from the possibility of
an efficient truncation of the wave function expansion based on the linked cluster theo-
rem of the many-body perturbation theory (MBPT) [53]. In this way the higher-excited
components may be effectively approximated—at least for nonmetallic systems—by
their disconnected components that arise automatically in the CC formalism via the
exponential Ansatz. Specifically, since the singly-excited clusters T1 usually play a
secondary role (contributing only in higher orders of MBPT) and can be completely
eliminated by relying on the maximum overlap (or Brueckner) MOs, the most impor-
tant role is played by the pair cluster amplitudes t (2)

j constituting the doubly-excited
component T2 (doubles for short). Thus, setting T ≈ T2 we automatically account
for quadruples by their disconnected component 1

2 T 2
2 , yielding the so-called CCD

method, which generally provides a very good description of the correlation effects. A
small, yet often important connected triple (T3) contribution is then usually accounted
for perturbatively via the CCSD(T) approximation [54,55].

When deriving the explicit form of CC equations [56–59] (for a historical account
see [8] and references therein) it is convenient to employ the normal product (N -
product) form of the Hamiltonian (cf. [60]) relative to the IPM wave function |�〉 as
a Fermi vacuum for the hole–particle (h–p) second-quantized formalism, i.e.,

HN ≡ H − 〈�|H |�〉
=

∑

A,B

〈A| f |B〉N
[

X†
A X B

]
+ 1

4

∑

A,B,C,D

〈AB|v|C D〉AN
[

X†
A X†

B X D XC

]
, (23)

where 〈AB|v|C D〉A designates the antisymmetrized two-body matrix element

〈AB|v|C D〉A ≡ 〈AB|v|C D〉 − 〈AB|v|DC〉, (24)

and 〈A| f |B〉 are the one-body IPM (usually HF) matrix elements

〈A| f |B〉 ≡ 〈A|z|B〉 +
∑

C1

〈AC1|v|BC1〉A. (25)

This facilitates the exploitation of Wick’s theorem and of Feynman-like diagrams
while relying on the h-p formalism (see, e.g., [60]) and of the spin-angular-momentum
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diagrams (see, e.g., [61]) when deriving the spin-adapted version of the CC formalism
(see, e.g., [62]). Note that the excitation operators Gi are automatically in the N -
product form since they involve only creation h-p operators.

Since the variational determination of cluster amplitudes leads to a very cum-
bersome formalism one relies on the Schrödinger equation HN |�〉 = �ε|�〉 pro-
jected onto the manifold of relevant excited configuration state functions (CSFs).
Here �ε ≡ E −〈�|H |�〉 designates the exact energy relative to the IPM model (i.e.,
the correlation energy when we use a HF reference). Thus, substituting the Ansatz
(19) into the Schrödinger equation and exploiting the connected cluster theorem, i.e.,
HN exp(T )|�〉 = exp(T )[HN exp(T )]C |�〉, we obtain (see, e.g., [56–59])

([
HN exp(T )

]
C − �ε

) |�〉 = 0, (26)

where the subscript C indicates the connected part of the expression. By relying on
the diagrammatic technique (or symbol manipulation codes) one can then obtain an
explicit form of the above equation as a set of nonlinear algebraic equations for the
unknown cluster amplitudes.

We must emphasize here that the actual values of the cluster amplitudes t (i)j and
thus of the operator Ti are well defined only in the context of the exact (i.e., FCI)
wave function |�〉. Otherwise, their values will depend on the approximation (i.e., the
degree of truncation) employed. In fact, while they are always well defined relative to
the exact |�〉, they may be undefined in cases when the CC equations do not possess
any real solution, as will be seen below.

The spin orbital form of the Hamiltonian, Eq. (23), is primarily employed in han-
dling of OS systems (yet, often also for CS systems) when relying on the unrestricted
HF (UHF) reference |�〉, thus ignoring the spin-free nature of the molecular Hamil-
tonian and unnecessarily increasing the dimension of the problem. In the CS case,
when |�〉 is represented by a single Slater determinant with doubly occupied MOs,
one can simply achieve the spin adaptation by assigning a factor of two to each closed
loop of oriented lines in the resulting diagrams [56,57]. Nonetheless, such a formal-
ism is based on nonorthogonal CSFs and once going beyond the doubles will involve
more cluster amplitudes than necessary (see the discussion in [59]). The orthogonally
spin-adapted version of the CCD method (referred to at the time as the coupled-pair
many-electron theory CPMET) was presented in [62] and further developed in [63,64]
(see also [65–67] and references therein). Yet another, a totally different spin-adapted
version, may be obtained via the cluster Ansatz based on the unitary group approach
(UGA-CC) [68,69].

6 Nature of many-body wave functions

As stated by Thouless [70] “the wave function of a many-body system is so compli-
cated that any approximation to it will be almost orthogonal to it”. In order to get some
idea of these complexities we shall rely on earlier studies of cyclic polyenes CN HN

representing typical extended systems when N → ∞. In fact, some of the characteris-
tics of the relevant wave functions may be gleaned by examining those describing finite
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Table 1 Contribution of doubles (D), triples (T), quadruples (Q), and higher than quadruples (>Q) to the
FCI correlation energy of the PPP N = 10 cyclic polyene model (in %) and the difference R of the CCD
and CIDQ energies relative to the FCI energy, R ≡ (�ε(CCD) − �ε(CIDQ))/�ε(FCI) (in %), as a function
of the resonance integral β (in eV)

−β D T Q >Q R

5.0 94.8 1.2 3.9 0.1 0.2

4.0 92.4 1.7 5.8 0.2 0.4

3.0 87.5 2.6 9.3 0.6 1.3

2.5 83.4 3.3 12.2 1.1 2.9

2.0 77.7 3.9 16.1 2.4 7.2

1.5 69.7 3.9 21.5 5.0 26.5

1.0 59.5 2.8 26.6 11.1 608.6

0.5 51.0 0.8 31.2 17.0 897.0

0.0 42.8 0.1 32.3 24.8 837.9

polyenes or chains while gradually increasing their size.2 Moreover, the parametriza-
tion of the semi-empirical Hamiltonians defining these models enables us to vary the
quasidegeneracy over the whole range of the coupling constant, as pointed out above.
Since even here the corresponding wave functions are rather complex, most of the stud-
ies focussed on the correlation energies. Yet, we can draw some conclusions about the
importance of various wave function components from limited CI and CC results.

The FCI and limited CI results and their CC structure were investigated in a con-
siderable detail for the N = 6 and N = 10 rings using both the Hubbard and the
PPP Hamiltonians [44]. The PPP FCI results were later extended to the N = 14 and
N = 18 rings by Bendazzoli and Evangelisti [39] and Bendazzoli et al. [40] (see
also [41,42]). However, already for the N = 18 ring, both the dimension of the FCI
problem (≈ 73 × 106) and the increasing quasidegeneracy did not allow the authors
to reach the fully-correlated limit and proceed beyond β = −2.5 eV.

The N = 6 and N = 10 results clearly revealed an overwhelming importance
of doubles and a rapidly increasing role of quadruples as the fully correlated limit
is approached (cf. Figs. 4 and 5 and Tables IV–VII of [44]). Moreover, already the
N = 10 results (Table 1) indicate an increasing importance of higher than quadruples
in this limit. Contribution of triples is not only very small relative to that of doubly-
and quadruply-excited CSFs but—except for the highly correlated region—is also
approximately additive (cf. Table VIII of [44]).

Interestingly enough, while the difficulty of obtaining the FCI results rapidly
increases when approaching the fully correlated limit and the CC methods break down
completely (even when accounting for connected quadruples [43]) for large enough
N values, the handling of the fully correlated limit (β = 0) becomes easy in view of
the fact that only the electrostatic component of the Hamiltonian plays a role here.
Indeed, it is not difficult to show (see, e.g., [44]) that the exact correlation energy at
β = 0 becomes

2 This approach is often used even when considering spin chains; see, e.g., [13] or [71].

123



640 J Math Chem (2015) 53:629–650

− �εPPP(β = 0) = n(2n − 1)K (0) − 2
(occ)∑

i< j

K (i − j) −
∑

μ<ν

γμν, (27)

for the PPP Hamiltonian, while an almost trivial result is obtained for the Hubbard
Hamiltonian

− �εH(β = 0) = n2 K (0) =
(

ν + 1

2

)

γ11 = 1

4
Nγ. (28)

Of course, in the latter case we can generate the exact FCI energies for any value of
the coupling constant and any N using Lieb–Wu equations [31,33]. Unfortunately,
this approach (like any based on the Bethe Ansatz) does not provide us with any
information about the cluster structure of the corresponding wave functions. It is,
however, an important realization that the Hubbard and PPP results exhibit a parallel
behavior, both as far as the role played by various excitation orders in their contribution
to the correlation energy and their weight in the resulting wave functions.

In this regard it is of interest to note the role played by the reference configuration
|�〉 in the FCI wave function. As can be seen from the results given in Table IX of
[44] and Table I of [40], listing the coefficients (or their squares) of the reference
configuration |�〉 in the normalized FCI wave function |�〉(〈�|�〉 = 1), the HF (or
Brueckner) IPM reference |�〉 provides the exact result in the uncorrelated limit when
|β| → ∞, while its weight almost vanishes in the fully correlated limit. In fact, we see
that with the increasing N this weight rapidly approaches zero, amounting to 0.0686,
0.0094, and 0.0013 for N = 6, 10, and 14, respectively [40]. Clearly, as N → ∞ this
weight will vanish making the exact wave function orthogonal to |�〉. In fact, this will
also be the case when we choose a better reference than the IPM one (e.g., CID or
CCD wave function), as the results of Table III of [40] clearly indicate. We recall here
that since in the fully correlated limit the one-electron component of the Hamiltonian
is absent, all excited CSFs become degenerate with the reference configuration. The
above described behavior thus clearly indicates that in the fully correlated limit the
cyclic polyene model represents a highly complex degenerate system.

Another aspect of the difficulties that we encounter when handling cyclic polyenes
is revealed by the fact that with the increasing quasidegeneracy, the truncated CC
equations may not possess any real valued, physically meaningful solution [34]. Thus,
while at the CCD level we find real solutions in the whole range of the coupling
constant for N = 6 and N = 10 (even though we encounter, respectively, a 100
and 1,000 % error in the correlation energy for β = 0), no real solution exists for
N = 14 below certain critical value of |β| (see [34] for details). This behavior persists
even when one employs higher-level approximations, such as CC(S)DTQ [43]. This is
clearly related with the growing importance of higher-excited cluster components as
documented by the analysis given in [44]. As already alluded to in the Introduction, one
interesting aspect that arises for larger and larger cycles is the existence of connected
quadruples that have no corresponding disconnected conterparts, which we defined
as the indecomposable quadruples. Clearly, such quadruples cannot be accounted for
via their disconnected components, which is essential for the success of the CCD or
CCSD approaches. We shall now turn our attention to this aspect.
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7 Role of indecomposable quadruples

The cluster analysis of the FCI wave function for the first two cyclic polyenes N = 6
and N = 10 clearly indicates an increasing importance of connected quadruples as
we approach the fully correlated limit (cf. Table 1 above and Table X and Figs. 8–
11 of [44]). We again recall here a parallel behavior for the Hubbard and the PPP
Hamiltonians, as well as the fact that the actual geometry of the model is irrelevant
in the former case, where only topology plays a role (i.e., the adjacency in the tight-
binding model). This parallel behavior is also revealed by the results for the correlation
energy in larger polyenes (see, e.g., Fig. 5 of [34]).

Now, starting with the N = 10 ring we observe an interesting new phenomenon,
which is clearly associated with the high symmetry of our models, namely that some
of the connected quadruples do not possess corresponding disconnected counterparts
given by the product of two doubles. We can thus refer to such quadruples as the
indecomposable ones in contrast to the decomposable quadruples, which possess at
least one disconnected counterpart. Of course, a similar situation will arise for even
higher than quadruply-excited configurations, such as sextuples, octuples, etc. While
no such indecomposable quadruple appears in the N = 6 case, we find already 22
of them for the N = 10 ring; they are listed in Table 2 (for simplicity’s sake we
ignore here the alternancy and hole-particle symmetries). Note that all these con-
figurations correspond to one singlet CSF except for configurations 4 and 19 which
involve four singly-occupied MOs and thus generate two singlet CSFs. Thus, the num-
ber of indecomposable CSFs for N = 10 equals 24, which will also be the number of
corresponding indecomposable, connected, quadruply-excited cluster amplitudes.

We recall that we label the MOs by their quasimomentum k (or a), k =
0, 1, . . . , (N − 1), Eq. (12), (see, e.g., Fig. 1 of [34] for a general schematic rep-
resentation of Bloch orbital labeling and orbital energy distribution for CN HN ). The
ground state configuration (02 12 . . . ν2 (N − ν)2 (N − ν + 1)2 . . . (N − 1)2) or the
corresponding CSF is then associated with a zero quasimomentum k = 0 (mod N ),
so that only CSFs belonging to the same irrep of CN (i.e., having the same quasimo-

Table 2 Indecomposable
quadruples for N = 10 cyclic
polyene

i |�occ→unocc
i 〉 i |�occ→unocc

i 〉

1 02 22 → 32 42 12 22 82 → 3 5 62

2 0 12 2 → 32 42 13 22 92 → 3 62 7

3 1 22 9 → 32 42 14 22 82 → 42 5 7

4 0 1 22 → 32 4 5 15 12 2 8 → 42 72

5 12 22 → 32 4 6 16 82 92 → 4 6 72

6 12 22 → 32 52 17 82 92 → 52 72

7 2 8 92 → 32 62 18 82 92 → 5 62 7

8 0 12 8 → 32 72 19 0 82 9 → 5 6 72

9 0 2 92 → 32 72 20 02 82 → 62 72

10 12 22 → 3 42 5 21 0 8 92 → 62 72

11 12 82 → 3 42 7 22 1 82 9 → 62 72
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Fig. 1 A schematic
representation of quadruple
excitation 82 92 → 52 72 (or
12 22 → 32 52)

mentum k = 0) can interact with the ground state and thus appear in the pertinent
wave function or CC formalism. Clearly, all singles are associated with a nonvanishing
quasimomentum k > 1 and can be ignored. The number of singlet and triplet coupled
doubles (the latter involving four distinct MO labels), N (bi)

S=0 and N (bi)
S=1, respectively,

that are associated with a zero quasimomentum transfer (mod N ) are given by

N (bi)
S=0 = 4

3
ν(ν2 + 2) + 3ν2 + 1 and N (bi)

S=1 = 2

3
ν(2ν2 + 1) + ν2 . (29)

Note that such configurations (CSFs or CC amplitudes) are simply generated by con-
sidering all possible pairs of, say, virtual MOs a1, a2 with occupied MOs given by
a1 = a1 − k, a2 = a2 + k yielding a zero quasimomentum transfer. Of course, here
we require that −ν ≤ ai ≤ ν, i = 1, 2 (all labels modulo N ). We can then similarly
generate possible zero quasimomentum transfer quadruples and check if there exists
at least one possible pair of k = 0 doubles. In this way we can determine the number
of decomposable and indecomposable quadruples for each polyene.

To provide an example of an indecomposable quadruple in the case of N = 10
polyene let us consider, for example, the excitation 82 92 → 52 72 (i.e., �17 in Table 2),
shown schematically in Fig. 1. The ground state configuration (02 12 22 82 92) being
associated with a zero quasimomentum [k = 0 (modN )], only CSFs belonging to
the same irrep of C10 (i.e., having the same quasimomentum k = 0) can interact
with it and appear in the pertinent wave function or CC formalism. Considering now
possible disconnected quadruples given by pairs of doubles, we find five possible
candidates listed in Table 3, where we also parenthetically indicate the corresponding
quasimomenta k for each double. We see that even though these pairs of doubles
have zero quasimomentum, none of the individual doubles is associated with a zero
quasimomentum. Consequently, none of these doubles can appear as a component of
the ground state wave function and thus these disconnected quadruples will not play
any role in the CC (in this case CCD) formalism.

We have developed appropriate codes that generate all relevant quadruples and
analyze them for their decomposability. The resulting counts for the decomposable
[Qdec(N ) ≡ D] and indecomposable [Qindec(N ) ≡ I ] quadruples, as well as the
number of all quadruples [Q ≡ Q(N ) = Qdec(N ) + Qindec(N ) = D + I ] are given
in Table 4 for cyclic polyenes CN HN , N = 4ν + 2 with 1 ≤ ν ≤ 47, where we
also included the ratios I/Q[≡ Qindec(N )/Q(N )] and I/D[≡ Qindec(N )/Qdec(N )].
The corresponding results for CSFs (accounting for a number of distinct singlets for
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Table 3 Possible disconnected
quadruples for the 17th
configuration 82 92 → 52 72 of
Table 2

i |�occ→unocc
i 〉 k |�occ→unocc

i 〉 k

1 82 → 72 (−2) 92 → 52 (2)

2 8 9 → 52 (−3) 8 9 → 72 (3)

3 92 → 72 (−4) 82 → 52 (4)

4 82 → 5 7 (−4) 92 → 5 7 (4)

5 8 9 → 5 7 (±5) 8 9 → 5 7 (±5)

configurations involving four or more distinct MOs) are then listed in Table 5. In each
case we observe an initial rapid increase in the number of indecomposables Qindec(N )

relative to the total number of quadruples Q(N ), as graphically illustrated in Fig. 2a.

Table 4 Number of all [Q ≡ Q(N ) = Qdec(N ) + Qindec(N )], decomposable [Qdec(N ) ≡ D],
and indecomposable [Qindec(N ) ≡ I ] quadruple configurations and their ratios for cyclic polyenes
CN HN , N = 4ν + 2

ν N Orbital configurations Ratios

Q(N ) Qdec(N ) Qindec(N ) Qindec/Q Qindec/Qdec

1 6 8 8 0 0.0000 0.0000

2 10 217 195 22 0.1014 0.1128

3 14 1927 1523 404 0.2096 0.2653

4 18 9852 6976 2876 0.2919 0.4123

5 22 36380 23432 12948 0.3559 0.5526

6 26 108361 64151 44210 0.4080 0.6892

7 30 277063 151935 125128 0.4516 0.8236

8 34 631840 322904 308936 0.4889 0.9567

9 38 1318088 630920 687168 0.5213 1.0891

10 42 2560161 1152651 1407510 0.5498 1.2211

11 46 4689759 1993283 2696476 0.5750 1.3528

12 50 8180364 3292848 4887516 0.5975 1.4843

13 54 13688428 5233224 8455204 0.6177 1.6157

14 58 22101793 8045751 14056042 0.6360 1.7470

15 62 34595919 12019495 22576424 0.6526 1.8783

16 66 52698656 17510152 35188504 0.6677 2.0096

17 70 78364008 24949600 53414408 0.6816 2.1409

18 74 114055465 34856067 79199398 0.6944 2.2722

19 78 162839671 47844971 114994700 0.7062 2.4035

20 82 228490844 64640376 163850468 0.7171 2.5348

21 86 315606524 86087096 229519428 0.7272 2.6661

22 90 429735449 113163439 316572010 0.7367 2.7975

23 94 577517943 146994599 430523344 0.7455 2.9288

24 98 766839392 188866664 577972728 0.7537 3.0602

25 102 1006997640 240241296 766756344 0.7614 3.1916
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Table 4 continued

ν N Orbital configurations Ratios

Q(N ) Qdec(N ) Qindec(N ) Qindec/Q Qindec/Qdec

26 106 1308884657 302771027 1006113630 0.7687 3.3230

27 110 1685183055 378315203 1306867852 0.7755 3.4544

28 114 2150578316 468956568 1681621748 0.7819 3.5859

29 118 2721987052 577018496 2144968556 0.7880 3.7173

30 122 3418801873 705082839 2713719034 0.7938 3.8488

31 126 4263153759 856008447 3407145312 0.7992 3.9803

32 130 5280192224 1032950304 4247241920 0.8044 4.1118

33 134 6498383848 1239379312 5259004536 0.8093 4.2433

34 138 7949830105 1479102715 6470727390 0.8139 4.3748

35 142 9670604743 1756285171 7914319572 0.8184 4.5063

36 146 11701111292 2075470440 9625640852 0.8226 4.6378

37 150 14086461660 2441603744 11644857916 0.8267 4.7693

38 154 16876876041 2860054743 14016821298 0.8305 4.9009

39 158 20128104711 3336641159 16791463552 0.8342 5.0324

40 162 23901872704 3877653040 20024219664 0.8378 5.1640

41 166 28266347560 4489877672 23776469888 0.8412 5.2956

42 170 33296630721 5180625107 28116005614 0.8444 5.4271

43 174 39075273599 5957754363 33117519236 0.8475 5.5587

44 178 45692818476 6829700240 38863118236 0.8505 5.6903

45 182 53248364812 7805500784 45442864028 0.8534 5.8219

46 186 61850162017 8894825391 52955336626 0.8562 5.9535

47 190 71616228815 10108003559 61508225256 0.8589 6.0851

The observed trend seems to indicate that the ratio Qindec(N )/Q(N ) ≡ I/Q will
approach unity as N → ∞. This fact is then confirmed by considering the ratio of
indecomposables relative to the decomposables Qindec(N )/Qdec(N ) ≡ I/D shown
in Fig. 2b. This figure clearly implies a linear dependence of this ratio for large enough
values of N , so that we can write that I/D ∼ N or, more precisely, that I/D = cN −d,
with a small negative intercept d > 0. We can thus conjecture with great confidence
that the sought after limits, Eq. (1), are given by

lim
N→∞

Qindec(N )

Qdec(N )
= lim

N→∞
I

D
→ ∞,

lim
N→∞

Qindec(N )

Q(N )
= lim

N→∞
I

Q
= lim

N→∞
N − d/c

N − (d + 1)/c
= 1. (30)
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Table 5 Number of all [Q ≡ Q0(N ) = Qdec
0 (N ) + Qindec

0 (N )], decomposable [Qdec
0 (N ) ≡ D], and

indecomposable [Qindec
0 (N ) ≡ I ] singlet quadruple configurations and their ratios for cyclic polyenes

CN HN , N = 4ν + 2

ν N SINGLET CONFIGURATIONS RATIOS

Q0(N ) Qdec
0 (N ) Qindec

0 (N ) Qindec
0 /Q0 Qindec

0 /Qdec
0

1 6 11 11 0 0.0000 0.0000

2 10 522 498 24 0.0460 0.0482

3 14 6587 5847 740 0.1123 0.1266

4 18 42472 35000 7472 0.1759 0.2135

5 22 185039 140727 44312 0.2395 0.3149

6 26 624122 438014 186108 0.2982 0.4249

7 30 1758183 1141235 616948 0.3509 0.5406

8 34 4333488 2610272 1723216 0.3976 0.6602

9 38 9635059 5405959 4229100 0.4389 0.7823

10 42 19737706 10353958 9383748 0.4754 0.9063

11 46 37825363 18617791 19207572 0.5078 1.0317

12 50 68586984 31781276 36805708 0.5366 1.1581

13 54 118697319 51939171 66758148 0.5624 1.2853

14 58 197390778 81797054 115593724 0.5856 1.4132

15 62 317136639 124780815 192355824 0.6065 1.5415

16 66 494423936 185154004 309269932 0.6255 1.6703

17 70 750664219 268144623 482519596 0.6428 1.7995

18 74 1113220442 380081610 733138832 0.6586 1.9289

19 78 1616570331 528538955 1088031376 0.6730 2.0586

20 82 2303612408 722489340 1581123068 0.6864 2.1884

21 86 3227122927 972467679 2254655248 0.6987 2.3185

22 90 4451372090 1290741938 3160630152 0.7100 2.4487

23 94 6053907703 1691493687 4362414016 0.7206 2.5790

24 98 8127514528 2191008632 5936505896 0.7304 2.7095

25 102 10782357715 2807874203 7974483512 0.7396 2.8400

26 106 14148318458 3563186954 10585131504 0.7482 2.9707

27 110 18377530131 4480770151 13896759980 0.7562 3.1014

28 114 23647123304 5587398064 18059725240 0.7637 3.2322

29 118 30162187767 6913030279 23249157488 0.7708 3.3631

30 122 38158959818 8491056278 29667903540 0.7775 3.4940

31 126 47908243231 10358546499 37549696732 0.7838 3.6250

32 130 59719072016 12556513496 47162558520 0.7897 3.7560

33 134 73942623227 15130183575 58812439652 0.7954 3.8871

34 138 90976388250 18129274558 72847113692 0.8007 4.0182

35 142 111268610667 21608283855 89660326812 0.8058 4.1493
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Table 5 continued

ν N SINGLET CONFIGURATIONS RATIOS

Q0(N ) Qdec
0 (N ) Qindec

0 (N ) Qindec
0 /Q0 Qindec

0 /Qdec
0

36 146 135322998952 25626787092 109696211860 0.8106 4.2805

37 150 163703722447 30249742643 133453979804 0.8152 4.4117

38 154 197040698698 35547806550 161492892148 0.8196 4.5430

39 158 236035180407 41597658207 194437522200 0.8238 4.6742

40 162 281465650464 48482331596 232983318868 0.8277 4.8055

41 166 334194033123 56291557119 277902476004 0.8316 4.9368

42 170 395172229578 65122114274 330050115304 0.8352 5.0682

43 174 465448986419 75078189659 390370796760 0.8387 5.1995

44 178 546177105016 86271745652 459905359364 0.8420 5.3309

45 182 638621000087 98822900143 539798099944 0.8453 5.4623

46 186 744164615946 112860311242 631304304704 0.8483 5.5937

47 190 864319708463 128521572871 735798135592 0.8513 5.7251

Fig. 2 a Dependence of the
ratio I/(D + I ) of the number of
indecomposable quadruples I to
the total number of quadruples
(D + I ), both decomposable D
and indecomposable ones, and
b dependence of the ratio I/D
of the number of
indecomposable I to the number
of decomposable D quadruples,
both as a function of the size of
the polyene N = 4ν + 2

(a)

(b)
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8 Conclusions

Having established the linear dependence of the ratio I/D of the number of indecom-
posable I to the number of decomposable D singlet quadruples as a function of the
size of the polyene N = 2n = 4ν +2 via direct evaluation of the number of respective
clusters or CSFs, we recall [34] a qualitative reasoning that anticipates this result.
Having n occupied and n unoccupied MOs, the number of singly-excited configura-
tions scales as n2 and the number of doubly-excited as n4. The requirement of a zero
overall quasimomentum reduces the n4 dependence to n3 [note that the available sym-
metries can only modify an overall numerical factor—e.g., when all the symmetries
including the alternancy symmetry, are accounted for, the dependence is n3/6—see
also Eq. (29)]. Similarly, the number of quadruply-excited configurations will scale as
n8, and as n7 when we impose the requirement of a zero quasimomentum. At the same
time, the number of 1

2 T 2
2 -type disconnected quadruples will vary only as (n3)2 = n6,

ignoring again the numerical factors due to various symmetries. Consequently, the
dependence of the ratio of all quadruples to the number of decomposable ones, i.e.,
(I + D)/D = I/D + 1, on N = 2n as N → ∞ will be linear, since n7/n6 = n.
This simple dimensional reasoning thus corroborates our results obtained by actual
evaluation of the number of pertinent clusters. Clearly, the number of indecomposable
quadruples will dominate the quadruply-excited manifold as N → ∞. Yet, the actual
role played by these clusters in the calculation of the exact correlation energy is not
presently known and would deserve to be investigated.

The just outlined dimensional argument can now be extended to higher than quadru-
ples. The number of p(= 2t)-times excited configurations scaling as n2p is reduces to
the n2p−1 = n4t−1 dependence when we take into account the zero quasimomentum
requirement. (Note that for the odd-number-of-times excited clusters, such as T3, the
role of connected and disconnected clusters is reversed, the latter ones being much less
important than the former ones, not to mention the much smaller importance of even
connected clusters of this type for the correlation energy, cf., e.g., Table 1; moreover,
the T1 clusters vanish entirely in view of the Brueckner character of the MOs). Next,
the number of corresponding disconnected clusters constituting (1/t !)T t

2 scales as

(n3)t , so that the relevant ratio yields n4t−1/n3t = nt−1 = n
1
2 p−1. Thus, for quadru-

ples (p = 4), hexuples (p = 6), octuples (p = 8), etc., we find that the pertinent ratio
I/D scales as n, n2, n3, etc., as n → ∞, making the role of indecomposables even
more important as the excitation order increases. This at least partially explains the
difficulties of calculating the correlation energies for 1D extended systems as well as
the complexity of the Bethe Ansatz wave functions. We recall that as one approaches
the fully correlated limit (β = 0), all orbital energies become degenerate and thus all
the configurations involved.

9 Summary

Relying on semi-empirical models of cyclic polyenes we have shown that within
the CC description there exist two distinct types of connected, quadruply-excited
clusters, which we designated as the decomposable and the indecomposable ones.
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The indecomposable quadruples, in contrast to the ubiquitous decomposable ones,
do not possess the corresponding disconnected counterparts given by the product of
pair clusters. As we have pointed out, this phenomenon is associated with the high
spatial symmetry of our model and cannot arise in asymmetric species. However, it
will generally arise when handling low-dimensional extended systems, such as the
one-dimensional (1D) or quasi-1D metals, 1D photonic crystals or polymeric chains
with cyclic boundary conditions.

An account of quadruples is essential for a proper description of correlation effects.
For most molecular systems, this may be efficiently achieved by exploiting the CCD
(or CCSD) formalism (with an eventual perturbative correction for triples), in which
case the quadruples are satisfactorily approximated by their disconnected component
1
2 T 2

2 . However, there is no such possibility for indecomposable quadruples which
have no disconnected counterparts. Moreover, as we have seen, their preponderance
increases with the size of the linear chain. It would thus be useful to find out the role
played by this type of clusters when accounting for the correlation effects in strongly
correlated systems. In particular, it would be important to find out to what extent we can
handle quadruples via the ACPQ-type approaches [34,64,66] that provide excellent
results even for medium-sized systems (such as C22H22) in the entire range of the
coupling constant and faithfully reproduce the exact correlation energy in the strongly
correlated limit for the PPP and Hubbard models. Moreover, the role of even higher-
than-quadruply-excited clusters may be of concern including their indecomposables.
These and similar factors may render the standard CC-type approaches ineffectual
in handling of degenerate strongly-correlated systems unless suitably modified as in
the ACPQ case. A better understanding of the structure of the Bethe Ansatz wave
functions could be certainly helpful in these efforts.
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