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Abstract The Deficiency-One Theorem states that there exists a unique positive
steady state in each positive stoichiometric class for weakly reversible deficiency-
one mass action systems with one linkage class (regardless of the values of the rate
coefficients). The non-emptiness of the set of positive steady states does not remain
valid if we omit the weak reversibility. A recently published paper provided an equiva-
lent condition to the existence of a positive steady state for deficiency-one mass action
systems that are not weakly reversible, but still has only one linkage class. Based on
that result, we characterise in this paper those of these mass action systems for which
the non-emptiness of the set of positive steady states holds regardless of the values of
the rate coefficients. Also, we provide an equivalent condition to the existence of rate
coefficients such that the set of positive steady states is nonempty for the resulting
mass action system.

Keywords Chemical reaction networks · Mass action systems · Rate coefficients ·
Deficiency · Positive steady states · Deficiency-One Theorem · Matrix-Tree Theorem

1 Introduction

The foundations of chemical reaction network theory (CRNT) was developed by Fein-
berg, Horn, and Jackson [12–16,20,21] in the 1970s. Several results are available con-
cerning the existence and/or the uniqueness of the positive steady states of mass action
systems [1–4,7–10,14,15]. A recent result provides an equivalent condition to the non-
emptiness of the set of positive steady states for single linkage class deficiency-one
mass action systems that are not weakly reversible, see [3, Theorem III.7] and [4,
Theorems 3.11 and 3.19]. For such mass action systems, the non-emptiness of the set
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of positive steady states may depend on the values of the rate coefficients. In this paper,
we characterise those of these chemical reaction networks, which has the property that
the non-emptiness of the set of positive steady states does not depend on the values of
the rate coefficients. The main graph theoretical tool we use is the Matrix-Tree Theo-
rem, see [27, Theorem 3.6]. We remark that there are several recent papers in the field
of CRNT that makes use of the Matrix-Tree Theorem, see e.g. [6,11,17,18,22,26].
Finally, we mention here that a potential application of our results is to check the
satisfaction of one of the assumptions of the main result of [25] (see the theorem at
the bottom of page 1390 in [25]). A certain robustness property is proven there for
deficiency-one mass action systems that are not weakly reversible, admit a positive
steady state, and satisfy another (easily checkable) condition.

The rest of this paper is organised as follows. After a brief section on notations, we
provide an overview of the required notations from CRNT in Sect. 3. The primary goal
of this paper is to investigate the dependence of the non-emptiness of the set of positive
steady states on the rate coefficients for deficiency-one mass action systems that are
not weakly reversible, but still has only one linkage class. In Sect. 4, we examine this
dependence under some extra assumptions on the graph of complexes (the directed
graph that encodes the reactions). In Sect. 4.1, we assume that the reactions form
a “chain”, while in Sect. 4.2, we pose the condition that the graph of complexes is
“tree-like”. In Sects. 5 and 6, we generalise the results of Sect. 4 (i.e., in these sections
we omit the restrictive assumptions on the structure of the graph of complexes that
were posed in Sect. 4). As it will become apparent, especially in Sects. 4, 5 and 6,
we need more involved graph theoretical arguments. Therefore, Appendices 7, 8, and
9 are devoted to summarise the purely graph theoretical notions and results that are
used throughout this paper.

2 Notations

Denote by R, R+, and R≥0 the set of real, positive real, and nonnegative real numbers,
respectively, i.e., R+ = {x ∈ R | x > 0} and R≥0 = {x ∈ R | x ≥ 0}. For v ∈ R

p,
the i th coordinate of v is denoted by vi (i ∈ {1, . . . , p}). For a matrix A ∈ R

p×q ,
the j th column and the (i, j)th entry of A are denoted by A· j and Ai j , respectively
(i ∈ {1, . . . , p}, j ∈ {1, . . . , q}). For a matrix A, we denote by A�, ker A, and ran A
the transpose, the kernel, and the range of A, respectively. For a square matrix A,
denote by det A the determinant of A.

For any finite set X, X0 ⊆ X , and function g : X → R we define g(X0) by

g(X0) =
∑

x∈X0

g(x). (1)

We make this convention in order to ease the notation in several situations.
For any set A, denote the cardinality of A by |A|.
We also summarise here the graph theoretical notations that will be used throughout

this paper. For more details on these, please refer to Appendix 7. Let D = (V, A) be
a directed graph for the rest of this section. For i, j ∈ V , the set of directed paths
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from i to j is denoted by
−→
i, j . For a directed path P we denote by V [P] the vertex

set of P (we use the notation V [P] even if the vertex set of the directed graph in
question is denoted by some other symbol than V ) and by len(P) the length of P . For
i1, i2, i3 ∈ V, P ∈ −−→

i1, i2, and Q ∈ −−→
i2, i3, denote by con(P, Q) the concatenation of P

and Q.
For U ⊆ V let us denote by �in

D(U ) and �out
D (U ) set of arcs that enter U and leave

U , respectively. For a function z : A → R, denote by excessz the excess function
associated to D and z. For i ∈ V we use the notations �in(i), �out(i), and excessz(i)
instead of �in({i}), �out({i}), and excessz({i}), respectively. For U ⊆ V , denote by
TD(U ) the set of U -branchings in D. Finally, for i, j ∈ V and U ⊆ V let us define
T i j

D (U ) by

T i j
D (U ) = { Ã ∈ TD(U ) | there exists a directed path from i to j in(V, Ã)}. (2)

3 Preliminaries from CRNT

In this section we provide a brief overview of the basic notions of CRNT used in
this paper. However, since the results of this paper rely heavily on the earlier result
[4, Theorem 3.11], we assume some familiarity of the reader with these notions.
Therefore, this section is rather a summary of the notions and notations used later on
in this paper. The interested reader should consult e.g. [15, Sections 2 and 3] for a
fuller discussion on these basic notions, while a short introduction can be found e.g.
in [4, Section 2]. The latter reference uses almost the same notations as the present
paper.

A chemical reaction network (or just reaction network) is a triple (X , C,R) of
three nonempty finite sets, where

• X = {X1, . . . , Xn} is the set of species,
• C = {C1, . . . , Cc} is the set of complexes, and
• R ⊆ {(Ci , C j ) ∈ C × C | i, j ∈ {1, . . . , c}, i �= j} is the set of reactions.

Roughly speaking, the complexes are linear combinations of the species with non-
negative integer coefficients. A convenient way to specify the set of complexes is to
provide an n × c matrix, denoted by B, whose entries are nonnegative integers, the
rows refer to the species, and the columns refer to the complexes. In order to ease the
notation, we identify the sets C and {1, 2, . . . , c}. Accordingly, we mostly write i and
(i, j) instead of Ci and (Ci , C j ), respectively (i, j ∈ {1, 2, . . . , c}).

The directed graph (C,R) is called the graph of complexes. Certain properties of
this directed graph will play a central role in this paper. For further reference, let us
denote (C,R) by the symbol D.

A mass action system is a quadruple (X , C,R, κ), where (X , C,R) is a chemical
reaction network and κ : R → R+ is any function. For (i, j) ∈ R, the value κ(i, j) is
called the rate coefficient of the reaction (i, j). In the sequel, we write κi j instead of
κ(i, j). We consider a continuous-time continuous-state deterministic model, where the
state of the system represents the concentrations of the species and the time-evolution
of the state is described by the ordinary differential equation
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ẋ(τ ) =
∑

(i, j)∈R

(
κi j

n∏

s=1

xs(τ )Bsi

)
· (B· j − B·i ) (3)

with state space R
n≥0. We will use another form of (3) in the sequel. For this aim, we

next introduce the matrix Iκ ∈ R
c×c and the function � : R

n≥0 → R
c≥0. Let us extend

the function κ : R → R+ to C × C such that κi j = 0 for (i, j) ∈ (C × C)\R (we do
not make any distinction in notation between the original function and its extension).
Define the matrix Iκ ∈ R

c×c by

Iκ =

⎡

⎢⎢⎢⎣

κ11 −∑c
i=1 κ1i κ21 · · · κc1
κ12 κ22 −∑c

i=1 κ2i · · · κc2
...

...
. . .

...

κ1c κ2c · · · κcc −∑c
i=1 κci

⎤

⎥⎥⎥⎦ ∈ R
c×c (4)

and the function � : R
n≥0 → R

c≥0 by

�(x) =

⎡

⎢⎢⎢⎢⎣

∏n
s=1 x Bs1

s∏n
s=1 x Bs2

s
...∏n

s=1 x Bsc
s

⎤

⎥⎥⎥⎥⎦
(x ∈ R

n≥0).

Note that both the rows and the columns of Iκ and the coordinate functions of �

correspond to the vertices of the directed graph (C,R), i.e., to the complexes. With
these notations, (3) can be written equivalently as

ẋ(τ ) = B · Iκ · �(x(τ )).

The main object we are interested in in this paper is the set of positive steady states of
a mass action system, denoted by Eκ+. Let us define Eκ+ by

Eκ+ = {x ∈ R
n+ | B · Iκ · �(x) = 0}.

We have included the symbol κ in the notation Eκ+, because our primary goal in this
paper is to investigate the dependence of the non-emptiness of the set of positive steady
states on the rate coefficients.

We use the usual terminology of the theory of directed graphs in the sequel. We
have also collected the required ones in Appendix 7. Denote by � the number of
weak components of the directed graph (C,R). The weak components of (C,R)

are called linkage classes in CRNT. In case all the linkage classes of (C,R) are
strongly connected, the network is called weakly reversible in CRNT. Denote by t
the number of absorbing strong components of the directed graph (C,R). Since each
weak component contains at least one absorbing strong component, we have � ≤ t .

A useful fact is that if � = t then ran Iκ does not depend on κ (see e.g. [4, Corollary
2.6]). Based on this, we define the deficiency, denoted by δ, of a reaction network of
the type � = t by δ = dim(ker B ∩ ran Iκ).
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The following theorem is a classical result in CRNT, it is called the Deficiency-Zero
Theorem, see e.g. [14, Theorem 6.1.1].

Theorem 3.1 Let (X , C,R) be a chemical reaction network with � = t = 1 and
δ = 0. Then the following statements hold.

(a) If (C,R) is strongly connected then for all κ : R → R+ we have Eκ+ �= ∅.
(b) If (C,R) is not strongly connected then for all κ : R → R+ we have Eκ+ = ∅.

The also classical Deficiency-One Theorem has been augmented recently, see [14,
Theorem 6.2.1] and [4, Theorem 3.19]. To state the theorem, we need some further
notations, which will then be used throughout this paper. For a chemical reaction
network with � = t = 1, denote by C′ the set of complexes, which are in the terminal
strong linkage class of (C,R) and let C′′ = C\C′. Let c′ = |C′| and c′′ = |C′′| (thus,
c′′ = c − c′). With this, Iκ ∈ R

c×c,� : R
n → R

c, and any vector v ∈ R
c can be

considered the block forms

Iκ =
[

I ′
κ ∗
0 I ′′

κ

]
∈ R

(c′+c′′)×(c′+c′′), � =
[

�′
�′′

]
: R

n → R
c′+c′′

, and

v =
[

v′
v′′
]

∈ R
c′+c′′

,

where I ′
κ ∈ R

c′×c′
,�′ : R

n → R
c′

, and v′ ∈ R
c′

correspond to the complexes in C′,
while I ′′

κ ∈ R
c′′×c′′

,�′′ : R
n → R

c′′
, and v′′ ∈ R

c′′
correspond to the complexes in

C′′. There are several ways to prove that I ′′
κ is invertible (provided that C′′ �= ∅), see

e.g. [4, Lemma 2.5].
Primarily, we are interested in this paper in mass action systems for which � =

t = 1 and δ = 1 hold. For such systems, the linear subspace ker B ∩ ran Iκ is one-
dimensional and does not depend on κ (recall that for systems with � = t we have
δ = dim(ker B ∩ ran Iκ)). For systems that are moreover not weakly reversible, let us
fix h ∈ R

c such that

0 �= h ∈ ker B ∩ ran Iκ and h(C′′) ≤ 0, (5)

where the notation h(C′′) is understood in accordance with (1), i.e., the sum of certain
coordinates of h is non-positive, where the summation goes for those complexes that
are out of the absorbing strong component of (C,R).

With these notations in hand, we are ready to state the Deficiency-One Theorem in
its augmented form (see [3, Theorem III.7] and [4, Theorems 3.11 and 3.19]).

Theorem 3.2 Let (X , C,R) be a chemical reaction network with � = t = 1 and
δ = 1. Then the following statements hold.

(a) If (C,R) is strongly connected then for all κ : R → R+ we have Eκ+ �= ∅.
(b) Assume that (C,R) is not strongly connected. Let h ∈ R

c be as in (5) and fix
κ : R → R+. Then

Eκ+ �= ∅ if and only if all the coordinates of (I ′′
κ )−1h′′ are positive.
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Seemingly, there is some freedom in the choice of h (it is chosen from a one-
dimensional linear subspace of R

c). On the one hand, if h(C′′) < 0 then h is determined
up to a positive scalar multiplier. However, it is clear that the choice of this positive
scalar multiplier does not affect the condition (I ′′

κ )−1h′′ ∈ R
c′′
+ . On the other hand, if

h(C′′) = 0 then h is determined up to a nonzero scalar multiplier. However, it is easy
to see that (I ′′

κ )−1h′′ ∈ R
c′′
+ implies h(C′′) < 0 (indeed, let ϑ ′′ = (I ′′

κ )−1h′′ and take
the sum of the coordinates on both sides of I ′′

κ ϑ ′′ = h′′). Thus, again, this nonzero
scalar multiplier does not affect the condition (I ′′

κ )−1h′′ ∈ R
c′′
+ .

As a side remark, we also mention that both in Theorems 3.1 and 3.2, once Eκ+ �=
holds, there is exactly one positive steady state in each positive stoichiometric class.

Thus, if the reaction network satisfies � = t = 1 and δ = 0 then the non-emptiness
of Eκ+ does not depend on κ . Also, if the reaction network satisfies � = t = 1 and
δ = 1, and moreover (C,R) is strongly connected then, again, the non-emptiness of
Eκ+ does not depend on κ . However, by Theorem 3.2 (b), we have a different situation
for mass action systems for which the underlying reaction network satisfies � = t = 1
and δ = 1, but (C,R) is not strongly connected. For these mass action systems, the
non-emptiness of Eκ+ may depends on κ . We used the word “ may”, because for such
mass action systems three different kind of phenomena can occur:

• Eκ+ �= ∅ for all κ (i.e., for all κ all the coordinates of (I ′′
κ )−1h′′ are positive),

• Eκ+ = ∅ for all κ (i.e., for all κ there exists a non-positive coordinate of (I ′′
κ )−1h′′),

and
• the non-emptiness of Eκ+ depends on κ (i.e., there exists κ such that all the coor-

dinates of (I ′′
κ )−1h′′ are positive and there also exists κ such that there exists a

non-positive coordinate of (I ′′
κ )−1h′′).

It is demonstrated in [4, Analysis of Examples 3.7, 3.8, and 3.9] that all of these
three phenomena can indeed occur. The aim of the present paper is to provide charac-
terisations of the above cases. Namely, we will formulate equivalent conditions to the
statements

“there exists κ : R → R+ such that Eκ+ �= ∅” and (6)

“for all κ : R → R+ we have Eκ+ �= ∅”. (7)

In Sect. 4 we examine the above questions under some extra assumptions on (C,R).
In Sect. 4.1 we will assume that (C,R) is a “chain”. As a generalisation of the results
of Sect. 4.1, we will assume in Sect. 4.2 that (C,R) is “tree-like”. As a matter of
fact, we will obtain a recursive formula for the coordinates of (I ′′

κ )−1h′′ (the matrix
I ′′
κ has some special properties in these cases, which makes it possible to handle the

computation of its inverse). Based on the obtained recursive formula, we will deduce
equivalent conditions both for (6) and (7). In Sects. 5 and 6 we will assume only that
(C,R) satisfies � = t = 1, but is not strongly connected. Under this assumption, we
provide equivalent conditions to (6) and (7) for these general cases in Sects. 5 and 6,
respectively.
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4 Special cases

We always assume in the rest of this paper that the reaction network under consideration
satisfies � = t = 1 and δ = 1, but is not strongly connected. Thus, C′′ �= ∅. Since
we will apply Theorem 3.2 (b), we fix h ∈ R

c as in (5) (recall that � = t implies that
ran Iκ does not depend on κ , and hence, h is not influenced by κ). Also, let ϑ ∈ R

c

be such that

Iκϑ = h. (8)

Thus, ϑ depends on κ . Since Iκ is block upper triangular, we obtain that I ′′
κ ϑ ′′ = h′′.

Thus, ϑ ′′ = (I ′′
κ )−1h′′. By Theorem 3.2 (b), we have

Eκ+ �= ∅ if and only if ϑ ′′ ∈ R
c′′
+ . (9)

Thus, our aim in this section is to obtain a formula for the coordinates of ϑ ′′.
We formulate a purely graph theoretical lemma, which will be useful in Sects. 4.1

and 4.2. The required graph theoretical notions can be found in Appendix 7.

Lemma 4.1 Let (V, A) be a directed graph and let ϑ : V → R be any function. Let
κ : V × V → R≥0 be a function for which κi j > 0 if and only if (i, j) ∈ A. Define
z : A → R by zi j = κi jϑi ((i, j) ∈ A), let Iκ be as in (4), and let h = Iκϑ . Then

excessz(U ) =
∑

j∈U

h j for all U ⊆ V .

Proof Fix j ∈ V . Then, by the definitions of the matrix Iκ and the excess function
we obtain

h j =
∑

i∈V

(Iκ) j iϑi =
∑

i∈V \{ j}
κi jϑi −

∑

i∈V \{ j}
κ j iϑ j = z(�in( j))−z(�out( j))=excessz( j).

With this, the statement of the lemma follows from (55). 
�

4.1 The case (C,R) is a “chain”

The (C,R)) takes the special form

Cc

κc,c−1 �� Cc−1

κc−1,c−2 ��
κc−1,c

�� · · ·
κc−2,c−1

��
κ43 �� C3
κ34

��
κ32 �� C2
κ23

��
κ21 �� C1,

(10)
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where we also indicated the rate coefficients. Note that in this case C′ = {C1} and
C′′ = {C2, . . . , Cc}, while the matrix I ′′

κ is tridiagonal and moreover

the column sums of I ′′
κ are zero except the one corresponding to C2. (11)

Clearly, (11) is a consequence of the fact that leaving the set C′′ is only possible through
C2 (i.e., using the notations introduced in Appendix 7, ∅ �= �out(C′′) ⊆ �out(C2)).
Proposition 4.2 below provides a recursive formula for the coordinates of ϑ ′′.

Proposition 4.2 Let (X , C,R, κ) be a deficiency-one mass action system for which
(C,R) takes the form (10). Let h and ϑ be as in (5) and (8), respectively. Then

ϑ2 = − 1

κ21

c∑

i=2

hi and (12)

ϑ j = κ j−1, j

κ j, j−1
ϑ j−1 − 1

κ j, j−1

c∑

i= j

hi ( j = 3, . . . , c). (13)

Proof Application of Lemma 4.1 with U = C′′ yields −κ21ϑ2 = ∑c
i=2 hi . This

proves (12).
Fix j ∈ {3, . . . , c}. Application of Lemma 4.1 with U = {C j , . . . , Cc} yields

κ j−1, jϑ j−1 − κ j, j−1ϑ j =
c∑

i= j

hi .

This proves (13). 
�
As a corollary of Proposition 4.2, we obtain directly a characterisation of those

reaction networks in Proposition 4.2 for which there exist rate coefficients such that
the resulting mass action system has a positive steady state. Similarly, a characterisation
is given for those networks for which the resulting mass action system has a positive
steady state regardless of the values of the rate coefficients.

Corollary 4.3 Let (X , C,R) be a deficiency-one reaction network for which (C,R)

takes the form (10). Let h ∈ R
c be as in (5). Then there exists κ : R → R+ such that

Eκ+ �= ∅ if and only if

c∑

i=2

hi < 0.

Proof The statement follows directly from (9) and Proposition 4.2. 
�
Corollary 4.4 Let (X , C,R) be a deficiency-one reaction network for which (C,R)

takes the form (10). Let h ∈ R
c be as in (5). Then for all κ : R → R+ we have

Eκ+ �= ∅ ifand only if
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c∑

i=2

hi < 0 and

c∑

i= j

hi ≤ 0 for all j ∈ {3, . . . , c}.

Proof The statement follows directly from (9) and Proposition 4.2. 
�

4.2 The case (C,R) is “tree-like”

In this subsection, we generalise the results obtained in Sect. 4.1. We will not pose in
this subsection the condition that the graph of complexes (C,R) takes the form (10),
rather we assume that (C,R) satisfies

� = t = 1 and (C,R) is not strongly connected, (14)

there exists a unique l ∈ C′′ such that �out(l) ∩ �out(C′′) �= ∅, and (15)

for all i ∈ C′′there exists a unique directed path from i to l. (16)

Thus, by (15), we have ∅ �= �out(C′′) ⊆ �out(l). Consider that the graph of complexes
(C,R) takes the form

C17
�� C16

����
��

��
��

�� C10 �� C9
�� C8

���
��

��
��

��� C1

��

C6��

C18

����������
C21

����
��

��
��

C15

����
��

��
��

����������
C11

����������
C12 �� C7

����������
��

		�
��

��
��

�



��
��

��
��

C2

��

C5

��

C19

����������������
C22

�� C20 ���� C14 �� C13

����������
C3 �� C4.

��

(17)

Note that C′ = {C1, . . . , C6} and C′′ = {C7, . . . , C22} for (17). Also, (17) satisfies
(14), (15), and (16) with l = C7.

Clearly, the graph in (10) satisfies (14), (15), and (16) with l = C2. Thus, the results
of this subsection are indeed generalisations of the results of Sect. 4.1.

For j ∈ C′′ denote by Pj the unique directed path from j to l and for i ∈ C′′ define
U (i) ⊆ C′′, called the set of descendants of i , by

U (i) = { j ∈ C′′ | i ∈ V [Pj ]},
i.e., we collect those vertices for which the unique directed path to l traverses i . Also,
for j ∈ C′′\{l} define p( j) ∈ V [Pj ], called the parent of j , by the implicit definition

len(Pp( j)) = len(Pj ) − 1,

i.e., the parent of j is the second vertex on the unique directed path from j to l. For
example, for (17) we have p(C20) = C14 and U (C20) = {C20, C21, C22}.
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We are now ready to state and prove the generalisation of Proposition 4.2.

Proposition 4.5 Let (X , C,R, κ) be a deficiency-one mass action system for which
(C,R) satisfies (14), (15), and (16). Let h and ϑ be as in (5) and (8), respectively.
Then

ϑl = − 1∑
l ′∈C′ κl,l ′

∑

i∈C′′
hi , (18)

ϑ j = κp( j), j

κ j,p( j)
ϑp( j) − 1

κ j,p( j)

∑

i∈U ( j)

hi ( j ∈ C′′\{l}). (19)

Proof Application of Lemma 4.1 with U = C′′ yields −∑
l ′∈C′ κl,l ′ϑl = ∑

i∈C′′ hi .
This proves (18).

Fix j ∈ C′′\{l}. Application of Lemma 4.1 with U = U ( j) yields

κp( j), jϑp( j) − κ j,p( j)ϑ j =
∑

i∈U ( j)

hi .

This proves (19). 
�
As consequences of Proposition 4.5, we obtain directly the generalisations of Corol-

laries 4.3 and 4.4.

Corollary 4.6 Let (X , C,R) be a deficiency-one reaction network for which (C,R)

satisfies (14), (15), and (16). Let h ∈ R
c be as in (5). Then there exists κ : R → R+

such that Eκ+ �= ∅ if and only if

∑

i∈C′′
hi < 0 and

∑

i∈U ( j)

hi < 0 for all j ∈ C′′\{l} that satisfies κp( j), j = 0.

Proof The statement follows directly from (9) and Proposition 4.5. 
�
Corollary 4.7 Let (X , C,R) be a deficiency-one reaction network for which (C,R)

satisfies (14), (15), and (16). Let h ∈ R
c be as in (5). Then for all κ : R → R+ we

have Eκ+ �= ∅ if and only if

∑

i∈C′′
hi < 0,

∑

i∈U ( j)

hi < 0 for all j ∈ C′′\{l} that satisfies κp( j), j = 0, and

∑

i∈U ( j)

hi ≤ 0 for all j ∈ C′′\{l} that satisfies κp( j), j > 0.
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Proof The statement follows directly from (9) and Proposition 4.5. 
�
Note that for (17) we have

κp( j), j = 0 for j ∈ {C8, C10, C11, C12, C14, C15, C18, C19, C20, C21} and

κp( j), j > 0 for j ∈ {C9, C13, C16, C17, C22}.

Thus, application of Corollary 4.6 yields for (17) that there exists κ : R → R+ such
that Eκ+ �= ∅ if and only if

h7+· · · + h22 < 0, h8+· · ·+h11 < 0, h10 <0, h11 < 0, h12 < 0, h14 + · · · + h22 < 0,

h15 + · · ·+h19 < 0, h18 < 0, h19 <0, h20+h21+h22 <0, and h21 <0. (20)

Similarly, application of Corollary 4.7 yields for (17) that for all κ : R → R+ we
have Eκ+ �= ∅ if and only if

(20) holds and moreover

h9 + h10 ≤ 0, h13 + · · · + h22 ≤ 0, h16 + · · · + h19 ≤ 0, h17 ≤ 0, h22 ≤ 0.

5 The existence of rate coefficients such that the set of positive steady states is
nonempty

In this section we generalise Corollary 4.6. We will assume only that the reaction
network under consideration is of deficiency-one and satisfies (14). The main tool
we use is the following purely graph theoretical theorem. We provide its proof in
Appendix 8. The graph theoretical notions and notations required to understand the
statement of Theorem 5.1 are summarized in Appendix 7.

Theorem 5.1 Let (V, A) be a weakly connected directed graph and let h : V → R

be a function with h(V ) = 0. Then there exists a function z : A → R+ such that
excessz = h if and only if

h(U ) < 0 for all ∅ �= U � V with �in(U ) = ∅. (21)

As a corollary of Theorem 5.1, we obtain the generalisation of Corollary 4.6.

Corollary 5.2 Let (X , C,R) be a reaction network for which � = t = 1 and δ = 1.
Assume that (C,R) is not strongly connected and let h ∈ R

c be as in (5). Then there
exists κ : R → R+ such that Eκ+ �= ∅ if and only if

h(C̃) < 0 for all ∅ �= C̃ � C such that �in (C̃) = ∅. (22)

Proof To prove that (22) is necessary, let κ : R → R+ be such that Eκ+ �= ∅. Then,

by Theorem 3.2 (b), we have (I ′′
κ )−1h′′ ∈ R

c′′
+ . Let ϑ ∈ R

c be such that Iκϑ = h
and define z : R → R by zi j = κi jϑi . Since ϑ ′′ = (I ′′

κ )−1h′′, we have ϑ ′′
i > 0 for
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all i ∈ C′′. Also, let ∅ �= C̃ � C be such that �in(C̃) = ∅. Then clearly C̃ ⊆ C′′ and
�out(C̃) �= ∅. Thus, by Lemma 4.1, we have

h(C̃) = excessz(C̃) = −z(�out(C̃)) = −
∑

(i, j)∈�out(C̃)

κi jϑi < 0.

To prove the sufficiency of (22), let κ : R → R+ be such that excessκ = h
(see Theorem 5.1). Also, define ϑ ∈ R

c by ϑi = 1 (i ∈ C). Then clearly Iκϑ = h
(recall (4)). Thus, (I ′′

κ )−1h′′ = ϑ ′′ ∈ R
c′′
+ and therefore Theorem 3.2 (b) concludes

the proof. 
�
Consider that the graph of complexes takes the form

C6
�� C5�� �� C1 �� C4

��
C7

����������
�� C8 �� C9

����������
C2

��

C3.��

(23)

Application of Corollary 5.2 to a reaction network for which the graph of complexes
is (23) yields that there exists κ : R → R+ such that Eκ+ �= ∅ if and only if

h5 + h6 + h7 < 0, h7 < 0, h7 + h8 < 0, h7 + h8 + h9 < 0,

h5 + h6 + h7 + h8 < 0, and h5 + h6 + h7 + h8 + h9 < 0.

By Corollary 5.2, the sets of interest are ∅ �= C̃ � C for which �in(C̃) = ∅.
Therefore, we conclude this section by some comments on these sets (see Proposition
5.3 and Corollary 5.4 below). To this end, let us define for i ∈ C′′ the set R(i) ⊆ C′′
by

R(i) = { j ∈ C′′ | there exists a directed path from j to i}. (24)

Proposition 5.3 Assume that (C,R) satisfies (14) and for i ∈ C′′ let R(i) be as in
(24). Then

(a) for all i ∈ C′′ we have i ∈ R(i),
(b) for all i ∈ C′′ the set R(i) is the disjoint union of some strong linkage classes,
(c) if i1 ∈ C′′ and i2 ∈ C′′ are in the same strong linkage class then R(i1) = R(i2),
(d) for all i ∈ C′′ we have ∅ �= R(i) � C and �in(R(i)) = ∅,
(e) if ∅ �= C̃ � C is such that �in(C̃) = ∅ and i ∈ C̃ then R(i) ⊆ C̃, and
(f) for all i1, i2 ∈ C′′ we have ∅ �= R(i1) ∪ R(i2) � C and �in(R(i1) ∪ R(i2)) = ∅.

Proof All the statements are trivial. 
�
Corollary 5.4 Assume that (C,R) satisfies (14) and for i ∈ C′′ let R(i) be as in
(24). Let ∅ �= C̃ � C be such that �in(C̃) = ∅. Then there exists J ⊆ C′′ such that
C̃ = ∪i∈J R(i).

Proof The statement follows directly from Proposition 5.3 (a) and (e). 
�
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For (23) we have

R(5) = R(6) = {5, 6, 7}, R(7) = {7}, R(8) = {7, 8}, and R(9) = {7, 8, 9}.

It can be seen that the sets ∅ �= C̃ � C for which �in(C̃) = ∅ holds for (23) are exactly
the sets

R(5), R(7), R(8), R(9), R(5) ∪ R(8), and R(5) ∪ R(9).

6 The non-emptiness of the set of positive steady states regardless of the values
of the rate coefficients

We generalised Corollary 4.6 in Sect. 5. Our aim in the present section is to generalise
Corollary 4.7. Namely, to provide an equivalent condition to the statement “ for all
κ : R → R+ we have Eκ+ �= ∅” for deficiency-one reaction networks for which
the graph of complexes satisfies (14). By Theorem 3.2 (b), the important object is
(I ′′

κ )−1h′′, thus it does not restrict the generality if we contract the absorbing strong
component of (C,R) into one vertex. So assume throughout this section that

C′ is a singleton.

Also, in order to ease the notation, we identify the set C′ with the sole element in that
set. (Though it is straightforward to extend all the definitions, proofs, and results of
this section to the case |C′| ≥ 2, we still suppose |C′| = 1 in order to avoid unnecessary
technical complications.)

The rest of this section is organised as follows. After providing a formula for the
entries of (I ′′

κ )−1 (see Theorem 6.1), we prove the generalisation of Corollary 4.7 (see
Corollary 6.2). As it will be demonstrated on (32), the obtained result contains certain
redundancies. We will get rid of these redundancies in three steps (see Corollaries 6.6,
6.11, 6.12). After some further manipulation, we arrive to Theorem 6.14, which is the
main result of this paper. Finally, we provide some additional results related to the
condition that appears in Theorem 6.14 (see Propositions 6.15 and 6.16).

We first provide a formula for the entries of the inverse of I ′′
κ via the Matrix-Tree

Theorem. This formula in some other context and with slightly different notations also
appears in [23, Appendix]. Please refer to Appendix 9 for more on the Matrix-Tree
Theorem.

Theorem 6.1 Assume that (C,R) satisfies (14). Fix i, j ∈ C′′. Then

((I ′′
κ )−1) j i = −

∑
R̃∈T i j

D (C′∪{ j}) κR̃
∑

R̃∈TD(C′) κR̃
, (25)

where the summation in the enumerator goes for those (C′ ∪ { j})-branchings R̃ in
D = (C,R) for which there exists a directed path from i to j in (C, R̃), while the
summation in the denominator goes for the C′-branchings R̃ in D = (C,R) (see
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Fig. 1 An example of a graph of complexes D = (C, R) with C = {C1, C2, C3, C4} and C′ = {C1} (on the
left), the three 1-branchings in D (in the middle), and the five {1, 4}-branchings in D (on the right). Note that
|T 24

D ({1, 4})| = 3, |T 34
D ({1, 4})| = 4, and |T 44

D ({1, 4})| = 5. Thus, e.g. for i = 2 and j = 4 the enumerator
in (25) is the sum of 3 products and each of these products has 2 factors, namely, κ23κ34 +κ24κ32 +κ24κ34

Appendix 7 for the definitions of these standard graph theoretical terms). The symbol
κR̃ is a shorthand notation for the product

∏
a∈R̃ κa.

Proof Application of Theorem 9.3 to the transpose of Iκ twice yield

((I ′′
κ )−1) j i = ((I ′′�

κ )−1)i j = (−1)i+ j d ji (I ′′�
κ )

det I ′′�
κ

= (−1)i+ j dC′∪{ j},C′∪{i}(I �
κ )

dC′,C′(I �
κ )

=
(−1)c−|C′|−1 ∑

R̃∈T i j
D (C′∪{ j}) κR̃

(−1)c−|C′|∑
R̃∈TD(C′) κR̃

,

where dQ1,Q2(Z) denotes the determinant of that matrix, which is obtained from Z
by deleting the rows with index in Q1 and the columns with index in Q2. 
�

See Fig. 1 for an illustration of the notions appearing in Theorem 6.1.
Let us introduce the notation LD(κ) = ∑

R̃∈TD(C′) κR̃. Thus, e.g. for the example
in Fig. 1 we have

LD(κ) = κ21κ32κ43 + κ21κ32κ42 + κ21κ34κ42.

From this point on, let h and ϑ be as in (5) and (8), respectively. As a consequence of
Theorem 6.1, for j ∈ C′′ we have

ϑ j =
[
(I ′′

κ )−1h′′]

j
= − 1

LD(κ)

∑

i∈C′′
hi

⎛

⎜⎝
∑

R̃∈T i j
D (C′∪{ j})

κR̃

⎞

⎟⎠

= − 1

LD(κ)

∑

R̃∈TD(C′∪{ j})

(
κR̃ · h(V [R̃, j])) ,

where V [R̃, j] denotes the vertex set of the j-arborescence of the (C′∪{ j})-branching
R̃ (see Appendix 7). Note that for a vertex j ∈ C′′ and a set U ⊆ C′′ there exists a
(C′ ∪ { j})-branching R̃ such that V [R̃, j] = U if and only if
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for all i ′ ∈ U there exists P ∈ −−→
i ′, j such that V [P] ⊆ U and (26)

for all i ′ ∈ C′′\U there exists P ∈ −−→
i ′, C′such that V [P] ⊆ C\U. (27)

Let us define the set C′′
j−inarb by

C′′
j−inarb = {U ⊆ C′′ | U satisfies (26) and (27)}. (28)

With this, we have

ϑ j = − 1

LD(κ)

∑

U∈C′′
j−inarb

⎛

⎜⎜⎜⎝h(U )
∑

R̃∈TD(C′∪{ j})
V [R̃, j]=U

κR̃

⎞

⎟⎟⎟⎠ .

Corollary 6.2 Let (X , C,R) be a reaction network for which � = t = 1 and δ = 1.
Assume that (C,R) is not strongly connected and let h ∈ R

c be as in (5). Then for all
κ : R → R+ we have Eκ+ �= ∅ if and only if

for all j ∈ C′′and

{
for all U ∈ C′′

j−inarb we have h(U ) ≤ 0 and

there exists U ∈ C′′
j−inarb such that h(U ) < 0.

(29)

Proof Since LD(κ) is a positive number, it suffices to show that (29) is equivalent to

for all κ :R→R+ and for all j ∈ C′′we have
∑

U∈C′′
j−inarb

⎛

⎜⎜⎜⎝h(U )
∑

R̃∈TD(C′∪{ j})
V [R̃, j]=U

κR̃

⎞

⎟⎟⎟⎠<0.

(30)

It is obvious that (29) implies (30).
To prove the other direction, assume that (30) holds and fix j ∈ C′′. It is clear that

the case h(U ) = 0 for all U ∈ C′′
j−inarb would contradict (30). Thus, it suffices to

exclude that there exists U ∈ C′′
j−inarb such that h(U ) > 0. Suppose by contradiction

that U ∈ C′′
j−inarb is such that h(U ) > 0. If there is no other element of C′′

j−inarb than U
then we obviously get a contradiction with (30). So suppose for the rest of this proof
that U is not the only element of C′′

j−inarb. Then

123



2470 J Math Chem (2013) 51:2455–2490

∑

U∈C′′
j−inarb

⎛

⎜⎜⎜⎝h(U )
∑

R̃∈TD(C′∪{ j})
V [R̃, j]=U

κR̃

⎞

⎟⎟⎟⎠ = h(U )
∑

R̃∈TD(C′∪{ j})
V [R̃, j]=U

κR̃

+
∑

U∈C′′
j−inarb\{U }

⎛

⎜⎜⎜⎝h(U )
∑

R̃∈TD(C′∪{ j})
V [R̃, j]=U

κR̃

⎞

⎟⎟⎟⎠ , (31)

where the first term is positive and is not affected by κ|�in(U )∪�out(U ), while for all

U ∈ C′′
j−inarb\{U } and for all R̃ ∈ TD(C′ ∪ { j}) such that V [R̃, j] = U , we have

R̃ ∩ (�in(U ) ∪ �out(U )) �= ∅. Thus, by setting the values of κ|�in(U )∪�out(U ) close
enough to zero, we can achieve that the absolute value of the second term of the right
hand side of (31) is smaller than the (positive) value of the first term in the same. This
contradicts (30). 
�

Note that Corollary 6.2 is a generalisation of Corollary 4.7. However, there are
certain redundancies in the set of conditions in (29), and therefore our aim in the rest
of this section is to get rid of these. In order to illustrate the result of Corollary 6.2 and
also the redundancy in (29), consider that the graph of complexes takes the form

C4
�� C3��

		�
��

��
��

�

C8
�� C7��

����������

		�
��

��
��

� C2 �� C1.

C6
��



															
C5��

����������

(32)

One can check by short calculation that

C′′
2−inarb = { {2, 3, 4, 5, 6, 7, 8} },

C′′
3−inarb = { {3, 4}, {3, 4, 7, 8} },

C′′
4−inarb = { {4}, {3, 4}, {4, 7, 8}, {3, 4, 7, 8} },

C′′
5−inarb = { {5}, {5, 6}, {5, 6, 7, 8} },

C′′
6−inarb = { {6}, {5, 6}, {6, 7, 8}, {5, 6, 7, 8} },

C′′
7−inarb = { {7, 8} }, and

C′′
8−inarb = { {8}, {7, 8} }.

(33)

Note however that e.g. the set {3, 4, 7, 8} ∈ C′′
3−inarb is the disjoint union of the sets

{3, 4} ∈ C′′
3−inarb and {7, 8} ∈ C′′

7−inarb. Hence, once we require that h({3, 4}) ≤ 0 and
h({7, 8}) ≤ 0, it is unnecessary to require also h({3, 4, 7, 8}) ≤ 0, because then it is
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automatically satisfied. Similarly, one may easily see for (32) that for all j ∈ C′′ and
for all U ∈ C′′

j−inarb, the set U is the disjoint union of some of the sets

{2, 3, 4, 5, 6, 7, 8}, {3, 4}, {4}, {5}, {6}, {7, 8}, and {8}.

Moreover, such a partition of U is unique. Thus, for (32) the following are equivalent.

For all j ∈ C′′ and for all U ∈ C′′
j−inarb we have h(U ) ≤ 0. (34)

We have h({2, 3, 4, 5, 6, 7, 8}) ≤ 0, h({3, 4}) ≤ 0, h({4}) ≤ 0,

h({5}) ≤ 0, h({6}) ≤ 0, h({7, 8}) ≤ 0, and h({8}) ≤ 0 (35)

(i.e., we require the non-positivity of h only for the first sets in each row of (33)).

We formulate in the following lemma that the above mentioned facts about (32)
hold generally.

Lemma 6.3 Assume that (C,R) satisfies (14). For j ∈ C′′ let C′′
j−inarb be as in (28).

For i ∈ C let us define U (i) ⊆ C by

U (i) = {k ∈ C | for all P ∈ −−→
k, C′ we have i ∈ V [P]}, (36)

i.e., k ∈ C is an element of U (i) if all the directed paths from k to C′ must traverse i
(clearly, for i ∈ C′′ we have U (i) ⊆ C′′). Then

(a) for all j ∈ C′′ we have U ( j) ∈ C′′
j−inarb and

(b) for all j ∈ C′′ and for all U ∈ C′′
j−inarb there exists a unique IU ⊆ C′′ such that

U =
⋃∗

i∈IU

U (i),

where the symbol ∗ stresses that if i, i ′ ∈ IU and i �= i ′ then U (i) ∩ U (i ′) = ∅.

The proof of Lemma 6.3 is carried out right after the proof of Lemma 6.4 below.
Clearly, we have U (C′) = C, but we will use the set U (C′) only after Theorem 6.14.
Before that, we will be interested in the collection {U (i) | i ∈ C′′}. We remark that
the notation U (i) is in accordance with the similar one in Sect. 4.2. Note that for the
reaction network (32) we have

U (2) = {2, 3, 4, 5, 6, 7, 8}, U (3) = {3, 4}, U (4) = {4}, U (5) = {5},
U (6) = {6}, U (7) = {7, 8}, and U (8) = {8}.

Before we prove Lemma 6.3, we explore some properties of the collection
{U (i) | i ∈ C′′} in the following lemma. Note that for all k ∈ C′′ there exists a

directed path from k to C′ (i.e., for all k ∈ C′′ we have
−−→
k, C′ �= ∅).

Lemma 6.4 Assume that (C,R) satisfies (14). Let i, i ′ ∈ C′′ and define U (i) and
U (i ′) as in (36). Then
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(a) i ∈ U (i),
(b) if i ′ ∈ U (i)\{i} then U (i ′) ⊆ U (i)\{i},
(c) if i �= i ′ then either U (i) � U (i ′) or U (i) � U (i ′) or U (i) ∩ U (i ′) = ∅, and
(d) �out(U (i)) ⊆ �out(i) (i.e., all the arcs that leave U (i) have tail i ).

Proof Statement (a) is trivial.
To prove statement (b), assume that i ′ ∈ U (i)\{i} and let i ′′ ∈ U (i ′). Then all the

directed paths from i ′′ to C′ traverse i ′ and since i ′ ∈ U (i), they must also traverse
i . This proves that U (i ′) ⊆ U (i). To prove (b), it remains to show that i /∈ U (i ′).
However, it is also obvious, because i ′ ∈ U (i) guarantees that there exists a directed
path from i ′ to C′, which traverses i . Since there cannot be vertex repetition in a directed
path and i �= i ′, this also shows that there exists a directed path from i to C′ that does
not traverse i ′.

To show (c), suppose that U (i)∩U (i ′) �= ∅ and let i ′′ ∈ U (i)∩U (i ′). Then all the
directed paths from i ′′ to C′ must traverse both i and i ′. Note that the order of i and
i ′ on these directed paths must be the same, otherwise we could easily construct two
directed paths from i ′′ to C′, one of which avoids i and the other one avoids i ′. As a
consequence, either i ∈ U (i ′)\{i ′} or i ′ ∈ U (i)\{i}. In both cases we are done by (b).

To prove (d), suppose by contradiction that there exist i ′ ∈ U (i)\{i} and i ′′ ∈
C\U (i) such that (i ′, i ′′) ∈ R. Then there exists P ∈ −−→

i ′′, C′ such that i /∈ V [P].
Therefore con(i ′, P) ∈ −−→

i ′, C′ is a directed path that avoids i , contradicting i ′ ∈ U (i)
(see Appendix 7 for the definition of the concatenation). 
�
Proof of Lemma 6.3 To prove (a), fix j ∈ C′′ and let i ′ ∈ C′′. Assume first that

i ′ ∈ U ( j) and let P ∈ −−→
i ′, C′. By Lemma 6.4 (d), V [Pi ′: j ] ⊆ U ( j) (Pi ′: j denotes the

part of P from i ′ to j , see Appendix 7). Assume now that i ′ ∈ C′′\U ( j). We need
to show that there exists a directed path from i ′ to C′ that avoids U ( j). Suppose by

contradiction that for all P ∈ −−→
i ′, C′ we have V [P] ∩ U ( j) �= ∅. Then, by Lemma 6.4

(d), it follows that j ∈ V [P], which contradicts i ′ /∈ U ( j).
It is left to prove (b). Fix j ∈ C′′ and U ∈ C′′

j−inarb. For i ∈ U , we have U (i) ⊆ U ,
because otherwise there would be an element i ′ ∈ U (i)\U , for which there does not
exist a directed path from i ′ to C′, which avoids U . Since we also have i ∈ U (i) (see
Lemma 6.4 (a)), it holds that U = ∪i∈U U (i). From this and Lemma 6.4 (c) it follows
that U is indeed the disjoint union of some U (i)’s and this partition is unique. Namely
those U (i)’s take part in the partition, which are maximal inside U . 
�

We obtain the following corollary, which is the first step towards the simplification
of (29).

Corollary 6.5 Assume that (C,R) satisfies (14) and let h ∈ R
c be arbitrary. For

i, j ∈ C′′ let C′′
j−inarb be as in (28) and let U (i) be as in (36). Then the following two

statements are equivalent.

(A) For all j ∈ C′′ and for all U ∈ C′′
j−inarb we have h(U ) ≤ 0.

(B) For all i ∈ C′′ we have h(U (i)) ≤ 0.

Proof Suppose that (A) holds. Then (B) follows directly from Lemma 6.3 (a).
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Now suppose that (B) holds. Statement (A) is then obtained immediately from
Lemma 6.3 (b). 
�
Corollary 6.6 Let (X , C,R) be a reaction network for which � = t = 1 and δ = 1.
Assume that (C,R) is not strongly connected and let h ∈ R

c be as in (5). For i, j ∈ C′′
let C′′

j−inarb be as in (28) and let U (i) be as in (36). Then for all κ : R → R+ we have
Eκ+ �= ∅ if and only if

{
for all i ∈ C′′ we have h(U (i)) ≤ 0 and

for all j ∈ C′′ there exists i ∈ ∪U∈C′′
j−inarb

IU such that h(U (i)) < 0,
(37)

where IU is the unique subset of C′′ such that U = ∪∗
i ′∈IU

U (i ′) (see Lemma 6.3 (b)).

Proof The equivalence is a direct consequence of Corollary 6.2, Lemma 6.3 (b), and
Corollary 6.5. 
�

In order to ease the notation in (37), we define for j ∈ C′′ the set W ( j) by

W ( j) =
⋃

U∈C′′
j−inarb

IU . (38)

By Lemmas 6.3 (b) and 6.4 (c), for i, j ∈ C′′ and U ∈ C′′
j−inarb we have

i ∈IU if and only if i ∈U and there does not exist i ′ ∈U\{i} such that i ∈U (i ′).
(39)

To illustrate the result of Corollary 6.6, note that for the reaction network (32) we
have

{2, 3, 4, 5, 6, 7, 8} = U (2),

{3, 4} = U (3), {3, 4, 7, 8} = U (3) ∪∗ U (7),

{4} = U (4), {3, 4} = U (3), {4, 7, 8} = U (4) ∪∗ U (7), {3, 4, 7, 8} = U (3) ∪∗ U (7),

{5} = U (5), {5, 6} = U (5) ∪∗ U (6), {5, 6, 7, 8} = U (5) ∪∗ U (6) ∪∗ U (7),

{6} = U (6), {5, 6} = U (5) ∪∗ U (6), {6, 7, 8} = U (6) ∪∗ U (7),

{5, 6, 7, 8} = U (5) ∪∗ U (6) ∪∗ U (7), {7, 8} = U (7), and

{8} = U (8), {7, 8} = U (7).

Thus,

I{2,3,4,5,6,7,8} = {2},
I{3,4} = {3}, I{3,4,7,8} = {3, 7},
I{4} = {4}, I{3,4} = {3}, I{4,7,8} = {4, 7}, I{3,4,7,8} = {3, 7},
I{5} = {5}, I{5,6} = {5, 6}, I{5,6,7,8} = {5, 6, 7},
I{6} = {6}, I{5,6} = {5, 6}, I{6,7,8} = {6, 7}, I{5,6,7,8} = {5, 6, 7},
I{7,8} = {7}, and
I{8} = {8}, I{7,8} = {7},
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and therefore

W (2) = {2}, W (3) = {3, 7}, W (4) = {3, 4, 7}, W (5) = {5, 6, 7},
W (6) = {5, 6, 7}, W (7) = {7}, and W (8) = {7, 8}. (40)

Since

W (7) ⊆ W (3), W (7) ⊆ W (4), W (7) ⊆ W (5), W (7) ⊆ W (6), and W (7) ⊆ W (8),

once we require that there exist i2 ∈ W (2) and i7 ∈ W (7) such that h(U (i2)) < 0 and
h(U (i7)) < 0 hold, it is unnecessary to require also e.g. that there exists i4 ∈ W (4)

such that h(U (i4)) < 0, because that is automatically satisfied. Our aim is to get rid of
these sort of redundancies in Corollary 6.6. For this, we first take a closer look at the
collection {W ( j) | j ∈ C′′} in Proposition 6.8. During the proof of that proposition,
we will use the following corollary of Menger’s Theorem.

Theorem 6.7 Let D = (V, A) be a directed graph and let s, t be such that (s, t) /∈ A.
Then there exists P1, P2 ∈ −→

s, t such that V [P1] ∩ V [P2] = {s, t} if and only if for all
i ∈ V \{s, t} there exists P ∈ −→

s, t such that i /∈ V [P].
Proof The result is a direct consequence of Theorem 7.1. See [24, Section 9.1] for
more on Menger’s Theorem. 
�
Proposition 6.8 Assume that (C,R) satisfies (14). Let j ∈ C′′ and let W ( j) be as in
(38). Then

W ( j)={i ∈C′′ | there exist Pj ∈−→
i, j and PC′ ∈−→

i, C′ such that V [Pj ] ∩ V [PC′ ]={i}}.
(41)

Proof Denote by Q( j) the set on the right hand side of (41). We will show (41) by
showing that both W ( j) ⊆ Q( j) and W ( j) ⊇ Q( j) hold.

First we prove that W ( j) ⊆ Q( j) holds. By (38) and (39), we obtain for i ∈ C′′
that i ∈ W ( j) if and only if

there exists U ∈C′′
j−inarb such that i ∈Uand for all i ′ ∈U\{i} we have i /∈U (i ′). (42)

To obtain an equivalent description of Q( j), we will apply Theorem 6.7 for the directed
graph

D̂ = (C ∪ {c},R ∪ {( j, c), (C′, c)}),

where c is an auxiliary vertex. Thus, we have added the arcs ( j, c) and (C′, c) to R.
Application of Theorem 6.7 with s = i ∈ C′′\{ j} and t = c yields that for i ∈ C′′\{ j}
that we have i ∈ Q( j) if and only if

−→
i, j �=∅ and for all i ′ ∈C′′\{i} we have i /∈ U (i ′) or there exists P ∈−→

i, j such that i ′ /∈ V [P],
(43)
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where the “or” is inclusive. Using (26), it is obvious that (42) implies (43) for i ∈
C′′\{ j}. Thus, taking also into account that j ∈ Q( j) holds obviously, we obtain the
inclusion W ( j) ⊆ Q( j).

It is left to prove W ( j) ⊇ Q( j). Fix i ∈ Q( j), Pj ∈ −→
i, j , and PC′ ∈ −→

i, C′ such that
V [Pj ] ∩ V [PC′ ] = {i}. Let

U = {i ′ ∈ C′′ | there exists P ∈ −−→
i ′, j such that V [P] ∩ V [PC′ ] ⊆ {i}}, (44)

i.e., we collect those vertices, from which it is possible to reach j without traversing
PC′ except maybe in i . It is trivial that U in (44) satisfies (26). Also, it is easy to see
that U in (44) fulfills (27). Thus, we have U ∈ C′′

j−inarb. The only thing it is left to
check is that i ∈ IU . Clearly, i ∈ U and (V [PC′ ]\{i}) ∩ U = ∅. Hence, there does
not exist i ′ ∈ U\{i} such that i ∈ U (i ′). Thus, by (39), we obtain that i ∈ IU . This
concludes the proof of the inclusion W ( j) ⊇ Q( j). 
�

In case j1, j2 ∈ C′′ are such that W ( j1) ⊆ W ( j2), it is redundant in Corollary 6.6
to require that there exists i ∈ W ( j2) such that h(U (i)) < 0, because this already
follows if we require the same for j1 instead of j2. In order to get rid of these kind of
redundancies, we take a closer look at the collection {W ( j) | j ∈ C′′}. The following
lemma is the key.

Lemma 6.9 Assume that (C,R) satisfies (14). For j ∈ C′′ let W ( j) be as in (38). Fix
j1, j2 ∈ C′′ such that j1 ∈ W ( j2). Then W ( j1) ⊆ W ( j2).

Proof Let j3 ∈ W ( j1). Our aim is to show that j3 is also an element of W ( j2). If
j3 = j2 then j3 ∈ W ( j2) trivially holds, so let us assume for the rest of this proof that
j3 �= j2. Similarly to the proof of Proposition 6.8, we will apply Theorem 6.7 to the
directed graph

D̂ = (C ∪ {c},R ∪ {( j2, c), (C′, c)}),

where c is an auxiliary vertex. Let

Pj2 ∈ −−−→
j1, j2 and PC′ ∈ −−→

j1, C′ be such that V [Pj2 ] ∩ V [PC′ ] = { j1} and

Q j1 ∈ −−−→
j3, j1 and QC′ ∈ −−→

j3, C′ be such that V [Q j1] ∩ V [QC′ ] = { j3}.

Clearly, once we show that for all i ∈ C\{ j3} there exists a directed path from j3 to
c in D̂ that does not traverse i , we can draw the conclusion j3 ∈ W ( j2) by Theorem
6.7.

First let i ∈ C\V [QC′ ]. Then con(QC′ , c) is a directed path from j3 to c in D̂ that
does not traverse i .

It is left to treat the case i ∈ V [QC′ ]\{ j3}. Then i /∈ V [Pj2 ] or i /∈ V [PC′ ], where
the “ or” is inclusive. If i /∈ V [Pj2 ] then con(Q j1, Pj2 , c) is a directed walk from j3 to
c in D̂ that does not traverse i . If i /∈ V [PC′ ] then con(Q j1, PC′ , c) is a directed walk
from j3 to c in D̂ that does not traverse i . In both cases, one may easily construct the
desired directed path from the directed walk. 
�
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For j ∈ C′′, denote by C′′( j) the vertex set of that strong component of (C,R),
which contains j . Thus, for (32) we have

C′′(2) = {2}, C′′(3) = C′′(4) = {3, 4}, C′′(5) = C′′(6) = {5, 6},
and C′′(7) = C′′(8) = {7, 8}.

For j ∈ C′′ we say that it is possible to leave C′′( j) through j if �out( j)∩�out(C′′( j)) �=
∅. For (32), this property holds with j ∈ {2, 3, 5, 6, 7}.
Corollary 6.10 Assume that (C,R) satisfies (14). For j ∈ C′′ let W ( j) be as in (38).
Let j ∈ C′′ be such that “ it is possible to leave C′′( j) through j” (i.e., �out( j) ∩
�out(C′′( j)) �= ∅). Then for all j ′ ∈ C′′( j) we have W ( j) ⊆ W ( j ′).

Proof Fix j ′ ∈ C′′( j). There exists a directed path from j to j ′ which uses only
vertices in C′′( j). On the other hand, since �out( j)∩�out(C′′( j)) �= ∅, it is possible to
reach C′ from j using only vertices from C\(C′′( j)\{ j}). Hence, by Proposition 6.8,
we have j ∈ W ( j ′). Lemma 6.9 concludes the proof. 
�

It is clear from the above corollary that if j1, j2 ∈ C′′ are such that C′′( j1) =
C′′( j2), �out( j1) ∩ �out(C′′( j1)) �= ∅, and �out( j2) ∩ �out(C′′( j2)) �= ∅ then W ( j1) =
W ( j2). For the reaction network (32) we indeed have W (5) = W (6).

Let J be a subset of C′′ for which

J contains precisely one element of each non-absorbing strong component of

(C,R) and for all j ∈ J we have �out( j) ∩ �out(C′′( j)) �= ∅.
(45)

For (32) we have two choices for J . One is {2, 3, 5, 7}, while the other one is
{2, 3, 6, 7}. To be concrete, let J = {2, 3, 5, 7}. Due to Corollary 6.10, we have

W (3) ⊆ W (4), W (5) ⊆ W (6), and W (7) ⊆ W (8),

which is indeed the case (see (40)).
We have thus obtained the following corollary.

Corollary 6.11 Let (X , C,R) be a reaction network for which � = t = 1 and δ = 1.
Assume that (C,R) is not strongly connected and let h ∈ R

c be as in (5). For i, j ∈ C′′
let U (i) and W ( j) be as in (36) and (38), respectively. Also, let J be as in (45). Then
for all κ : R → R+ we have Eκ+ �= ∅ if and only if

{
for all i ∈ C′′ we have h(U (i)) ≤ 0 and

for all j ∈ J there exists i ∈ W ( j) such that h(U (i)) < 0.
(46)

Proof The equivalence follows directly from (38) and Corollaries 6.6 and 6.10. 
�
Since for (32) we have made the choice J = {2, 3, 5, 7}, Corollary 6.11 suggests

that the sets of importance are W (2), W (3), W (5), and W (7). Recall that

W (2) = {2}, W (3) = {3, 7}, W (5) = {5, 6, 7}, and W (7) = {7}. (47)
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As 7 ∈ W (3) and 7 ∈ W (5), by Lemma 6.9 we have W (7) ⊆ W (3) and W (7) ⊆ W (5)

(which is anyway obvious from (47)). Thus, still there is redundancy in Corollary 6.11.
Elimination of this redundancy is formulated in the following corollary.

Corollary 6.12 Let (X , C,R) be a reaction network for which � = t = 1 and δ = 1.
Assume that (C,R) is not strongly connected and let h ∈ R

c be as in (5). For i, j ∈ C′′
let U (i) and W ( j) be as in (36) and (38), respectively. Also, let J be as in (45). Then
for all κ : R → R+ we have Eκ+ �= ∅ if and only if

{
for all i ∈ C′′ we have h(U (i)) ≤ 0 and

for all j ∈J such that W ( j)⊆C′′( j), there exists i ∈W ( j) such that h(U (i)) < 0.
(48)

Proof If W ( j) � C′′( j) for some j ∈ J then for j ′ ∈ W ( j)\C′′( j) we have W ( j ′) ⊆
W ( j) (see Lemma 6.9). Denote by j ′′ the sole element of the singleton J ∩ C′′( j ′).
Then we have W ( j ′′) ⊆ W ( j ′) ⊆ W ( j) (see Corollary 6.10). Hence, the statement
“there exists i ∈ W ( j ′′) such that h(U (i)) < 0” implies that “there exists i ∈ W ( j)
such that h(U (i)) < 0”. Thus, the result follows from Corollary 6.11. 
�

For (32) we have

W (2) = {2} ⊆ {2} = C′′(2),

W (3) = {3, 7} � {3, 4} = C′′(3),

W (5) = {5, 6, 7} � {5, 6} = C′′(5), and

W (7) = {7} ⊆ {7, 8} = C′′(7).

(49)

To simplify further the condition (48), we examine in the following proposition the
collection {U (i) | i ∈ W ( j)}, where j ∈ C′′ is such that �out( j) ∩ �out(C′′( j)) �= ∅
and W ( j) ⊆ C′′( j).

Lemma 6.13 Assume that (C,R) satisfies (14). For i, j ∈ C′′ let U (i) and W ( j) be
as in (36) and (38), respectively. Fix j ∈ C′′ such that �out( j) ∩ �out(C′′( j)) �= ∅
and W ( j) ⊆ C′′( j). Then the sets {U (i) | i ∈ W ( j)} are disjoint and ∪∗

i∈W ( j)U (i) =
U (C′′( j)), where

U (C′′( j)) = {k ∈ C′′ | all directed paths from k to C′ traverse C′′( j)}. (50)

Proof First we prove that the sets {U (i) | i ∈ W ( j)} are disjoint. Let i1, i2 ∈ W ( j) be
such that i1 �= i2. Due to Lemma 6.4 (c), it suffices to show that none of U (i1) and U (i2)

contains the other one. Suppose by contradiction that U (i2) ⊆ U (i1)\{i1}. Let Pj ∈−−→
i2, j and PC′ ∈ −−→

i2, C′ be such that V [Pj ] ∩ V [PC′ ] = {i2} (see Proposition 6.8). Since
i2 ∈ U (i1) by our hypothesis (i2 ∈ U (i2) by Lemma 6.4 (a)), we have i1 ∈ V [PC′ ].
Since i1 �= i2, we have i1 /∈ V [Pj ]. Let P ∈ −−→

j, C′ be such that V [P] ∩ C′′( j) = { j}
(recall that �out( j) ∩ �out(C′′( j)) �= ∅). Then clearly i1 /∈ V [P] (recall that i1 ∈
W ( j) ⊆ C′′( j) and the case i1 = j can trivially be excluded). Thus, con(Pj , P) ∈
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−−→
i2, C′ and i1 /∈ V [con(Pj , P)], contradicting i2 ∈ U (i1). This contradiction proves
that the sets {U (i) | i ∈ W ( j)} are indeed disjoint.

It is left to prove that ∪∗
i∈W ( j)U (i) = U (C′′( j)). It is obvious that U (C′′( j)) ∈

C′′
j−inarb (one may prove this similarly to the proof Lemma 6.3 (a)). Hence, we have

IU (C′′( j)) ⊆ W ( j) (see (38)). Also, note that for i ∈ W ( j) we have i ∈ C′′( j) (recall
that have we assumed in the lemma that W ( j) ⊆ C′′( j)). Thus, for i ∈ W ( j) we
obviously have U (i) ⊆ U (C′′( j)). Therefore,

U (C′′( j)) =
⋃∗

i∈IU (C′′( j))

U (i) ⊆
⋃∗

i∈W ( j)

U (i) ⊆ U (C′′( j)).

As a consequence, all the inclusions in the above chain are equality. This concludes
the proof of ∪∗

i∈W ( j)U (i) = U (C′′( j)). 
�
As a consequence, we obtain Theorem 6.14 below, which is the main result of this

paper. Recall that for i, j ∈ C′′

• U (i) = {k ∈ C′′ | all directed paths from k to C′ traverse i},
• C′′( j) denotes the vertex set of that strong component of (C,R) which contains j ,
• U (C′′( j)) = {k ∈ C′′ | all directed paths from k to C′ traverse C′′( j)}, and

• W ( j) = {k ∈ C′′ | there exist Pj ∈ −→
k, j and PC′ ∈ −−→

k, C′ such that V [Pj ]∩V [PC′ ] =
{k}}.

Also, recall that J ⊆ C′′ is such that J contains precisely one element of each
non-absorbing strong component of (C,R) and for all j ∈ J we have �out( j) ∩
�out(C′′( j)) �= ∅.

Theorem 6.14 Let (X , C,R) be a reaction network for which � = t = 1 and δ = 1.
Assume that (C,R) is not strongly connected and let h ∈ R

c be as in (5). For i, j ∈ C′′
let U (i), W ( j), and U (C′′( j)) be as in (36), (38), and (50), respectively. Also, let J
be as in (45). Then for all κ : R → R+ we have Eκ+ �= ∅ if and only if

{
for all i ∈ C′′ we have h(U (i)) ≤ 0 and

for all j ∈ J such that W ( j) ⊆ C′′( j), we have h(U (C′′( j))) < 0.
(51)

Proof The statement follows directly from Corollary 6.12 and Lemma 6.13. 
�
Since for (32) we have U (C′′(2)) = U (2) and U (C′′(7)) = U (7) we obtain that for

all κ : R → R+ we have Eκ+ �= ∅ if and only if

h({2, 3, 4, 5, 6, 7, 8}) < 0, h({3, 4}) ≤ 0, h({4}) ≤ 0, h({5}) ≤ 0,

h({6}) ≤ 0, h({7, 8}) < 0, and h({8}) ≤ 0.

Since the condition W ( j) ⊆ C′′( j) appeared in our main result, the rest of this
section is devoted to provide an equivalent (and more transparent) condition to that.
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After some preparations, we will arrive to this equivalent condition in Proposition
6.16. Let us start by defining the set U( j) for j ∈ J by

U( j) =
⋃

j ′∈C′′( j)

U ( j ′). (52)

Also, let U(C′) = U (C′) (thus, U(C′) = C). Note that for (32) we have

U(2) = {2, 3, 4, 5, 6, 7, 8},U(3) = {3, 4},U(5) = {5, 6}, and U(7) = {7, 8}.

The following proposition states that the collection {U( j) | j ∈ J } has a similar
property as the collection {U (i) | i ∈ C′′} has.

Proposition 6.15 Assume that (C,R) satisfies (14). Let J be as in (45) and for j ∈ J
let U( j) be as in (52). Let j1, j2 ∈ J be such that j1 �= j2. Then either U( j1) � U( j2)
or U( j1) � U( j2) or U( j1) ∩ U( j2) = ∅.

Proof Suppose that U( j1)∩U( j2) �= ∅. Let j ′1 ∈ C′′( j1) and j ′2 ∈ C′′( j2) be such that
U ( j ′1) ∩ U ( j ′2) �= ∅. Then, by Lemma 6.4 (b) and (i i i), either U ( j ′1) � U ( j ′2)\{ j ′2}
or U ( j ′1)\{ j ′1} � U ( j ′2). Clearly, the two cases are symmetric. Suppose for the rest
of this proof that U ( j ′1) � U ( j ′2)\{ j ′2}. Since j ′1 and j ′2 are not in the same strong
component, this has the consequence that C′′( j1) � U ( j ′2). Thus, by Lemma 6.4 (b),
we have

U( j1) =
⋃

j ′∈C′′( j1)

U ( j ′) ⊆ U ( j ′2)\{ j ′2} � U ( j ′2) ⊆
⋃

j ′∈C′′( j2)

U ( j ′) = U( j2),

which concludes the proof. 
�
A collection Q of subsets of a set is called laminar if for all Q1, Q2 ∈ Q we have

Q1 ⊆ Q2 or Q1 ⊇ Q2 or Q1 ∩ Q2 = ∅.

Thus, by Lemma 6.4 (c) and Proposition 6.15 both the collections

{U (i) | i ∈ C′′} ∪ {C} and {U( j) | j ∈ J } ∪ {C} (53)

are laminar. It is straightforward to associate a branching to a laminar collection Q
that consists of distinct sets. The vertex set of the branching is Q itself, while for
Q1, Q2 ∈ Q the ordered pair (Q1, Q2) is an arc if Q1 ⊆ Q2 and there does not exist
Q3 ∈ Q such that Q1 ⊆ Q3 ⊆ Q2. Denote by T and T the arborescences associated
to the laminar collections in (53), respectively (since all the other sets of these two
collections are contained in C, the associated branching is actually an arborescence
with root C). We have depicted T and T associated to (32) in Fig. 2.

It is also straightforward to associate to a directed graph D = (V, A) an acyclic
directed graph, denoted by TD , in the following way. Denote by V 1, . . . , V k the vertex
sets of the strong components of D. The vertex set of TD is then {V 1, . . . , V k}, while
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Fig. 2 The arborescences T and T associated to the laminar families (53) and the acyclic directed graph
T for (32)

Fig. 3 The arborescences T and T associated to the laminar families (53) and the acyclic directed graph
T for (32) considering the straightforward identifications of the vertex sets

for k1, k2 ∈ {1, . . . , k} such that k1 �= k2, the ordered pair (V k1 , V k2) is an arc of
TD if �out

D (V k1) ∩ �in
D(V k2) �= ∅. We will simply denote by T the acyclic directed

graph T(C,R). Thus, the vertex set of T is {C′′( j) | j ∈ J } ∪ {C′}. We have depicted
T associated to (32) in Fig. 2.

For the sake of simplicity, we perform some natural identifications. We identify from
this point on the vertex sets of T, T , and T with the sets C′′∪{C′},J ∪{C′}, and J ∪{C′},
respectively (recall that U (C′) = C and U(C′) = C). With these identifications, the
arborescence T and the acyclic directed graph T has the same vertex set, which makes
it possible to depict them at once. We have depicted T, T , and T considering these
identifications in Fig. 3.

The following proposition states that for j ∈ J the condition W ( j) ⊆ C′′( j) can
be expressed in terms of T and T. For a directed graph D = (V, A) and j ∈ V let us
denote by RD( j) the set of vertices from which it is possible to reach j in D, i.e.,

RD( j) = { j̃ ∈ V | there exists a directed path from j̃ to j in D}. (54)

It is trivial that for all j ∈ J we have RT ( j) ⊆ RT( j).

Proposition 6.16 Assume that (C,R) satisfies (14). Let J be as in (45) and for j ∈ C′′
let W ( j) be as in (38). Also, let the arborescence T and acyclic directed graph T be as
above. Fix j ∈ J . Then W ( j) ⊆ C′′( j) if and only if RT ( j) = RT( j), where RT ( j)
and RT( j) are understood in accordance with (54).

123



J Math Chem (2013) 51:2455–2490 2481

Proof Assume first that RT ( j) = RT( j) and suppose by contradiction that

W ( j)\C′′( j) �= ∅. Let i ∈ W ( j)\C′′( j), Pj ∈ −→
i, j , and PC′ ∈ −→

i, C′ be such that

V [Pj ] ∩ V [PC′ ] = {i} (see Proposition 6.8). Also, let P ∈ −−→
j, C′ be such that

V [P] ∩ C′′( j) = { j} (recall that �out( j) ∩ �out(C′′( j)) �= ∅). Then both PC′ and
con(Pj , P) are directed paths from i to C′ and these two cannot have any common
vertex in C′′( j). Thus, there does not exist j ′ ∈ C′′( j) such that i ∈ U ( j ′), and conse-
quently i /∈ U( j). Let j ∈ J be such that i ∈ C′′( j). Then j ∈ RT( j) and j /∈ RT ( j),
which contradicts RT ( j) = RT( j).

To show the other direction, assume that W ( j) ⊆ C′′( j) and suppose by contra-
diction i ∈ C′′ is such that

−→
i, j �= ∅ and there does not exist j ′ ∈ C′′( j) such that

i ∈ U ( j ′). Moreover, assume that i is such that
−−−−−→
pT (i), j = ∅, where pT (i) ∈ C is the

parent of i in T (i.e., pT (i) is the second vertex on the unique directed path from i to
C′ in T ). Since i ∈ U (i), it follows that i /∈ C′′( j). We will show that i ∈ W ( j), which
will thus contradict W ( j) ⊆ C′′( j). To show the inclusion i ∈ W ( j), note that the set
{i ′ ∈ C′′\{i} | i ∈ U (i ′)} coincides with V [P]\{i, C′}, where P is the unique directed
path from i to C′ in T . However, by our assumption on i , for all i ′ ∈ V [P]\{i, C′} we

have
−−→
i ′, j = ∅. Thus, taking also into account Proposition 6.8 and (43) in the proof of

that proposition, we obtain that i ∈ W ( j). This concludes the proof. 
�

For the reaction network (32) we have

RT (2) = {2, 3, 5, 7} = {2, 3, 5, 7} = RT(2),

RT (3) = {3} � {3, 7} = RT(3),

RT (5) = {5} � {5, 7} = RT(5), and

RT (7) = {7} = {7} = RT(7),

which is indeed in accordance with (49).
We conclude this section by some remarks on the collection {U (i) | i ∈ C′′} ∪ {C}.

First, note that not only {U (i) | i ∈ C′′} ∪ {C} determines T , but also conversely.
Indeed, it is obvious that U (i) = RT (i) for all i ∈ C. In graph theory, if j ∈ U (i) then
we say that i postdominates j . The arborescence T is called the postdominator tree.
See e.g. [19] for more on algorithmic issues concerning the dominator/postdominator
tree.

Acknowledgments The author is grateful to György Michaletzky for the fruitful discussions while facing
the difficulties during the attempts of proving the main result.

7 Appendix A: Some basic notions from the theory of directed graphs

We collect in this section those standard concepts and notations from graph theory
that are used throughout this paper. The notions are taken from [24, Sections 3.2, 9.1,
and 10.1].

Let D = (V, A) be a directed graph without multiple arcs throughout this section.
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For i0, i1, . . . , il ∈ V with l ∈ Z≥0, we say that P = (i0, i1, . . . , il) is a directed
walk from i0 to il , or just a directed walk, if (ik, ik+1) ∈ A for all k ∈ {0, 1, . . . , l −1}.
The length of a directed walk P = (i0, i1, . . . , il), denoted by len(P), is l. For a
directed walk P = (i0, i1, . . . , il), we denote by V [P] the vertex set {i0, i1, . . . , il}
(we use the notation V [P] even if the vertex set of the directed graph in question is
denoted by some other symbol than V ). If i ∈ V [P] for a directed walk P then we
say that P traverses i , while if i /∈ V [P] then we say that P avoids i . One can define
traversing and avoiding a set U ⊆ V similarly. A directed walk P = (i0, i1, . . . , il)
is said to be a directed path if i0, i1, . . . , il are all distinct. For i, j ∈ V , we denote
by

−→
i, j the set of directed paths from i to j . For a directed path P = (i0, i1, . . . , il)

and 0 ≤ k ≤ m ≤ l we denote by Pik :im the directed path (ik, ik+1, . . . , im). A
directed walk P = (i0, i1, . . . , il) is said to be a directed circuit if l ≥ 1, i0 = il , and
i0, i1, . . . , il−1 are all distinct.

For the directed walks P1 = (i0, i1, . . . , il) and P2 = ( j0, j1, . . . , jk) with il = j0,
we denote by con(P1, P2) their concatenation, which is defined by con(P1, P2) =
(i0, . . . , il , j1, . . . , jk). Clearly, con(P1, P2) is then a directed walk from i0 to jk .

The directed graph D is called strongly connected if for all i, j ∈ V we have−→
i, j �= ∅, while it is called weakly connected if the underlying undirected graph is
connected. The maximal strongly connected subgraphs of D are called the strong
components of D, while the maximal weakly connected subgraphs of D are called the
weak components of D. An absorbing strong component of D is a strong component
such that there is no arc, which leaves it.

The above definitions are in accordance with the ones in [24, Section 3.2], with the
only difference that we have defined a directed walk as a sequence of vertices rather
than an alternating sequence of vertices and arcs. This choice is made here, because
it suffices all our purposes in this paper if we restrict our attention to directed graphs
without multiple arcs.

We use a corollary of the following theorem several times in Sect. 6. See [24,
Corollary 9.1a] for a proof of Menger’s Theorem.

Theorem 7.1 (Menger’s Theorem [24]) Let D = (V, A) be a directed graph and let
s and t be two nonadjacent vertices of D. Then the maximum number of internally
vertex-disjoint s − t paths is equal to the minimum size of an s − t vertex-cut.

For U ⊆ V , the set of arcs, which enter U and leave U are defined by

�in
D(U ) = {(i, j) ∈ A | i ∈ V \U, j ∈ U } and

�out
D (U ) = {(i, j) ∈ A | i ∈ U, j ∈ V \U },

respectively. Denote by 2V the power set of V. For a function z : A → R, define the
function excessz : 2V → R by

excessz(U ) = z(�in(U )) − z(�out(U )) (U ⊆ V ),

where z(�in(U )) and z(�out(U )) are understood in accordance with (1). For i ∈ V
we use the notations �in(i), �out(i), and excessz(i) instead of �in({i}), �out({i}), and
excessz({i}), respectively. Note that excessz(V ) = excessz(∅) = 0.
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Fig. 4 A directed graph D with vertex set {1, . . . , 12} (on the left) and two elements of AD({1, 2, 3, 8})
(in the middle and on the right). The one in the middle is not acyclic, and hence, it does not belong to
TD({1, 2, 3, 8}), while the one on the right is acyclic, so that one is a {1, 2, 3, 8}-branching in D. It is also
apparent that the latter one can be decomposed into four arborescences, the roots of these four arborescences
are 1, 2, 3, and 8, respectively

An important and frequently used observation is that

excessz(U ) =
∑

i∈U

excessz(i) for all U ⊆ V . (55)

Thus, the excess function satisfies (1).
For a function h : V → R, a function z : A → R is called an h-transshipment if

excessz = h.
Let us define AD(U ) and TD(U ) by

AD(U ) =
{

Ã ⊆ A

∣∣∣∣
|�out

(V, Ã)
(k)| = 0 for all k ∈ U and

|�out
(V, Ã)

(k)| = 1 for all k ∈ V \U

}
and (56)

TD(U ) = { Ã ∈ AD(U ) | (V, Ã) is acyclic}, (57)

respectively. (A directed graph is called acyclic if it has no directed circuits.) The
elements of TD(U ) are called U -branchings in D (or more precisely U -inbranchings
in D), the set U being called the root set. If U is the singleton { j} for some j ∈ V then
a U -branching Ã is called a j-arborescence (or more precisely a j-inarborescence).
Clearly, if U = { j1, . . . , jk} for some positive integer k then for a U -branching
Ã, (V, Ã) has k weak components, each of them is corresponding to an element
of U . Denote these weak components by (V j1, Ã j1), . . . , (V jk , Ã jk ). Then Ã j is a
j-arborescence in the directed graph (V j , {(i, i ′) ∈ A | i, i ′ ∈ V j }) for all j ∈ U . See
Fig. 4 for an illustration of these notions.

We also use the following notations in Sects. 6 and 9.2. For i, j ∈ V let us define
Ai j

D(U ) and T i j
D (U ) by

Ai j
D(U ) = { Ã ∈ AD(U ) | there exists a directed path from i to j in(V, Ã)} and

(58)

T i j
D (U ) = { Ã ∈ TD(U ) | there exists a directed path from i to j in(V, Ã)}, (59)

respectively.
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8 Appendix B: Proof of Theorem 5.1

The aim of this section is to prove Theorem 5.1. The main tool we will use in that
proof is the following theorem (see [24, Corollary 11.2f]), which is a well-known
consequence of the Hoffman’s Theorem (see [24, Theorem 11.2]).

Theorem 8.1 Let D = (V, A) be a directed graph, let d, c : A → R with d ≤ c and
let h : V → R with h(V ) = 0. Then there exists an h-transshipment z with d ≤ z ≤ c
if and only if

c(�in(U )) − d(�out(U )) ≥ h(U ) for all U ⊆ V .

Note that Theorem 5.1 characterises the existence of a positive h-transshipment for
a function h : V → R with h(V ) = 0. Compare this to the characterisation of the
existence of a nonnegative h-transshipment (see [24, Corollary 11.2h]).

Proof of Theorem 5.1 To show that (21) is necessary, let z : A → R+ be an
h-transshipment and ∅ �= U � V with �in(U ) = ∅. Then

h(U ) = excessz(U ) = z(�in(U )) − z(�out(U )) = −z(�out(U )) < 0,

where the inequality holds, because �out(U ) and �in(U ) cannot be empty at the same
time (D is assumed to be weakly connected and ∅ �= U � V ) and the values of z are
positive.

To show the sufficiency of (21), assume for the rest of this proof that (21) holds.
Clearly, the existence of a positive h-transshipment is equivalent to the existence of
0 < ε ≤ K such that there exists an h-transshipment z with ε ≤ z ≤ K . By Theorem
8.1, the latter is equivalent to the existence of 0 < ε ≤ K such that

K |�in(U )| − ε|�out(U )| ≥ h(U ) for all U ⊆ V . (60)

Let

ε = min

({
− h(U )

|�out(U )|

∣∣∣∣ ∅ �= U � V and �in(U ) = ∅
}

∪ {1}
)

and (61)

K = max

({
h(U )+ε|�out(U )|

|�in(U )|

∣∣∣∣ ∅ �= U � V and �in(U ) �= ∅
}

∪ {ε}
)

. (62)

Note that ε > 0 is guaranteed by (21). Also, we have ε ≤ K . We show that (60) holds
with these specific choices of ε and K .

Both for U = ∅ and U = V we have �in(U ) = �out(U ) = ∅ and h(U ) = 0, hence
(60) holds in both cases.

Fix for the rest of this proof ∅ �= U � V . In case �in(U ) = ∅, (60) is a consequence
of (61), while in case �in(U ) �= ∅, (60) follows from (62).
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9 Appendix C: The Matrix-Tree Theorem

There are several versions of the Matrix-Tree Theorem. The one we present in Sect. 9.2
appears in [23, Appendix] as a tool for proving the Markov Chain Tree Theorem. This
is slight generalization of Tutte’s result (see [27, Theorem 3.6]), while it is a special
case of the All Minors Matrix Tree Theorem (see [5]). The previous applications of
the Matrix-Tree Theorem in CRNT used Tutte’s version (see [6,11,17,18,22,26]),
while we need a slightly more general variation in Sect. 6. We also provide a direct
and elementary proof of the Matrix-Tree Theorem in Sect. 9.2, which was worked out
by György Michaletzky and the author of this paper.

9.1 A lemma on the number of inversions in bijections

In the proof of the Matrix-Tree Theorem, we use a purely algebraic lemma, which is a
special case of a result in [5]. For the sake of completeness, we also present the proof
of this lemma.

Fix a positive integer n for this subsection. Let W1 and W2 be nonempty subsets
of V = {1, . . . , n} such that |W1| = |W2|. For a bijection π : W1 → W2, we say that
k ∈ W1 and k′ ∈ W1 are in inversion if k < k′ and π(k) > π(k′). Denote by ν(π) the
number of inversions in π , i.e.,

ν(π) = |{(k, k′) ∈ W1 × W1 | k < k′ and π(k) > π(k′)}|.

As usual, define the sign sgn(π) of the bijection π by sgn(π) = (−1)ν(π).

Lemma 9.1 Let i, j ∈ V . Let σ : V \{ j} → V \{i} be a bijection and define the
permutation σ : V → V by

σ(k) =
{

σ(k), if k ∈ V \{ j},
i, if k = j

(k ∈ V ).

Then sgn(σ ) = (−1)i+ j sgn(σ ).

Proof We prove this lemma by induction on j . To prove the initial step of the induction,
let j = 1. Clearly, σ inherits all the inversions of σ . Also, since σ(1) = i , there
are exactly i − 1 elements in V \{1} that are in inversion with 1 under σ . Hence,
ν(σ ) = ν(σ ) + (i − 1). As a consequence,

sgn(σ ) = (−1)ν(σ ) = (−1)ν(σ )+(i−1) = (−1)i−1(−1)ν(σ ) = (−1)i+1sgn(σ ).

To prove the inductive step, fix 2 ≤ j ≤ n and assume that the lemma holds with
j − 1 instead of j . Let us define π : V \{ j − 1} → V \{i} by

π(k) =
{

σ(k), if k ∈ V \{ j − 1, j},
σ ( j − 1), if k = j

(k ∈ V \{ j − 1}).
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Clearly, we have ν(π) = ν(σ ). Also, let us define π : V → V by

π(k) =
{

π(k), if k ∈ V \{ j − 1},
i, if k = j − 1

(k ∈ V ).

Note that we have defined π in such a way that π |V \{ j−1, j} = σ |V \{ j−1, j}, π( j) =
σ( j − 1), and π( j − 1) = σ( j) = i . Thus, for k, k′ ∈ V such that k < k′ we have

π(k) > π(k′) if and only if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ(k) > σ(k′), if k, k′ ∈ V \{ j − 1, j},
σ (k) > σ( j − 1), if k ∈ {1, . . . , j − 2}, k′ = j,

σ (k) > σ( j), if k ∈ {1, . . . , j − 2}, k′ = j − 1,

σ ( j − 1) > σ(k′), if k = j, k′ ∈ { j + 1, . . . , n},
σ ( j)>σ(k′), if k = j − 1, k′ ∈ { j +1, . . . , n}, and

σ( j − 1) < σ( j), if k = j − 1, k′ = j.

Hence,

ν(π) =
{

ν(σ ) + 1, if σ( j − 1) < σ( j),

ν(σ ) − 1, if σ( j − 1) > σ( j).
(63)

Therefore,

sgn(σ ) = (−1)ν(σ ) (63)= −(−1)ν(π) = −(−1)i+( j−1)sgn(π) = (−1)i+ j sgn(σ ),

where we used the inductive hypothesis for π . This concludes the proof. 
�
The following corollary is a direct consequence of Lemma 9.1.

Corollary 9.2 Let Q ⊆ V and i, j ∈ V \Q. Let σ : V \(Q ∪ { j}) → V \(Q ∪ {i}) be
a bijection and define the permutation σ : V \Q → V \Q by

σ(k) =
{

σ(k), if k ∈ V \(Q ∪ { j}),
i, if k = j

(k ∈ V \Q).

Then sgn(σ ) = (−1)i+ j sgn(σ ).

9.2 The Matrix-Tree Theorem

Fix a positive integer n for this subsection. Associate to a matrix Z = (zi j )
n
i, j=1 ∈

R
n×n the directed graph D(Z) = (V (Z), A(Z)), where V (Z) = {1, . . . , n} and

A(Z) = {(i, j) ∈ V (Z) × V (Z) | zi j �= 0}. Also, for Q1, Q2 ⊆ {1, . . . , n} with
|Q1| = |Q2|, denote by dQ1,Q2(Z) the determinant of that matrix, which is obtained
from Z by deleting the rows with index in Q1 and the columns with index in Q2.
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Theorem 9.3 (Matrix-Tree Theorem) Let Z = (zi j )
n
i, j=1 ∈ R

n×n be a matrix that
satisfy

n∑

j=1

zi j = 0 for all i ∈ {1, . . . , n}. (64)

Fix Q ⊆ {1, . . . , n} and i, j ∈ {1, . . . , n}\Q. Then

dQ∪{ j},Q∪{i}(Z) = (−1)i+ j (−1)n−|Q|−1
∑

Ã∈T i j
D(Z)

(Q∪{ j})
z Ã,

where T i j
D(Z)(Q ∪ { j}) is understood as in (59) and the symbol z Ã is a shorthand

notation for the product
∏

a∈ Ã za.

Proof For shorthand notation, let us denote by Si j the set of bijections from V \(Q ∪
{ j}) to V \(Q ∪ {i}). For an element σ of Si j , denote by σ the permutation of V \Q,
which is defined by

σ(k) =
{

σ(k), if k ∈ V \(Q ∪ { j}),
i, if k = j

(k ∈ V \Q).

Since σ is a permutation, we may consider its decomposition into disjoint cyclic
permutations. This also yields a decomposition of σ into cyclic permutations and a “
path bijection” from i to j , where the “ path bijection” is coming from the “ deletion”
of the assignment j �→ i from σ . Denote by

hσ the “path bijection” component of σ,

pσ the number of cycles of σ of length at least 2,

f σ
1 , . . . , f σ

pσ
the cycles of σ of length at least 2,

qσ the number of cycles of σ of length 1, and

gσ
1 , . . . , gσ

qσ
the cycles of σ of length 1.

See (65) for an illustration of this decomposition. For this specific example, we have
pσ = 2 and qσ = 3.

i

 �� 
 �� 
 �� 
 �� j 
 �� �

���
��

��
��

�
�

gσ
1��


 �� 
 �� 
 ��

hσ

f σ
1


 ��


��

�

����������
f σ
2 �

����
��

��
�

�
gσ

2��




��


�� 
�� 
�� 
�� �

��������� 
�� �
gσ

3��

(65)
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For notational convenience, we denote by zhσ and z f σ
l

the product of those entries
of Z that correspond to the arcs of the directed path hσ and the directed circuit f σ

l ,
respectively. (Thus, we implicitly identify the bijections hσ and f σ

l with the corre-
sponding directed path and directed circuit, respectively.) Also, we identify gσ

l with
the respective vertex, and thus zgσ

l ,gσ
l

is the corresponding diagonal entry of Z . Then

dQ∪{ j},Q∪{i}(Z) =
∑

σ∈Si j

⎡

⎣sgn(σ ) ·
⎛

⎝
∏

k∈V \(Q∪{ j})
zk,σ (k)

⎞

⎠

⎤

⎦

=
∑

σ∈Si j

[
sgn(σ ) · zhσ ·

( pσ∏

l=1

z f σ
l

)
·
( qσ∏

l=1

zgσ
l ,gσ

l

)]

(64)=
∑

σ∈Si j

⎡

⎣sgn(σ ) · zhσ ·
( pσ∏

l=1

z f σ
l

)
·
⎛

⎝
qσ∏

l=1

⎧
⎨

⎩−
∑

k∈V \{gσ
l }

zgσ
l ,k

⎫
⎬

⎭

⎞

⎠

⎤

⎦

=
∑

σ∈Si j

⎡

⎢⎣sgn(σ ) · (−1)qσ ·
⎛

⎜⎝
∑

Ã∈Ai j,σ
D(Z)

(Q∪{ j})
z Ã

⎞

⎟⎠

⎤

⎥⎦

=
∑

Ã∈Ai j
D(Z)

(Q∪{ j})
z Ã

⎡

⎢⎢⎢⎢⎢⎢⎣

∑

σ∈Si j

hσ =h Ã

f σ
1 ,..., f σ

pσ
⊆ Ã

sgn(σ ) · (−1)qσ

⎤

⎥⎥⎥⎥⎥⎥⎦
,

where h Ã is the unique directed path from i to j in (V, Ã) and

Ai j,σ
D(Z)(Q ∪ { j}) =

{
Ã ∈ Ai j

D(Z)(Q ∪ { j})
∣∣∣∣

f σ
1 , . . . , f σ

pσ
⊆ Ã and the unique directed

path from i to j in (V, Ã) is given by hσ

}

(recall (58)). Fix Ã ∈ Ai j
D(Z)(Q ∪ { j}) for the rest of this proof. We claim that

∑

σ∈Si j

hσ =h Ã

f σ
1 ,..., f σ

pσ
⊆ Ã

sgn(σ ) · (−1)qσ =
{

0, if Ã /∈ T i j
D(Z)(Q ∪ { j}),

(−1)i+ j (−1)n−|Q|−1, if Ã ∈ T i j
D(Z)(Q ∪ { j}).

(66)

By Corollary 9.2,

sgn(σ ) = (−1)i+ j sgn(σ ) = (−1)i+ j (−1)len(hσ )(−1)
∑pσ

l=1(len( f σ
l )−1)

= (−1)i+ j (−1)n−|Q|−1−pσ −qσ . (67)
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Thus, sgn(σ ) · (−1)qσ = (−1)i+ j (−1)n−|Q|−1−pσ , which depends on σ only through
pσ .

If Ã ∈ T i j
D(Z)(Q ∪ { j}) (i.e., Ã is acyclic) then the sum on the left hand side of (66)

contains only one term (there is only one element σ ∈ Si j for which hσ = h Ã and

pσ = 0). Thus, by (67), we obtain (66) for the case Ã ∈ T i j
D(Z)(Q ∪ { j}).

Assume for the rest of this proof that Ã /∈ T i j
D(Z)(Q ∪{ j}). Denote by m the number

of directed circuits in Ã. Since Ã /∈ T i j
D(Z)(Q ∪ { j}), we have m ≥ 1. With this and

(67), we have

∑

σ∈Si j

hσ =h Ã

f σ
1 ,..., f σ

pσ
⊆ Ã

sgn(σ ) · (−1)qσ = (−1)i+ j (−1)n−|Q|−1 ·
∑

σ∈Si j

hσ =h Ã

f σ
1 ,..., f σ

pσ
⊆ Ã

(−1)pσ

= (−1)i+ j (−1)n−|Q|−1 ·
m∑

k=0

(
m

k

)
(−1)k = 0,

where the last equality follows from the Binomial Theorem. 
�
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