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Abstract Exact bound state solutions and corresponding normalized eigenfunctions
of the radial Schrödinger equation are studied for the pseudoharmonic and Mie-type
potentials by using the Laplace transform approach. The analytical results are obtained
and seen that they are the same with the ones obtained before. The energy eigenvalues
of the inverse square plus square potential and three-dimensional harmonic oscillator
are given as special cases. It is shown the variation of the first six normalized wave-
functions of the above potentials. It is also given numerical results for the bound states
of two diatomic molecular potentials, and compared the results with the ones obtained
in literature.

Keywords Exact solution · Bound states · Laplace transform · Pseudoharmonic
potential · Mie-type potential · Schrödinger equation

1 Introduction

Molecular vibrational and rotational spectroscopy is one of the important parts of
molecular physics and one of the main tools for other scientific areas such as biology
[1] and environmental sciences [2]. The harmonic oscillator could be useful ground
to explain the molecular vibrations but this model is restricted for only lowest states
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[3]. To improve the theory of molecular vibrations the anharmonic oscillators such
as Morse and Mie-type potentials (Kratzer potential and its generalization) can be
used to solve exactly the Schrödinger equation (SE) and provide more reliable model
for diatomic molecules [4]. Mie-type potentials being considered as an example in
the present work have important advantages such as having eigenfunctions behaving
correctly at r → 0 and r → ∞ and providing exact solutions to the SE [5]. So, these
potentials have been used to determine molecular structures and received much atten-
tion in literature [6]. In the present work, we deal with also another diatomic potential
called pseudoharmonic potential proposed by Davidson [7]. This potential is used to
describe the roto-vibrational states of diatomic molecules and nuclear rotations and
vibrations [8].

In the light of the above considerations, it could be interesting to solve exactly
the SE for the pseudoharmonic potential and Mie-type potentials and find any �-state
solutions in the view of molecular physics phenomenon. Moreover, obtaining the exact
solutions of the SE for the molecular potentials is one of the main problems in quantum
physics [6]. One of the methods giving exact solutions of the SE is used in Ref. [9]
where the wave equation is solved for the non-central potential within the framework
of the supersymmetric quantum mechanics. In Ref. [10], the energy eigenvalues of the
radial SE are obtained for the Coulomb potential by using path integral formalism and
the author also stated how can be obtained the wave functions. In Ref. [11], energy
spectrum of the Coulomb, Morse and harmonic oscillator potentials have been studied
by using point canonical transformation where the formalism has been extended to
the case of position-dependent mass.

We list some methods used in literature to solve the wave equations for the pseudo-
harmonic potential and Mie-type potentials: Nikiforov–Uvarov method [12,13], alge-
braic approach [14], polynomial solution [15], exact quantization rule [16], hypervirial
theorem with perturbation theory [17], shape-invariance procedure [18], solutions in
terms of hypergeometric functions [19], etc. In this work, we find exact bound state
solutions of pseudoharmonic potential and Mie-type potentials by reducing the SE to
a first-order differential equation via Laplace transform approach (LTA) and there-
fore we make use of integral to the obtain energy eigenvalues and the corresponding
eigenfunctions. Actually, the LTA is an integral transform which has been used by
many authors to solve the SE for different potentials [20–23]. The LTA could be a
nearly new formalism in the literature and serve as a powerful algebraic treatment for
solving the second-order differential equations. As a result, the LT methods describe
a simple way for solving of radial and one-dimensional differential equations. The
other advantage of this approach is that a second-order equation can be converted into
more simpler form whose solutions may be obtained easily [22].

2 Energy eigenvalue solutions

Time-independent Schrödinger equation is written as

{
− h̄2

2m
∇2 + V (r)

}
�(r, θ, ϕ) = En��(r, θ, ϕ), (1)
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and defining the wave function �(r, θ, ϕ) = 1
r R(r)Y (θ, ϕ), we obtain the radial SE

as [6]

{
d2

dr2 − �(� + 1)

r2 + 2m

h̄2 [En� − V (r)]

}
R(r) = 0. (2)

where � is the angular momentum quantum number, m is the particle mass moving in
the potential field V (r) and En� is the nonrelativistic energy of particle.

2.1 Pseudoharmonic potential

The pseudoharmonic potential is given [8]

V (r) = a1r2 + a2

r2 + a3, (3)

where ai (i = 1, 2, 3) are real parameters. Inserting Eq. (3) into Eq. (2), we obtain

{
d2

dr2 − μ2r2 − ν(ν + 1)

r2 + ε2
}

R(r) = 0, (4)

where

μ2 = 2ma1

h̄2 ; ν(ν + 1) = 2ma2

h̄2 + �(� + 1); ε2 = 2m

h̄2 (En� − a3). (5)

Defining the new variable y = r2 and rewriting the radial wave function as R(y) =
y−ν/2φ(y), Eq. (4) turns into

{
y

d2

dy2 −
(

ν − 1

2

)
d

dy
− 1

4

(
μ2 y − ε2

)}
φ(y) = 0, (6)

By using the Laplace transform defined as [24]

L {φ(y)} = f (t) =
∞∫

0

dye−t yφ(y), (7)

Eq. (6) reads

(
t2 − μ2

4

)
d f (t)

dt
+

{(
ν + 3

2

)
t − ε2

4

}
f (t) = 0, (8)

which is a first-order ordinary differential equation and its solution is simply given

f (t) = N
(

t + μ

2

)− ε2
4μ

− 1
2

(
ν+ 3

2

) (
t − μ

2

) ε2
4μ

− 1
2

(
ν+ 3

2

)
, (9)
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where N is a integral constant. In order to obtain finite wave functions, it should be

ε2

4μ
− 1

2

(
ν + 3

2

)
= n, (n = 0, 1, 2, 3, . . .) (10)

which gives single-valued wave functions. By using this requirement and expanding
Eq. (9) into series, we get

f (t) = N ′
n∑

k=0

(−1)kn! (t + μ
2

)−
(
ν+ 3

2 +k
)

(n − k)!k! , (11)

where N ′ is a constant. By using the inverse Laplace transformation [24] we immedi-
ately obtain the solution of Eq. (6)

φ(y) = N ′′
n∑

k=0

(−1)kn!
(n − k)!k!

	(ν + 3
2 )

	(ν + 3
2 + k)

y

(
ν+ 1

2 +k
)
e−μy/2, (12)

where N ′′ is a constant. On the other hand, the confluent hypergeometric functions is
defined as a series expansion [25]

1 F1(−n, σ, z) =
n∑

m=0

(−1)mn!
(n − m)!m!

	(σ)

	(σ + m)
ym, (13)

So, comparing Eq. (12) with Eq. (13) we deduce that

φ(y) = N ′′′e−μy/2 yν+ 1
2 1 F1

(
−n, ν + 3

2
, y

)
, (14)

We obtain finally the radial wave functions

R(y) = N e−μy/2 y(ν+1)/2
1 F1

(
−n, ν + 3

2
, y

)
. (15)

where N is normalization constant. Using the normalization condition given as∫ ∞
0 [R(r)]2 dr = 1 and the relation between the Laguerre polynomials and confluent

hypergeometric functions as L p
n (x) = 	(n+p+1)

n!	(p+1) 1 F1(−n, p + 1, x) [25], the normal-
ization constant in Eq. (15) is written

N = μ(ν+3/2)/2

√
2	

(
n + ν + 3

2

)
n!

[
	

(
ν + 3

2

)]−1

, (16)
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Fig. 1 Variation of the first six normalized eigenfunctions of the pseudoharmonic potential (in m = h̄ =
1 unit)

where we have used [25]

∞∫
0

xqe−x Lq
n(x)Lq

n′(x)dx = 	(q + n + 1)

n! δnn′ . (17)

In Fig. 1 we show the variation of the normalized wave functions of the pseudo-
harmonic potential on the coordinate r . We give first six wave functions according to
the quantum number pairs (n, �). Inserting the parameters in Eq. (5) into Eq. (10), the
energy spectrum of the pseudoharmonic potential is obtained

En� = a3 +
√

8h̄2a1

m

(
n + 1

2
+ 1

4

√
1 + 4�(� + 1) + 8ma2

h̄2

)
. (18)

We give our numerical energy eigenvalues for two different diatomic potentials in
Table 2. We compare our results with the ones given in Ref. [12] by setting the potential
parameters as a1 = D0

r2
0
, a2 = D0r2

0 and a3 = −2D0. Let us study the results of some

special cases. Firstly, if we put a3 = 0 we obtain from Eq. (18)

En� =
√

8h̄2a1

m

(
n + 1

2
+ 1

4

√
1 + 4�(� + 1) + 8ma2

h̄2

)
, (19)

which is the same result given in Ref. [26] for the potential of the form A
r2 + Br2.

Secondly, if we choose the parameters as a2 = a3 = 0 and a1 = 1
2 mω2 in Eq. (18)
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we get

En� = h̄ω

(
2n + � + 3

2

)
, (20)

where if we define n′ = 2n + � as ‘principal quantum number’ we obtain

En′� = h̄ω

(
n′ + 3

2

)
. (21)

which is exactly the spectrum of three-dimensional harmonic oscillator [26].

2.2 Mie-type potentials

The Morse potential is an example of this type of potentials or Kratzer potential and
its generalization having the forms, respectively,

V (r) = −D

(
2r0

r
− r2

0

r2

)
, (22)

and

V (r) = D

(
r − r0

r

)2

. (23)

where D is the dissociation energy and r0 is the equilibrium distance [15]. So, the
Mie-type potentials can be simply given as

V (r) = a

r2 + b

r
+ c, (24)

where a, b, c are real potential parameters. Inserting Eq. (24) into Eq. (2), redefining
the wave function as R(r) = √

rϕ(r) and using the following abbreviations

γ 2 = 2ma

h̄2 + �(� + 1) + 1

4
; δ2 = 2mb

h̄2 ; ε2 = 2m

h̄2 (c − En�), (25)

gives

{
r2 d2

dr2 + r
d

dr
−

[
γ 2

r2 + δ2

r
+ ε2

]
r2

}
ϕ(r) = 0. (26)

Setting ϕ(r) = rαφ(r) with α is a constant and then inserting into Eq. (26) leads

{
r2 d2

dr2 + (2α + 1)r
d

dr
− ε2r2 − δ2r + α2 − γ 2

}
φ(r) = 0, (27)
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In order to obtain a finite wave function when r → ∞, we must take α = −γ in
Eq. (27) and then we get

{
r

d2

dr2 − (2γ − 1)
d

dr
− δ2 − ε2r

}
φ(r) = 0. (28)

Applying the Laplace transform to Eq. (28) we obtain a first-order differential equation

(
t2 − ε2

) d f (t)

dt
+

[
(2γ + 1) t + δ2

]
f (t) = 0, (29)

whose solution is

f (t) = N (t + ε)−(2γ+1)

(
t − ε

t + ε

)− δ2
2ε

− 2γ+1
2

. (30)

The wave functions must be single-valued which requiring that

− δ2

2ε
− 2γ + 1

2
= n, (n = 0., 1, 2, 3, . . .) (31)

Taking into account this requirement and applying a simple series expansion to Eq. (30)
gives

f (t) = N ′
n∑

k=0

(−1)kn!
(n − k)!k! (2ε)k (t + ε)−(2γ+1)−k , (32)

where N ′ is a constant. Using the inverse Laplace transformation [24] in Eq. (32) we
deduce that

φ(r) = N ′′r2γ e−εr
n∑

k=0

(−1)kn!
(n − k)!k!

	(2γ + 1)

	(2γ + 1 + k)
(2εr)k, (33)

Finally, we obtain

ϕ(r) = N ′′′rγ e−εr
n∑

k=0

(−1)kn!
(n − k)!k!

	(2γ + 1)

	(2γ + 1 + k)
(2εr)k, (34)

Comparing last equation with Eq. (13) we write the radial wave function as

R(r) = N rγ+ 1
2 e−εr

1 F1(−n, 2γ + 1, 2εr). (35)
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Fig. 2 Dependence of the first six normalized eigenfunctions of the Kratzer potential on spatially coordinate
r (in m = h̄ = 1 unit)

where the normalization constant is given by following the same procedure in previous
section as

N = 	(2γ + 1)

√
n!(2n + 2γ + 1)

	(n + 2γ + 1)
. (36)

We give the dependence of the wave functions of the Kratzer potential on spatially
coordinate r in Fig. 2 where the wave functions are plotted for the same quantum
number values as in pseudoharmonic potential. Using Eqs. (25) and (31) we obtain
the energy eigenvalues of the Mie-type potentials

En� = c − h̄2

8m

⎡
⎣ 2mb/h̄2

n + 1
2

(
1 + 2

√
2ma
h̄2 + �(� + 1) + 1

4

)
⎤
⎦

2

. (37)

which is the same result with the ones obtained in Ref. [27]. We summarize our numer-
ical results for different quantum number pairs (n, �) in Table 2. To compare our results
we chose the potential parameters as a = Der2

e , b = −2Dere, c = De used in Ref.
[13].

3 Results

Our numerical energy eigenvalues of two diatomic molecules interacting in short-range
[28] given in Tables 1 and 2 have a good accuracy with the ones obtained in Refs. [15]
and [13]. Figures 1 and 2 show the variation of the wave functions versus r for the
pseudoharmonic and Kratzer potentials. The wave functions of the pseudoharmonic
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Table 1 Energy eigenvalues of the pseudoharmonic potential for different values of n and � in eV (the
parameter values are used in Ref. [12]: D0 = 96288.03528 cm−1, r0 = 1.0940 Å, m = 7.00335 amu for
N2; D0 = 87471.42567 cm−1, r0 = 1.1282 Å, m = 6.860586 amu for CO)

n � N2 CO

Our results Ref. [15] Our results Ref. [15]

0 0 0.109180 0.1091559 0.101953 0.1019306

1 0 0.327414 0.3273430 0.305738 0.3056722

1 0.327913 0.3278417 0.306217 0.3061508

2 0 0.545648 0.5455302 0.509524 0.5094137

1 0.546147 0.5460288 0.510003 0.5098923

2 0.547145 0.5470260 0.510961 0.5108495

3 0 0.763883 0.713310

1 0.764382 0.713789

2 0.765380 0.714747

3 0.766877 0.716183

4 0 0.982117 0.9819045 0.917095 0.9168969

1 0.982616 0.9824031 0.917574 0.9173755

2 0.983614 0.9834003 0.918532 0.9183327

3 0.985111 0.9848961 0.919969 0.9197684

4 0.987107 0.9868903 0.921885 0.9216825

Table 2 Energy eigenvalues of the Kratzer potential for different values of n and � in eV

n � N2 CO

Our results Ref. [13] Our results Ref. [13]

0 0 0.054434 0.054430 0.050827 0.050823

1 0 0.162068 0.162057 0.151296 0.151287

1 0.162557 0.162546 0.151765 0.151755

2 0 0.268245 0.268229 0.250369 0.250354

1 0.268728 0.268711 0.250831 0.250816

2 0.269692 0.269675 0.251756 0.251744

3 0 0.372992 0.372972 0.348070 0.348051

1 0.373468 0.373447 0.348526 0.348507

2 0.374419 0.374398 0.349438 0.349418

3 0.375846 0.375823 0.350806 0.350785

4 0 0.476334 0.476313 0.444425 0.444403

1 0.476803 0.476779 0.444871 0.444852

2 0.477742 0.477717 0.445774 0.445751

3 0.479150 0.479124 0.447123 0.447099

4 0.481026 0.480999 0.448921 0.448895
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(Kratzer potential) go to zero as r → 0 and as r ∼ 8 (r ∼ 35). The eigenfunctions
corresponding to n = 1 for each potential go to zero from lower part of the vertical
axes while the remaining functions from upper part of the zero axes.

4 Conclusions

We have exactly solved the radial Schrödinger equation for the pseudoharmonic and
Mie-type potentials by using Laplace transform approach. We have found the energy
eigenvalues and the corresponding normalized eigenfunctions of the diatomic poten-
tials. We discussed briefly some special cases of the potentials. We observed that our
analytical results and also the results for the special cases are the same with the ones
obtained in literature. We also summarized our numerical energy eigenvalues for two
different diatomic molecules. It seems that the Laplace transform approach is very
economical method about solving the wave equations for some potentials.
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