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Abstract A (3,6)-fullerene G is a plane cubic graph whose faces are only triangles
and hexagons. It follows from Euler’s formula that the number of triangles is four.
A face of G is called resonant if its boundary is an alternating cycle with respect to
some perfect matching of G. In this paper, we show that every hexagon of a (3,6)-
fullerene G with connectivity 3 is resonant except for one graph, and there exist a pair
of disjoint hexagons in G that are not mutually resonant except for two trivial graphs
without disjoint hexagons. For any (3,6)-fullerene with connectivity 2, we show that
it is composed of n(n ≥ 1) concentric layers of hexagons, capped on each end by a
cap formed by two adjacent triangles, and none of its hexagons is resonant.

Keywords (3,6)-fullerene · Perfect matching · Resonant hexagon

1 Introduction

For k ≥ 3 an integer, a (k, 6)-fullerene is a planar cubic graph whose faces are only
k-gons and hexagons. The only values of k for which (k, 6)-fullerene exists are 3, 4 and
5. A (4,6)-fullerene is a boron-nitrogen fullerene molecular graph and a (5,6)-fullerene
is the ordinary carbon fullerene molecular graph. Inspired by the boron-nitrogen and
carbon fullerenes, we naturally want to investigate (3,6)-fullerene graph G.

A (3,6)-fullerene graph G has the same connectivity and edge-connectivity 2 or 3.
The structure of a (3,6)-fullerene G with connectivity 3 is well know [7–9], namely,
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it is determined by only 3 parameters r, s, t , where r is the radius (number of rings), s
is the size (number of spokes = twice the number of steps), and t is the twist (torsion,
−s < t ≤ s, t ≡ r mod 2). For the (3,6)-fullerenes with connectivity 2, the structure
has not been characterized yet. In Sect. 2 of this paper we prove that the (3,6)-fuller-
enes with connectivity 2 consist of n(n ≥ 1) concentric layers of hexagons, capped
on each end by a cap formed by two adjacent triangles.

In [8], P.R. Goodey also indicated that any (3,6)-fullerene with connectivity 3 admit-
ted a hamiltonian circuit. Moreover, it is known that every (3,6)-fullerene is 1-extend-
able [16], and we can see that none of the (3,6)-fullerenes is 2-extendable similar to
Lemma 4.4 of [13] since every (3,6)-fullerene is a cubic graph with a triangle. A match-
ing of a graph G is a set of disjoint edges M of G, and a perfect matching is a matching
M covering all vertices of G. A connected graph G is n-extendable(|V (G)| ≥ 2n+2)

if any matching of n edges is contained in a perfecting matching of G.
In physical and chemical context, physicist and chemist are interested in the

energy spectra of (3,6)-fullerenes which determine their electronic and magnetic
properties [1,22]. The spectrum of a graph is the collection of eigenvalues of its
adjacency matrix together with their multiplicity. In 1995, P.W. Fowler [7] con-
jectured that the spectrum of any (3,6)-fullerene with connectivity 3 has the form:
{3,−1,−1,−1; λ1, λ2, . . . , λ n

2 −2;−λ1,−λ2, . . . ,−λ n
2 −2}, where n is the number

of vertices of the graph. In 2009, DeVos et al. [4] confirmed the conjecture for all
(3,6)-fullerenes by Cayley sum graphs. Meantime, applying the results of toroidal ful-
lerenes to (3,6)-fullerenes, John and Sachs [12] explicitly calculated the eigenvalues
for the (3,6)-fullerenes with connectivity 3, and proved the conjecture.

This paper is mainly concerned with the hexagonal resonance of (3,6)-fullerenes,
i.e. the property that any given hexagon is an aromatic sextet. This concept of “res-
onance” originates from Clar’s aromatic sextet theory [3] and Randić’s conjugated
circuit model; see also [17,18]. A face of a plane graph G is called resonant if its
boundary is an alternating cycle with respect to some perfect matching M of G (i.e.,
the edges of its boundary appear alternately in and off M). In [25], Zhang and Chen
showed that each hexagon of a normal (1-extendable) hexagonal system is resonant.
Later, Zhang and Zheng [26] gave a similar characterization for generalized hexagonal
systems (i.e., the hexagonal systems with some “holes”; see also [2,10]). Zhang and
Zhang [30] generalized this result to plane elementary bipartite graph: each face of
a plane bipartite graph G is resonant if and only if G is 1-extendable. This result is
suitable for open-ended carbon nanotubes [27], boron-nitrogen fullerenes [28], cubic
bipartite polyhedral graphs [21] and polygonal systems [15]. For plane non-bipartite
graphs, Ye et al. [24] proved that every hexagon of a fullerene graph is resonant. A
natural question arises: does this result still hold for the (3,6)-fullerenes? The present
paper gives a complete answer in Sects. 2 and 3 which is somewhat different from that
of the fullerenes: each hexagon of a (3,6)-fullerene with connectivity 2 is not resonant,
and each hexagon of a (3,6)-fullerene with connectivity 3 is resonant except for one
graph.

A set H of disjoint hexagons of G is called a resonant pattern (or sextet pattern) if
G has a perfect matching M such that each hexagon in H is M-alternating. A (3,6)-ful-
lerene G is k-resonant (or k-coverable, k ≥ 1) if any i(0 ≤ i ≤ k) disjoint hexagons
of G form a resonant pattern. In Sect. 3 we also show that the only two 2-resonant
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Fig. 1 A (3,6)-fullerene T3

(3,6)-fullerenes are trivial, that is, both of them have no two disjoint hexagons, thus
are also k-resonant for all integer k ≥ 2. For more details on resonance theory, please
see [11,14,19,20,29,31,32].

Given a plane embedding of G, we say that two faces of G are ad jacent if they
share an edge. Triangular and hexagonal faces are referred to simply as triangles and
hexagons. Let C be a cycle in G. We denote by I [C] the subgraph of G consisting of the
cycle C together with its interior. We say two vertices of G are on the same side of C
if they are simultaneously in the interior or the exterior of C . Moreover, in a cubic
plane graph, each vertex is incident with exactly three faces and two adjacent faces
share at least one edge.

2 (3,6)-fullerenes with connectivity 2

Let Tn(n ≥ 1) be the graph consisting of n concentric layers of hexagons, capped on
each end by a cap formed by two adjacent triangles (see Fig. 1). We can see Tn(n ≥ 1)

are the (3,6)-fullerenes with connectivity 2.
Before starting our main results, we give a simple structural lemma to the cycle of

a (3,6)-fullerene.

Lemma 2.1 Let G be a (3,6)-fullerene and C a cycle in G with the boundary
v1, v2, . . . , vn along the clockwise direction of C. Let v′

i be the neighbor of vi other
than vi−1 and vi+1, where the subscripts are taken mod n, i = 1, 2, . . . , n.

(i) If n ≥ 4 and v′
2 and v′

3 are on the same side of C, then the four vertices
v1, v2, v3, v4 must be contained in the same hexagon (see Fig. 2a) and C has length
at least five.
(ii) If n = 4 and v′

1, v
′
3 are on the same side of C, and v′

2, v
′
4 are on the other side of

C, then G ∼= Tn for some n ≥ 1 or G ∼= K4 (the complete graph with four vertices).
(iii) If n = 3, then v′

1, v
′
2 and v′

3 must be on the same side of C.

Proof (i) Since v1, v2, v3 and v4 lie on the boundary of a face of G, they
must be contained in the same hexagon. If C is a cycle with length 4, then
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(a) (b) (c)

Fig. 2 a the four vertices v1, v2, v3, v4 contained in the same hexagon, b a forbidden subgraph for
(3,6)-fullerenes, and c an illustration to the case (i i)

C = v1v2v3v4v1 and v′
1v1v2v3v4v

′
4v

′
1 is the boundary of a hexagonal face f1

(see Fig. 2b). Without loss of generality, suppose v′
2 and v′

3 are in the interior
of C . Then v′

1 and v′
4 must be in the exterior of C . Otherwise, there will be

a cut set of size one or a face of size four in G, contradicting the definition
of (3,6)-fullerene. Then we obtain a cycle v′

1v1v4v
′
4v

′
1 denoted by C1, which

satisfies the conditions of (i) (see Fig. 2b). Applying the same method to the
4-length cycle C1, we obtain a series of 4-length cycles C1, C2, . . . , Cn, . . .,
each satisfying the conditions of (i), and the process cannot stop, which is
impossible.

(ii) Without loss of generality, suppose v′
1, v

′
3 are in the interior of C . To obtain

the structure of G, by the symmetry it suffices to discuss the structure of I [C].
If v1 is adjacent to v3, then we obtain a cap formed by two adjacent triangles.
Otherwise, v′

1v1v4v3v
′
3xv′

1 and v′
1v1v2v3v

′
3 yv′

1 are the boundaries of two hex-
agonal faces by Lemma 2.1 (i), where x and y are the common neighbors of
v′

1 and v′
3 (see Fig. 2c). Now we can use the same method to the cycle C1 with

the boundary v′
1 yv′

3xv′
1. Because of the finiteness of G, after a finite number of

steps, say n, we will obtain a cycle Cn of length 4 which will have no vertices
of G in its interior. Then the two vertices of degree two on the boundary of
Cn must be adjacent and we obtain a cap formed by two adjacent triangles.
Applying the same method to the cycle C and its exterior we will obtain that
G ∼= Tn for some n ≥ 1 or G ∼= K4 (the case when v1 is adjacent to v3 and v2
is adjacent to v4).

(iii) Suppose v′
1, v

′
2 and v′

3 are not on the same side of C . Then we obtain a cut set
of size one in G, contradicting the face that G is 2-connected. ��

Theorem 2.2 The connectivity of a (3,6)-fullerene G is 2 if and only if G ∼= Tn for
some n ≥ 1.

Proof We can see that Tn, n ≥ 1, has a vertex cut of two vertices. So it has connectivity
2. It suffices to prove the “only if” part.

Let G be a (3,6)-fullerene with connectivity 2 and a 2-vertex cut S = {u, v}. Sup-
pose that H1 and H2 are two components of G − S. For the sake of clarity, we color
the vertices of H1 and H2 by white and black, respectively. By the 3-regularity and
planarity of G, we have the following claims:
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Claim 1 u and v each has at least one neighbor in each component of G − S. Fur-
thermore, u (and v) together with its two neighbors both of which belong to different
components are contained in the same hexagonal face f whose boundary contains the
vertex v (and u).

Proof Suppose to the contrary that there exists one component not containing any
neighbors of u (or v). Then the vertex v (or u) forms a vertex cut, contradicting the
2-connectedness of G.

The second claim can be easily obtained by the planarity of G and the fact that
there are no edges between V (H1) and V (H2). ��
Claim 2 There are exactly two components of G − S.

Proof At most three components of G − S can be obtained by Claim 1 and the
3-regularity of G. If there exist three components H1, H2, H3 of G − S, then by Claim
1 each neighbor of u (and v) belongs to exactly one of V (H1), V (H2) and V (H3),
that is, precisely two edges are sent out from S to Hj and Hj is 2-edge-connected by
the 2-connectedness of G for j = 1, 2, 3. Let j ∈ {1, 2, 3}. There are precisely two
vertices of degree two on the boundary of Hj while the remaining vertices of V (Hj )

with degree three are in the interior of Hj . Let |V (Hj )| = n j and |E(Hj )| = m j .
Denote by f j (3) and f j (6) the number of triangular and hexagonal faces in Hj , respec-
tively. Then the total number of faces in Hj is f j (3) + f j (6) + 1. On the other hand,
2m j = 3n j − 2 = 3 f j (3) + 6 f j (6) + l, where l is the length of the exterior face of
Hj . Then we obtain that m j = 3n j/2 − 1 and f j (6) = (3n j − 2 − l − 3 f j (3))/6.
Substituting these values into the Euler formula, n j − m j + f j (3) + f j (6) + 1 = 2,
we have f j (3) = (l + 2)/3. Since G is 2-connected, the only values of l ≥ 2 that
yield integer f j (3) are 4, 7 and 10, and the corresponding values of f j (3) are 2, 3 and
4, respectively. That is, Hj has at least two triangles and the total number of triangles
in G is not less than six, contradicting the fact that G has exactly four triangles. So
there exist precisely two components of G − S, as claimed. ��

Denote by b1, w1, x1 the three neighbors of u. By Claims 1 and 2, we assume that
w1 and b1 belong to V (H1) and V (H2), respectively. Let abcb1uw1a be the boundary
of f along the clockwise direction. Then v = a, or b, or c.

Claim 3 u is not adjacent to v.

Proof To the contrary, suppose u and v are adjacent. Whatever v = a, or b, or c, all
are conflict with Lemma 2.1 (see Fig. 3a, b and c). This contradiction completes the
proof of Claim 3. ��

As noted earlier, we fulfill the proof of Theorem 2.2 in three cases in u and v

nonadjacent conditions: v = c, or b, or a.
If v = c, then u is not adjacent to b or a. Otherwise, there will be a 4-length cycle or

a 3-length cycle, both of which contradict Lemma 2.1 (see Fig. 4a and b). Similarly, v
is not adjacent to a or w1, and w1 is not adjacent to b. By Claim 2, x1 belongs to either
V (H1) or V (H2). If x1 belongs to V (H1), then x1, u and b1 must be contained in the
same hexagon (say f1) whose boundary contains the vertex v by Claim 1 and x1 
= a, b
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Fig. 3 The illustration for Claim 3 in the proof of Theorem 2.2

Fig. 4 The two cases : a u is
adjacent to b; and b u is adjacent
to a

u u
1b
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by the fact that u is not adjacent to b or a. Denote by b1ux1a′b′c′b1 the boundary of
f1 along the clockwise direction. If v = a′, then the four vertices x1, b, b1 and b′ are
pairwise different and they are the neighbors of v, contradicting the 3-regularity of G.
If v = b′, then b = a′ and c′ ∈ V (H2) (see Fig. 5a). However, in this case we obtain a
3-length cycle b1c′vb1, contradicting Lemma 2.1 (i i i). If v = c′, then the vertex b1 is
incident with exactly two faces, which is also a contradiction. If x1 belongs to V (H2),
then x1, u, w1 must be contained in the same hexagon (say f2) by Claim 1. Denote by
c′′w1ux1a′′b′′c′′ the boundary of f2 such that a′′ and c′′ are the neighbors of x1 and
w1, respectively. Since v is not adjacent to w1, v 
= c′′. If v = b′′, then b1 = a′′ by
the 3-regularity of G and the fact that w1 is not adjacent to b (see Fig. 5b). However,
in this case we obtain a 3-length cycle C = ub1x1u contradicting Lemma 2.1 (i i i). If
v = a′′, that is, x1 is adjacent to v, then b = b′′ since the neighbors of v are x1, b1 and b
and there are no edges between V (H1) and V (H2) (see Fig. 5c). Furthermore, c′′ 
= a.
Now we obtain two 4-length cycles C1 (with the boundary w1abc′′w1) and C2 (with
the boundary x1ub1vx1) (see Fig. 5c), then G ∼= Tn for some n ≥ 1 by Lemma 2.1
(i i). A similar discussion for v = b and v = a will bring us to the conclusion that the
graph satisfying the conditions does not exist or it is isomorphic to the graph Tn for
some n ≥ 1. ��

Theorem 2.3 For a (3,6)-fullerene with connectivity 2, each hexagon is not resonant.

Proof Since G ∼= Tn for some n ≥ 1 by Theorem 2.2, the deletion of any hexagon in
Fig. 1 will give rise to two odd components. So each hexagon is not resonant. ��
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Fig. 5 The illustration in the proof of Theorem 2.2

Corollary 2.4 Any (3,6)-fullerene with connectivity 2 is not 1-resonant.

3 (3,6)-fullerenes with connectivity 3

In this section we will show that every hexagon of a (3,6)-fullerene with connectivity 3
except for one graph is resonant. To this end we introduce some terminologies. A graph
G is f actor -cri tical if G − v has a perfect matching for every vertex v ∈ V (G). It
is known that every factor-critical graph has an odd number of vertices and is 2-edge
connected unless it is trivial. Here a factor-critical graph is tr ivial if it consists of a
single vertex. We call a vertex set S ⊆ V (G) matchable to G − S if the (bipartite)
graph Hs which arises from G by contracting the components c ∈ CG−S to single
vertices and deleting all the edges inside S, contains a matching of S, where CG−S are
the components of G − S. The following theorem [5, Theorem 2.2.3], may be viewed
as a strengthening of Tutte’s 1-factor theorem [23]:

Theorem 3.1 Every graph G with vertex set V (G) and edge set E(G) contains a
vertex set S ⊆ V (G) with the following two properties:

(i) S is matchable to G − S,
(ii) Every component of G − S is factor-critical.

Furthermore, given any such set S, G has a perfect matching ⇐⇒ |S| = |CG−S|.
Lemma 3.2 Let G be a (3,6)-fullerene graph with connectivity 3 which is different
from K4, then the four triangles of G are pairwise nonadjacent.

Proof Obviously, the four triangles of K4 are pairwise adjacent. Suppose to the con-
trary that there exist two triangles in G which are adjacent, then we can obtain a
2-vertex cut, contradicting the 3-connectivity of G. ��

An edge-cut of a connected graph G is a set of edges C ⊂ E(G) such that G − C
is disconnected. A graph G is cyclically k-edge-connected if G cannot be sepa-
rated into two components, each containing a cycle, by removing less than k edges.
The cyclical-edge-connectivi t y of G is the greatest integer k such that G is cycli-
cally k-edge-connected. T. Došlić [6] proved that the cyclical-edge-connectivity of
(3,6)-fullerenes with connectivity 3 equals 3. There are at least 4 cyclic 3-edge-cuts—
formed by the edges pointing outwards of each triangular face. There are also cyclic
6-edge-cuts formed by the edges pointing outwards of each hexagonal faces. These
cyclic 3- and 6-edge-cuts are called tr ivial.
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(a) (b)

Fig. 6 The only two cases for w′
1, w′

2, w′
3 on the distribution of C ′

Lemma 3.3 Every cyclic 3-edge-cut of a (3,6)-fullerene with connectivity 3 is trivial.

Proof Let G be a (3,6)-fullerene and C1 = {e1, e2, e3} a cyclic 3-edge-cut in G whose
deletion separates G into two components, G ′ and G ′′, each containing a cycle. Denote
the endpoints of ei in G ′ and G ′′ by v′

i and v′′
i , respectively, for i = 1, 2, 3. Because

of 3-connectedness and 3-regularity of G, there are two cycles, C ′ and C ′′, such that
every edge ei has one endpoint, say v′

i , on C ′, the other endpoint, v′′
i , on C ′′, and no

other edges connects C ′ with C ′′ (see Fig. 6). Namely, each of graphs G ′ and G ′′ is
2-connected, and in each of them there is only one possible face that is not a face of
G. The cycles C ′ and C ′′ are exactly the boundary cycles of these exceptional faces
in G ′ and G ′′, respectively.

To prove the lemma, it suffices to show that G ′ or G ′′ is a triangle. That is, there
is no additional vertices on C ′ or C ′′. Suppose to the contrary that there are k′ and k′′
additional vertices on C ′ and C ′′, respectively. Since G is 3-regular and 3-connected,
k′ (and k′′) must be at least 3. Thus, k′+k′′ ≥ 6. On the other hand, k′+k′′ ≤ 6 because
it is impossible to place more than 6 additional vertices on C ′ and C ′′, otherwise, there
will be at least one face of G with more than 6 edges. So k′ = k′′ = 3.

Denote by w′
1, w

′
2, w

′
3 the three additional vertices on C ′ (and w′′

1 , w′′
2 , w′′

3 on C ′′).
That is, there are exactly six vertices on C ′ (and C ′′). Let G ′

1 = G ′ ∪C ′′ ∪ {e1, e2, e3}.
This subgraph has three vertices w′′

1 , w′′
2 , w′′

3 of degree 2 and all other vertices of
degree 3. Because of 3-regularity of G, there are three vertices in G − G ′

1, say
w′′′

1 , w′′′
2 , w′′′

3 , which are adjacent with w′′
1 , w′′

2 , w′′
3 , respectively. That is, the edge

set C2 = {w′′
1w′′′

1 , w′′
2w′′′

2 , w′′
3w′′′

3 } separates G into G ′
1 and G − G ′

1. Furthermore, the
three vertices w′′′

1 , w′′′
2 and w′′′

3 are pairwise different by the 3-connectedness of G
and Lemma 3.2. So G ′

1 (respectively, G − G ′
1) has minimum degree two, thus, each

contains a cycle and the edge set C2 forms a cyclic 3-edge-cut in G. In particular, there
exists a cycle C ′′′ in G − G ′

1 such that C ′′′ is the only one possible boundary cycle that
is not a hexagon or a triangle, and no other edges connects C ′′ with C ′′′ except C2, and
there are precisely six vertices on C ′′′ (see Fig. 6a and b). Using the same approach to
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Fig. 7 The (3,6)-fullerene G2
without a resonant hexagon

the cyclic 3-edge-cut C2, we have a series of cyclic 3-edge-cuts C2, C3, . . . , Cn, . . .,
and the process will be going on, which is impossible. It follows that k′ = 0 or k′′ = 0,
that is, G ′ or G ′′ is a triangle. So the lemma holds. ��

Now we state our main result as follows:

Theorem 3.4 Every hexagon of a (3,6)-fullerene with connectivity 3 except for the
graph G2 (see Fig. 7) is resonant.

Proof First we show that each hexagon of G2 is not resonant. By the symmetry, it
suffices to consider an arbitrary hexagon. Let h be the grey hexagon in Fig. 7. Then
the two black vertices of G2 − h form a vertex set S such that (G2 − h) − S contains
four factor-critical components. By Theorem 3.1, h is not resonant.

Now let G be a (3,6)-fullerene with connectivity 3 which is different from G2,
and h be a hexagon in G. Suppose G − h does not have a perfect matching. Then by
Theorem 3.1 there exists an S ⊂ V (G −h) such that every component of (G −h)− S
is factor-critical and |CG−h−S| ≥ |S| + 2 by parity, i.e. |S| ≤ |CG−h−S| − 2, where
CG−h−S are the factor-critical components of G −h − S. Since G is 3-regular, S sends
out at most 3|S| ≤ 3|CG−h−S| − 6 edges.

Let CG−h−S = {F1, F2, F3, . . . , Fk}, where k = |CG−h−S|. Because G has no
cut-edge, every Fi (i = 1, 2, . . . , k) sends out odd number edges, hence at least three
edges, to h ∪ S. So

⋃k
i=1 Fi sends out at least 3|CG−h−S| edges to h ∪ S. Since h is

a hexagon, h ∪ S sends out at most 6 + 3|S| ≤ 3|CG−h−S| edges to
⋃k

i=1 Fi . That
is,

⋃k
i=1 Fi receives at most 3|CG−h−S| edges from h ∪ S. Hence there are precisely

3|CG−h−S| edges between h ∪ S and
⋃k

i=1 Fi , and S is an independent set, and every
Fi sends out exactly three edges, and there are no edges between h and S.
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h

S

0F*F

Fig. 8 The partition of V (G) into h, S, F∗ and F0

We denote the subset of non-trivial factor-critical components of G − h − S by
C∗

G−h−S . The union of the vertex sets of the components of CG−h−S and C∗
G−h−S is

denoted by F and F∗, respectively, and we set F0 = F − F∗ (see Fig. 8).

Claim 1 Every non-trivial factor-critical components of G − h − S is a triangle.

Proof Since every non-trivial factor-critical components of G−h−S sends out exactly
three edges which form a cyclic 3-edge-cut, it is a triangle by Lemma 3.3. ��

By the Claim, either CG−h−S is an independent set or it contains at least one triangle.
The following lemma is the core of our argument.

Lemma 3.5 Assume that a, b are adjacent vertices of h and f1 is the face of G adja-
cent to h and whose boundary includes the edge ab. Let a′, b′ be the adjacent vertices
of a and b, respectively, not in h. Then f1 is either a triangle face or a hexagonal face
with exactly one of {a′, b′} belonging to F∗ and the other to F0.

Proof Suppose f1 is a hexagonal face. Then the boundary is a′abb′xya′, where x, y ∈
V (G). Since a′ and b′ belong neither to h nor to S, we have a′, b′ ∈ F0 ∪ F∗. If both
a′ and b′ belong to F0, then x and y must be contained in the same hexagon h by the
fact that E(S∪V (h)) = E(V (h)), which is not possible since it is easy to find a vertex
cut of size at most two in G, contradicting the 3-connectedness of G. If both a′ and
b′ belong to F∗, then we obtain a non-trivial factor-critical component of G − h − S
containing at least four vertices b′, x, y, a′, contradicting Claim 1. Therefore, one of
a′, b′ belongs to F∗ and the other to F0. ��

We shall now use Lemma 3.5 to conclude the analysis. Label clockwise the vertices
of h by v1, v2, . . . , v6. Let f1, f2, . . . , f6 be the six faces in G adjacent to h and whose
boundaries include the edges v1v2, v2v3, v3v4, . . . , v6v1, respectively. By Lemma 3.2,
at least one of f1, f2, . . . , f6 is a hexagonal face, say f1. Denote by v1v2v10v9v8v7v1
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Fig. 9 An illustration to the
final argument in the proof of
Theorem 3.4 (the case when f1
is a hexagon and v10 ∈ F∗)
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the boundary of f1 along the anticlockwise direction of f1. Without lose of generality
suppose v7 ∈ F0 and v10 ∈ F∗ by Lemma 3.5. Then both v10 and v9 are contained
in a triangle (say F1) by Claim 1. Since v8 belongs neither to F nor to h, we have
v8 ∈ S. Let v11 be the common neighbor of v9 and v10 (see Fig. 9). Then the four verti-
ces v3, v2, v10, v11 must be contained in the same hexagon f2 = v2v3v12v13v11v10v2
along the anticlockwise direction. Similarly, v12 ∈ F0 and v13 ∈ S. Again we obtain
the four vertices v8, v9, v11, v13 that must be contained in the same hexagonal face
(say f7). Let v8v9v11v13v14v15v8 be its boundary along the anticlockwise direction of
f7 (see Fig. 9). Since both v8 and v13 belong to S, v14 and v15 must be contained in
F∗ by the fact that E(F∗ ∪ F0) = E(F∗). That is, v14 and v15 must be contained in
a triangle (say F2) by Claim 1.

Denote by v15v14v16v15 the boundary of F2. Then there exist four vertices
v12, v13, v14, v16 that must be contained in the same hexagonal face (say f8). More-
over, since v12 and v16 belong to F and E(S ∪ V (h)) = E(V (h)), both of v12 and v16
must be adjacent to V (h) in order to form the hexagonal face f8. If v12 is adjacent to
v5, then v16 must be adjacent to v6 by the planarity of G, which is impossible since we
obtain a vertex cut of size one. Therefore, v12 and v16 must be adjacent to v4 and v5,
respectively. Then the remaining two vertices v6 and v7 must be adjacent, otherwise,
there exists a vertex cut of size two, contradicting the fact that G is 3-connected. How-
ever, the graph we obtained above is isomorphic to the graph G2. This contradiction
to the assumption completes the proof of Theorem 3.4. ��

To consider the k-resonance (k ≥ 2) of (3,6)-fullerenes with connectivity 3, the
following lemma is presented.

Lemma 3.6 Let G be a (3,6)-fullerene with connectivity 3 which is different from K4,
and F1 be one of the four triangles in G. Then the three faces adjacent to F1 are all
hexagons and pairwise different and both of them intersect at exactly one edge.

Proof The first assertion can be easily acquired by Lemma 3.2. If two of the three
hexagonal faces are the same, then there exists a vertex incident with exactly two
faces, which is impossible. If two of the three hexagonal faces intersect at more than
one edge, then we can find a vertex cut of size one, contradicting the 3-connectedness
of G. ��
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Fig. 10 Illustration for the proof of Theorem 3.7

Theorem 3.7 For a (3,6)-fullerene graph with connectivity 3 except for the graphs
K4 and G3 (see Fig. 10a), there exist a pair of disjoint hexagons not forming a sextet
pattern.

Proof Note if there is no a pair of disjoint hexagons in G, then G is isomorphic to K4
(the case when there exist two adjacent triangles) or G3 (see Fig. 10a), the case when
the four triangles in G are pairwise nonadjacent).

Now let G be a (3,6)-fullerene different from K4 and G3, and F1 be one of the four
triangles in G. By Lemma 3.6, the three hexagonal faces f1, f2, f3 adjacent to F1 are
pairwise different and both of them intersect at exactly one edge. Since G is different
from G3, at least one of the faces f4, f5, f6 of G (say f4) is a hexagonal face (see
Fig. 10b). Moreover, f4 and f2 are disjoint. It is easy to see that H = { f2, f4} is not
a sextet pattern. ��
Corollary 3.8 A (3,6)-fullerene graph G is k-resonant (k ≥ 2) if and only if G is
isomorphic to K4 or G3.
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