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Abstract Information-theoretic (IT) indexing of the chemical bond multiplicities
and their covalent/ionic contributions in the Orbital Communication Theory is reex-
amined. The molecules are interpreted as information channels in the Atomic Orbital
(AO) resolution, in which the signals (probabilities) of the electron-allocation to AO
events are propagated between the channel “inputs” and “outputs”. The molecular
conditional-entropy descriptor of such a probability network measures the average
communication “noise” due to electron delocalization via the framework of all occu-
pied molecular orbitals (MO) and provides a measure (in bits) of the bond IT-cova-
lent component. The complementary IT-ionic bond multiplicity has been previously
characterized by the channel average mutual-information (information-capacity, flow)
descriptor, between the promolecular input and molecular output distributions, which
reflects a degree of the deterministic character of such AO communications. The
consistency of using this promolecule — molecule channel, reflecting the “history”
of the bond formation process, as the stationary information network is validated
using the classical cascade of the sequential molecular channels, effecting the multiple
probability propagations. The “normalization” of the global bond descriptor of this
channel to the sum of the molecular Shannon entropy and the information distance
between the two compared AO distributions is demonstrated analytically and tested
numerically. The promolecule (M® — molecule (M) transition channel is formu-
lated in the general basis set case and its overall bond multiplicity index is determined.
The mixed channels are examined, with different sets of the input and output events.
The displacement in the density matrix reflecting the M’ — M transition provides

Here the symbols A, A, and A describe the scalar quantity, the row vector and a rectangular matrix,
respectively.
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the AO representation of the corresponding difference between the molecular and pro-
molecular density operators. Finally, the closed communication loops are proposed,
consisting of the molecular and promolecular cascades, respectively, which generate
the difference entropy/information descriptors of the system chemical bonds, between
the corresponding molecular indices and their promolecular analogs, with the latter
reflecting the internal communications in the isolated atoms.

Keywords Bond descriptors - Chemical bonds - Communication loop - Difference
bond descriptors - Entropic covalency/ionicity - Information channel - Mixed
channels - Orbital communications - Probability scattering in molecules - Transition
channel

1 Introduction

The Information Theory (IT) [1-7] of Fisher [1] and Shannon [2,3] has been effec-
tively used as a unifying concept in physics [8] and in an exploration of the electronic
structure of molecules M [9-11], to probe an effective state of bonded atoms rela-
tive to the corresponding free atoms defining the promolecule M° [12-19], which led
to a theoretical justification of the stockholder principle of Hirshfeld [20] of parti-
tioning the molecular electron distribution, and to detect/index the system chemical
bonds [9-11,21-28]. The associated molecular displacements of the entropy/informa-
tion quantities due to bond formation, relative to the initial (promolecular) densities
and their free-atom components, have been employed as descriptors of the chemical
bond. It has been argued that a network of the system chemical bonds, determined
by the occupied Molecular Orbitals (MO), determines the communication channels
for the probability/information delocalization throughout the whole molecular system
[9-11,29-36]. It generates the communication noise in the probability propagation
between atomic orbitals (AO) and gives rise to an effective flow of information con-
tained in the electron probability distributions. The former has been linked to the
molecular bond IT-covalency, while the latter reflects the channel IT-ionicity, which
together index the bond overall IT-multiplicity (in bits) [6,7,9-11,29-36].

It has been demonstrated that changes in the entropic content of the electron distri-
bution due to chemical bonds, as reflected by the corresponding information measures
of Fisher [1], Shannon [2], Kullback and Leibler [4,5], can indeed be used as reliable
diagnostic tools for probing the chemical bonds in a molecule [9-19]. For example,
the non-additive part of the Fisher information in MO resolution [24] has been shown
to generate the familiar Electron Localization Function (ELF) [37-39], while the asso-
ciated AO-resolved measure provides the basis of the Contra-Gradience (CG) probe
[10,11,25] of the chemical bond localization in molecular systems [10,11,25-28].
These novel IT criteria complement the familiar density difference analysis of quan-
tum chemistry, e.g. [21]. The reconstruction of the initial densities of free atoms is
effected through the polarization of the constituent atoms and the charge-transfer (CT)
between them. In accordance with this prevailing perspective on the bond-formation
process, it is said that the free atoms of the AP are “promoted” to their effective
“valence-state” in a molecule. These flows of electrons, both inside and between
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constituent atoms, modify the electron densities and the associated probability distri-
butions relative to the corresponding free-atoms. The resulting small displacements in
the molecular electronic structure, mainly in the valence shell, determine all properties
of the system chemical bonds.

The promolecular reference, of the non-bonded atoms in their molecular positions,
constitutes a natural initial stage in the bond-formation process. It has to be used to
determine the difference aspects of the chemical bond, which depend upon the “his-
tory” of the bond formation. A use of the AO resolved information channels also allows
to connect to the standard orbital theories and SCF MO computations of molecular
electronic structure, e.g., Hartree-Fock (HF) or Kohn-Sham (KS). Thus, the molecu-
lar channel reflecting the probability scattering between the basis functions, e.g., the
Gaussian expansions of AO, and its average noise (covalency) and information flow
(ionicity) descriptors have been established as convenient tools for characterizing the
chemical bonds in the Orbital Communication Theory (OCT) [10,11,30-36].

To summarize, in such an IT approach the molecule is viewed as the communi-
cation channel, in which “signals” conveying a message about the electron distri-
bution among AO are transmitted from the molecular/promolecular “source” (input)
a = {x; = i}, to the molecular “receiver” (output) b = {x; = j}, both consist-
ing of all basis functions (AO) x = {xx = k} (row vector) used to represent MO.
The elements of OCT have recently been developed and the information quantities of
the communication theory have been successfully used as new tools for probing the
overall chemical bond multiplicities in molecules and their fragments, as well as their
ionic and covalent components. It should be emphasized that the multiple (cascade)
scatterings are also admissible, since each AO in the molecular system both emits
and receives signals of electron allocations [12,13,40-44]. The conditional probabil-
ities P(bla) = {P(jli) = P(i — j) = PG A j)/pi} for the single stages in the
transmission of information between AO, which generate the so called direct bond
multiplicities, have been identified and the multiple scattering effects, responsible for
the indirect bonds realized through the AO intermediaries, have been explored [40—44].

For example, in an elementary interaction between two AO located on different
atoms, each contributing a single electron to form the chemical bond, the conditional
entropy of the outputs-given-inputs, which reflects the average noise (IT-covalency)
measure, reaches the highest value for the maximum-delocalization limit of the equal
participation of the two basis functions in their occupied (bonding) combination, for
which the mutual information in the two sets of events, which quantifies the chan-
nel information capacity (IT-ionicity), exactly vanishes. Accordingly, in the lone-pair
(Ip) limit, when the two AO do not mix, it is this “ionicity” descriptor which is maxi-
mized, while the IT-covalency exactly vanishes. Thus, the IT-ionicity reflects a degree
of determinism (localization) in the probability scattering of the electron-assignment
signals to AO in the molecular channel, with its maximum value corresponding to
the conditional probabilities between AO basis functions represented by the identity
matrix, P/ (bla) = {6i,j} = I, when they do not effectively combine into MO. There-
fore, the mutual information in the promolecular input and the molecular output of
the molecular channel to a large extent reflects the Ip (non-interacting) aspect of AO
communications as well as some CT (ion-pair) contribution, which is customarily
associated with the ionic (difference) bond component.
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The mutual-information (difference) descriptor of the bond IT ionicity involves
the promolecular input and molecular output signals, respectively, in the molecular
information channel. The use of such channels as “stationary” communication sys-
tems awaits a more thorough justification. The bond components compete with one
another: increase in one facet brings about a decrease in the other, complementary bond
multiplicity. Indeed, the AO-coupling (delocalization, covalency) phenomenon com-
plements the AO-decoupling (localization, lone-pair) aspect of the molecular com-
munications. Although the latter effectively reflects the localization feature of AO
communications, which is a part of the ionicity phenomenon, it remains unclear how
it accounts for the difference (CT) aspect of the chemical bonding, between the final
(molecular) and initial (promolecular) information densities. This displacement aspect
of the electron distributions constitutes another important ingredient of the IT ionic
bond component and requires a closer examination in OCT. Of interest also are the
communication channels and their entropy/information descriptors, which reflect the
M® — M transition and connect different set of orbital events, which appear in typ-
ical SCF MO calculations of the molecular electronic structure, e.g., the primitive
Gaussians, AO, MO, etc.

It is the main goal of the present analysis to reexamine in OCT the previously
applied concept of the mutual-information between promolecular-input and molecu-
lar-output signals as measure of the bond ionicity, as well as to extend the concept
of the molecular communication channels into the “transition” or “mixed” systems
and “loops” of the elementary probability propagations. We shall also examine the
relevant “normalizations” of the associated IT descriptors of such communication
systems. The validity of using the promolecular-input and molecular-output proba-
bilities in the molecular channel to determine the information capacity measure of
the bond IT-ionicity will be demonstrated by constructing the sequential cascade of
molecular channels which transforms the promolecular input signal into the molecular
output distribution. The need of using the stationary molecular network of direct com-
munications between AO will be then emphasized, as required by the superposition
of the probability amplitudes in such sequential cascade. It will be argued that this
“determinicity”” descriptor of the bond ionicity contains the CT term explicitly related
to the M? — M charge redistribution and measuring the entropy-deficiency (miss-
ing information, cross entropy, directed divergence) of Kullback and Leibler [4,5] in
the molecule relative to its promolecule, which quantifies the information similarity
between the molecular and promolecular distributions of electrons. We recall, that
its density bears a strong resemblance to the familiar density difference function of
quantum chemistry [9-11,21-23], between molecular and promolecular distributions
of electrons, which explicitly reveals the charge rearrangement due to the chemical
bond formation.

Finally, the explicit difference approach to the I'T-indexing of the chemical bonds
in OCT will be explored, which directly addresses changes in the nature of AO com-
munications before and after the chemical bond formation. They are defined by the
conditional probabilities of the AO events in these two “physical” limits, which are gen-
erated by the promolecular and molecular density matrices, respectively. The M — M’
“transition” channel will be introduced, the mixed channels consisting of different sets
of the input and output events will be examined, and the closed loops of the molecular
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and promolecular information channels (or their sequential cascades) will be pro-
posed, which give rise to the explicit “difference” entropy/information descriptors of
the system chemical bonds.

2 Multiple molecular propagations of the promolecular signal

The promolecular input probabilities p° = { p?} of AO in the molecular chan-
nel defined by the conditional probabilities P(bla) produces the output distribution
p* = {pj} = p°P(bla), which generally differs from the (stationary) molecu-
lar probabilities p = {p;} = pP(bla). A natural question then arises about a
possible existence of an effective molecular channel in AO resolution, peft- (bla),
for which the molecular output resulting from the promolecular input is assured:
p= pOPef S (bla). In this section we shall demonstrate that such a classical transfor-
mation of the initial (promolecular) distribution of electrons, in the ground-states of
the separated constituent atoms, into the final effective AO occupations in the mol-
ecule can indeed be effected via the (infinite) sequential cascade of the molecular
channels.

Consider a sequence of the molecular AO communications in the infinite cas-
cade of molecular channels, at each stage involving all (orthonormal) basis func-
tions x, in which the output signal from the preceding stage constitutes the input
signal of the next stage in such an indirect probability propagation among AO.
In every intermediate molecular channel each AO both receives and emits the
signals of the electron allocations to AO, so that all communications are prop-
agated via many stages until the stationary distribution of electrons is estab-
lished.

There are two possible ways to approach the information scattering in such
AO-resolved cascade of the molecular channels. The quantum-mechanical (ampli-
tude) cascade, which recognizes the wave aspect of the electronic distributions, prop-
agates the probability amplitudes, while its classical analog constitutes a sequence
of several molecular channels of the direct scattering of conditional probabilities. As
demonstrated elsewhere [42,43], in the amplitude-cascade the multiple (n) probability
scattering via the interference of the conditional-probability amplitudes, at each stage
involving all basis functions, preserves the direct probabilities defining the molecular
channel:

Px; = X2~ = Xne1 = Xn) =P(x — x) =P(bla). 1)

In the Restricted Hartree-Fock (RHF) approximation these direct scattering prob-
abilities for the closed-shell molecular configuration of N = 2m electrons, which we
assume for reasons of simplicity, P(bla) can be expressed in terms of elements of the
Charge-and-Bond-Order (CBO), density matrix

v = (xlohn® (@1x) = N (xIDlx) = 2{xle’) {0 1x) = 2 (xIPslx): )
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Fig.1 The sequential (classical) probability-cascade of n molecular channels {x; = a; — X; = b}, each
described by the direct conditional probabilities P(b;]|a;) = P(bla) between all basis functions (AO), in
which the promolecular signal po of the cascade opening stage is gradually transformed into the stationary
signalp(") in its closing (n — o0) channel

here the (diagonal) matrix n® = {nsds,¢} groups MO occupations in the molecu-
lar ground-state, D= l@) (nO/N) (@] = |@)p*? (p| stands for the density opera-
tor of the associated MO ensemble, and P, denotes the projection onto the bonding
(occupied) MO subspace in the molecular ground-state. The normalized probability
P(jli) = P(i — j) from the quantum superposition principle [45] applied to the
occupied subspace of MO then reads [30]:

P(i — j)=PGAD/pi=Qvii) ijvii. ?3)

where the joint probability of two orbital events

PG AJ)=vijvji/ @N), D PGA=pj, D PGnA=pi,
i J

ZZP(i/\j):l. (4)
i

In considering the spreading of a general input signal p® in the molecular chan-
nel one can also envisage the multiple sequence (probability-cascade) of molecular
channels (shown in Fig. 1), in the limit n — oo. In this sequence the output signal
of the preceding stage forms the input signal for the consecutive stage in the chain.
One observes that for a general input signal, e.g., the promolecular distribution p°,
any single stage in this cascade of molecular channels produces a slightly different,
molecularly shifted output signal.

On one hand, each propagation stage can be expected to contribute to an increase in
the noise content of the resultant AO communications, so that such a classical probabil-
ity cascade may produce the fully equalized output probabilities marking the maximum
uncertainty in the stationary signal resulting from this classical, probability cascade.
On the other hand one would hope that sufficiently close to the equilibrium (molecular)
distribution, when p° = {VL?,a/N} =p ={Yaa/N} ie, {yao’a/ya,a} = {1(0) for the
occupied (unoccupied) AO} in this Separated-Atoms-Limit (SAL), the output signal
in each consecutive step of this sequence should resemble the molecular distribution
even more closely compared to the current channel input. Here, p® = {y£ «/N} and
the promolecular CBO matrix, of the non-bonded (isolated) atoms in their molecular
positions,
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= (X1 (Wl = N {xD°Ix). (2b)

where v = {v, 84,p} groups the ground-state AO occupations in the promolecular ref-
erence state. The indicated mixture of the canonical AO ¥ = {/,} in the promolecule
determines the associated density operator defining the promolecular AO ensemble:
D’ = 19) (W/N) (W1 = [9)p" (1.

Let us examine the representative opening stages of this multiple sequence of the
probability propagation in some detail. For ith output event in the general basis set
resolution x = {x;} of the first (closed-shell) molecular propagation one finds

1 AO ¥ 1 AO Vii
k. k
(1) E pOP(k—H)——E ( )sz)’zk——z Vzk)’kzZW:Pi,
k

Vk.k
)
where we have used the idempotency of ¥:
v: =2y. (6)

Hence the ratio
()  SAL 0 SAL
Pi _ Z (Vk,i}’i,k) @ ZP(Z ) Pkpk
Di P 2Y4i Vi k pk
SAL g
0
=S Pl — b pk—() . %
Pk

k

It should be compared with the initial relative input pl.(o) /pi = yif?) /vi.i- Sufficiently
close to the molecular occupations of MO the geometric average of the initial and
molecular probability in Eq. (7),

PO = (PP = e 2IN., 8)

is indeed close to the stationary molecular probability of the minimum basis set (SAL
occupied), {p}f(O) = (p,?p;&”2 = pi}, and hence

SAL
PV pi =D P — k) = P(i > SAL) ~ 1, )
k

since in the extended basis set only a small part of the valence electrons of the SAL
electron configuration is scattered into the polarization functions.
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In the second propagation stage one similarly finds:
AO

p® Zpl(l)P(l—>t)NszP(let)_ZP(t/\l)_p,, (10)

where we have used the familiar partial normalization condition of the joint proba-
bilities, Z‘;‘O P(i A j) = pi, which can be directly verified using Egs. (4) and (6).

Therefore,
2) (1)
L —ZP(z—>l)(p’ ”’) ZP( (plp(ll)) (an

i

Obviously, the new geometric average

[¢))

i) = (p, 0" = "D u¥4N, (12)

is even closer to p; than plg (0) and hence

@

AO
l—éZP(i—)l):l. (13)
Pi ]

The same conclusion follows for each of the subsequent n > 2 stages,

AO AO

" Zp(" 1>P(m—>z)—zpmp(m—>z)—ZP(mm) pi, (14

for which

(n (" 1))
—_— = ZP(I — m)( Pm )
n—1 AO
—ZP(1—> (p’"p ) =SSPl —m)=1. (15)

One also observes that with the growing order n of this probability cascade the general
geometric average

(n) 12 _

i) = () P = ) Y)Y N, (16)

fast approaches the molecular probability p,, = ym.m/N of the basis function y,.
In this way the molecular stationary distribution of electrons can be ultimately

viewed as the limit of the probability/information propagation via the infinite (clas-

sical) sequential cascade of any (non-stationary) input signal, e.g., the promolecular
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P(bla)
p—ra=y—rb=y—>p (a)

P(bla)
p0—>a—>b —»p (b)

Fig. 2 The (quantum) information channels for determining the (molecular) IT-covalency (a) and the
(difference) IT-ionicity (b) bond descriptors in OCT

distribution p® for the initial AO events with x = a, the input of the opening channel
for n = 1, which is ultimately transformed into the stationary (molecular) distribution
p for the molecular AO events x' = b, the output probabilities of the closing channel
for n — oo:

lim p° HP(bllal) =p'P®(bla) =p. (17)
n—>0oo =1

Notice, however, that in general P (b|a) = P (bla) # P(bla); only for the idempo-
tent molecular channels, for which [P(bla)]" = P(bla), P/ (b|a) = P(bla). We have
thus explicitly demonstrated that the molecular output is not inconsistent with the pro-
molecular input in the molecular communication network, even classically, provided
that the multi-stage (cascade) propagations are considered.

However, this multi-stage propagation of electronic probabilities contradicts the
quantum superposition of the associated amplitudes A(a — b) = {Ai% j} [see also
Eq. 1], which correctly identifies P(bla) ={P; . ; = |A,~_> j |2} as combining the sta-
tionary communication links between basis functions, established as a result of the
multi-stage scattering of the probability amplitudes [42,43]. The previous use of the
classically non-stationary probability channel p° — P(bla) — p in determining
the bond IT-ionicity descriptor is thus validated in this more realistic, quantum inter-
ference of the molecular probability amplitudes.

Therefore, in what follows we shall consistently apply the molecular (quantum) sta-
tionary information channel in determining both the (molecular) IT-covalency (Fig. 2a)
and the (difference) IT-ionicity (Fig. 2b) indices of communications between the
adopted basis functions, in accordance with the previous practice of OCT. It should
be stressed that “freezing” the molecular channel for the propagation of the promolec-
ular input signal implies preserving the molecular conditional probabilities from the
bond-projected superposition principle (Eq. 3), from which the joint probabilities of
Eq. 4 are subsequently derived.

The resultant cascade transformation in Eq. 17, of the promolecular AO probabil-
ities into their molecular counterparts, complements the associated transformation of
orbitals. Both these transformations are required to describe the transition between

~0 ~
the associated density operators, from D to D (see Eqs. 2a, b), which determine the
associated ensembles of the occupied AO and MO in the initial (promolecular) and
final (molecular) ground states, respectively.
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3 Bond descriptors in OCT

When basis functions yx, say AO, do not interact chemically, thus representing a col-
lection of the isolated (separated) subsystems x°, their conditional probability matrix
is given by the identity matrix, P®°la’) = {6;,j} = L, since only the determinis-
tic (diagonal) communications between these orbital events a’ = x° and b0 = x°
are then admissible. When yx are arranged into subsets grouping the AO basis func-
tions from constituent atoms {X}, x = {xx}, these communications between AO in
the SAL assume the block diagonal form, P(bla) = {Po(by|ax)5X’Y}, since only
the intra-atomic probability scatterings are allowed in this promolecular, SAL limit,
due to the non-vanishing blocks of the associated density matrix Y° = {Y())( x0x, v}
It should be emphasized that the ground-state configurations of the separatéd atoms
often involve open shells, for which the closed-shell expression of Egs. (3) and (4)
should be appropriately modified [34]. Finally, due to the formation of the chemical
bonds, the non-vanishing inter-atomic blocks of AO probability propagations appear
in the molecule, P(bla) = {P(i — j)} = {P(bylax)}, reflecting the related full block
structure of the CBO matrix: ¥ = {¥x v}-

In the standard LCAO MO treatment the complete description of the system bond
covalency, i.e., the common possession of the valence electrons in the molecule by the
system constituent atoms (the purely molecular phenomenon), is provided by Y, the
AO representation of the projection operator P, onto the bonding (occupied) subspace

= {¢1, 2, ..., om} of MO (Eq. 2a). Notice, however, that its purely inter-atomic
facet should require the difference approach, relative to the promolecule reference ¥°,
the AO representation of the projection onto the subspace of the occupied (canonical)
AO of the constituent atoms in the SAL.

In OCT this covalency aspect of all chemical bonds in the system under consider-
ation is measured by the average communication noise (in bits) in the molecular AO
channel, i.e., the entropy in b conditional on a:

S®lay=— " pi D Pinjlog, Pij=> pi > S(jli)

iex jex’ iex jex’

S>> P A j)log, L (”\J) (18)

iex jex

One could similarly interpret the average communication noise of the promolecular
channel as reflecting the internal IT-covalency of the separated atoms:

S'®lay == " p! > P, ;log, P,

iex jex’

S A o, AT “) 19)

iex jex/
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Therefore, the truly bonding, infer-atomic measure of the bond covalency in OCT is
provided by the difference of these two conditional entropies:

AS(®la) = Sbla) — S°(Bla). (20)

The corresponding measure of the mutual-information in the promolecular input
and the molecular output similarly gives:

( ) ZZP(l/\])logz (l/\J)

iex jex'
A
= ZZ P(@i A j)log, |: (l‘ ‘])( )i|
iex jex P P
=D P> P |:10g2( ) log; pj + log, z—>1:|
iex jex'

=D pi 1og2( ) ZPHJ

iex jEX

=D A D P nj) |log pj — Sbla)

jex' \iex

= ASplp") + S() — S®la), 2

where we have recognized the relevant normalization conditions of the molecular
probabilities. Here,

i

AS@plp°) =D pilog, (—0) (22)
iex Pi

stands for the cross entropy (entropy deficiency, missing information) of Kullback

and Leibler [4,5], measuring the information similarity between the molecular and
promolecular distributions of AO probabilities, and

S(p)=—>_ pjlog p; (23)

jex’
stands for the Shannon entropy [2,3] of the molecular probabilities.

Therefore, the overall IT-bond index, which combines these entropy-covalency and
information-ionicity components, gives

N@";b) = S®la) + 1@:b) = Sp) + ASEP°). (24)
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This equation determines the overall “normalization” of the global bond-multiplicity
index of the IT description in OCT. The first, molecular contribution measures the
overall uncertainty content in the electron probability distribution, measured by the
Shannon entropy of the molecular probabilities. The second, difference term reflects
the CT changes due to bond formation, being measured by the information “distance”
between molecular and promolecular AO probabilities. This equation thus explicitly
separates the overall molecular delocalization (“covalency”) measure S(p) from the
average entropic displacement (“ionicity”) effect AS(p|p®) due to the global displace-
ment of electronic probabilities from the promolecular distribution.

Finally, correcting the IT-covalency for the intra-atomic covalency of Eq. (19)
gives the associated inter-atomic index of all chemical bonds in the system under
consideration:

AN@’;b) = ASla) + 1(a’:b) = S(p) + ASp|p°) — S%bla). (25)

It should be recalled that the mutual-information quantity estimated from the purely
molecular channel,

I(a:b) = S(p) — S(bla), (26)
gives rise to the associated overall bond-multiplicity index
N(a;b) = S(bla) + [ (a:b) = S(p) (27)
and hence:
N(@";:b) — N(a;b) = AS(p|p"). (28)

This new interpretation of the global bond-multiplicity in the IT description of
electron probabilities thus identifies the CT (difference) index of the cross-entropy
AS(p|p®) as the difference between the overall IT bond-order of the molecular orbital
channel for the promolecular and molecular orbital input signals, respectively. The
molecular estimate of Eq. 27 thus reflects the global uncertainty contained in the
AO-resolved probabilities, while its promolecular counterpart of Eq. (24) addition-
ally contains the entropy deficiency between the two AO distributions, reflecting a
displacement in the information content due to the bond formation process.

In Table 1 we have reported representative numerical results for four illustrative
molecules. They have been obtained from the standard SCF MO (RHF) calculations
using the minimum basis set of AO or their valence subspace, respectively. It fol-
lows from these bond indices that they do not reflect the chemical (intuitive) bond
multiplicities too closely. Only the diatomic bond-order measures from the flexible
input approach [34], originating from communications in the diatomic fragment of
interest, provide a satisfactory representation of the accepted intuitive estimates of the
chemical bond multiplicity. Nevertheless, the increasing trend exhibited by the bond
multiplicities per hydrogen ligand in the full basis variant of the table,

N(C-H) =0.80, N(N-H)=0.99, N(O-H)=1.38,

@ Springer



2320 J Math Chem (2011) 49:2308-2329

Table 1 The entropy/information indices (in bits) of the overall bond multiplicity and its covalent/ionic
composition for selected small molecules

Molecule Minimum basis set of AO Valence AO only

N@®;b) S®la) 1@ :b) Sp) ASEP® N@:b) Sbkla) 1@ :b) SE) ASEP®)

CHy 3.208 1.546 1.662 3.122 0.086 3.106 1.897 1.209 2.999 0.107
NH3 2.981 1.201 1.780 2.934 0.047 2.823 1.480 1.343 2.764 0.059
H,O 2.763 0.813 1.951 2.734 0.029 2.552 1.005 1.547 2.515 0.037
CO 3.246 0.716  2.530 3.224 0.022 2.938 0.993  1.944 2.908 0.030
COy 3.844 0.865 2.979 3.817 0.027 3.587 1.177 2.410 3.541 0.046

and a similar trend observed in the reported IT-ionicity indices 7 (a” : b) both reflect
the growing chemical bond ionicity, due to higher electronegativity of the heavy atom.
This component is seen to compete with the system IT-covalency, which exhibits
a diminishing trend in this series. It should be realized, that ionicity index in OCT
accounts for both the increased determinism in molecular communications, mainly due
to the lone-pair/hydridization effects on the heavy atom, and the increased uncertainty
(communication noise) due to electron spreading throughout these localized-bonds.

It also follows from the table, that removing the inner ls shells in the valence
basis set calculations gives a similar IT descrition of the chemical bonds, compared
to the corresponding full-basis analog. One observes, however, a diminished ionicity
(increased covalency) in the valence-only calculations compared to the full mini-
mum-basis results. This trend should be expected, since the valence pattern misses the
lone (inner) electronic pair, thus predicting more noisy (less deterministic) molecular
communications between AO.

4 M® - M transition channel

Consider now a general set of the (orthonormal) basis functions y, e.g., the primi-
tive Gaussians (GTO) or their formal contractions, which are not directly related to
AO. The separate SCF MO calculations for the isolated atoms {XO}, which define the
system promolecule M® and the molecule M itself, then determine the ground-state
occupations W = {v404.p} of canonical AO ¥ = {,}, and n’ = {nsds./} of canonical
MO ¢ = {¢s}, respectively. They also give the corresponding (unitary) transforma-
tions C° = (x|¥) and C = (x|¢) of these basis functions into the AO and MO sets,
respectively,

1/1:)(CO or WCOTz)( and ¢ = xC or (oCT:x, (29)

from which one subsequently extracts the explicit “rotations” between these two sets
of the “physical” states:

. (chT) C=yD and D' =o(C'C =y. (30)
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The relevant expressions for the expansion coefficients in Eq. (29) in terms of the
transformation D = (¥ |@) = C°7C then read:

= (xlg) = (x1¥) (¥lo) = C°D and C° = (x|y¥) = (xlo) (¢|¥) = CD".
31)

This matrix and the associated ground-state occupations of AO and MO, in the SAL
and molecule, respectively, provide the required transformation of orbitals and their
occupations, which together define the two density operators involved in the M — M?
transition.

The CBO matrices of Egs. (2a), (2b),

Y = (xl)n’ (plx) = Cn°C’ = C*(Dn"D")C"
= (1) [(wle)n’ (o9 | 0 = C¥V T,
Y0 = (B0 = (x19)* (¥1x) = CWC” = ¢(DvD)CT
= (xlo) [0l (¥10)] (ol x) = Yo C, (32)

identify the “mixed” representations of the two density operators involved in this tran-
sition: the molecular CBO matrix in AO representation, Y¥ = N (y|D|y) = Dn°D,

. .. . N
and the promolecular density matrix in MO representation, Y92 = N(p|D |p) =
D7vD. They complement their canonical (diagonal) analogs:

YO = Ny D [y) = (W19 v () =0 and
¥’ = N(¢|Dlp) = (¢l¢) n’ (p|p) = n". (33)

Thus, the diagonal CBO matrix, in terms of the canonical orbitals defining the ref-
erence in question, becomes non-diagonal in the mixed representation of the other
reference state.

Moreover, since we have explicitly demonstrated in Sect. 2 that the cascade prop-
agation of AO communications in molecules ultimately brings the required transi-
tion of AO probabilities from their SAL (ﬁo = { ﬁg = v,/N}) to the molecular

= {Pa = Va.a/N} AO values, where y= {(Vanr} = DD’ = y¥ this displacement
of AO occupations in the M® — M transition can be compactly described by the
diagonal conditional-probability matrix:

@ = p) = {(Pa/PDSa s}, P'n@E’ — p) =p. (34)

Therefore, we now have two necessary ingredients, which fully describe in the
familiar MO approximation changes in electronic AO probabilities in the course of
a transition from the promolecule to molecule: the transformation matrix D, of the
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“rotation” of ¥ into @, accounts for changes in the shapes of orbitals, while matrix
Jt(ﬁo — p) effects the associated displacements in AO occupations. These two stages
describe the sequential cascade for this joint transition in the system electronic struc-
ture,

P’ — @’ — p) — P > ¥)] — p. (35)
where the conditional probabilities, for the closed-shell molecular configuration,
PW — ¥) = (Pasp = P(aAD)/pa = 2Taa)” TabVb.al)- (36)

are defined in terms of elements of the density matrix ¥ of Eq. (32), which also
defines the AO probabilities (occupations) p in the molecule. Therefore, this double
cascade, with the promolecular probabilities 130 in its initial (promolecular) AO input
(¥°) and probabilities p in its final (molecular) AO output (¥'), gives rise to the
resultant conditional probabilities

(" — PP — ¥)
={Pyo_p=P@nb)/pl = Qv FupPbal (37)

Py’ — ¢

where P(a A b) = (2N)~' 7, »7p.a. Using the idempotency of ¥, ¥ = 29. one can
then explicitly verify Eq. (35),

PPy’ — ¥
A0 A0 A0
= [Zﬁgpao—w:z Panby=2N)"" D PbaTab =)7b,b/N=13b] . (38)
a a a

and derive the modified “normalization” of probabilities determining this effective
“transition” channel:

AO AO
D Py =)' D FabTra =Faa/Va = Pal BY- (39)
b b

The cascade channel of Eq. 35 generates the following communication-noise index
of the chemical bond covalency in OCT:

S('/,/|'/,O) = - Z 1;2 Z ﬁaoﬁb 10g2 I’Sa()*)b

acy®  beys
. P b
== 3> Banblog, w (40)
acy beyr Pa

@ Springer



J Math Chem (2011) 49:2308-2329 2323

For the corresponding index reflecting the mutual-information in 130 and p one obtains

_ ) p )
I 0= 0> Po_log, “;:b =5G) - Sw'l¥") @D

acy? bey’

and hence the overall index reads:
N@O 9 =5@ v +I@° ¥ = S@). (42)

Hence, the overall IT bond index in the transition communication channel of Eq. 35
amounts to the Shannon entropy of the molecular AO probabilities.

5 Mixed channels

In molecular information networks the lists of events in the channel input and output,
respectively, may differ from one another, e.g., when examining communications
between different set of orbitals, e.g., x — ¥ and x — ¢ or the associated chan-
nels simultaneously involving AO and MO. In OCT the “mixed” information channel
¥ — ¢, from the AO (input) to MO (output), is defined by the conditional probabili-
ties P(Yy — @)= P(p|¥) = {P,—.5 = P(s|a)}. In this section we express the mixed
probabilities in terms of the corresponding expansion coefficients and density matrices
and examine the entropic descriptors of the illustrative GTO — AO and AO — MO
channels as well as those of the resultant communications in their sequential cascade
of the bond formation process, GTO — AO — MO, which describes the communi-
cations in the double cascade x — ¥ — ¢ of the stage evolution of the primitive
basis functions x into AO and the subsequent transformation of the latter into MO.
The product

P(x = oY) =P(x = ¥IPW — @) = {Pisya} (43)

thus determines the “bridge” communications from x to ¢ via ¥ intermediates
[40—43]. One also observes that the “physical” conditional probabilities P(x — )
and P(y — @) are defined in the “bond” subspaces of the occupied AO in M® and
of the occupied MO in M, respectively. Indeed, the virtual AO (a = b) are effectively
excluded as intermediates in the ground-state of the promolecule, since the amplitude
of the output signal from the GTO — AO stage of the bridge cascade, i.e., the input
signal for its second AO — MO stage, then identically vanishes: A;_., = 0. The
same is true for the second stage of the cascade: the communications to the virtual
MO s = ¢ give rise to the vanishing amplitudes: A,_.; = 0.

Since in general these electron occupations may involve open shells the correspond-

ing (weighted) bond “projections” now represent the associated density operators D
and D,
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B’ = 1) (W/N) I =19)p° (¥ | and D=1 (n’/N) (gl = l0)p (o]
(44)

which respectively define the promolecular and molecular (ground state) bond ensem-
bles with the diagonal matrices of orbital probabilities: p’ = { paéa p} and p =
{Ps0s.:}. Their x-representations define the CBO matrices of Eq (32):

A0 ~
Y =N(xD|x)=Nd® and v=N(xDlx)=Nd.

In accordance with the superposition principle of quantum mechanics [30,45] the
communications ¥ — ¥, in the “bond” system of the promolecule, and ¥y — ¢, in
the bond system of the molecule, are proportional to the square of the corresponding
(weighted) projections (scattering amplitudes) between the two sets of the orbitals
involved:

Ayoy = {Aina = (D 1a)} = D’ 1) = (D" 1)C° = ¥°C° and
Ay_y = {Aq—s = (@[Dls)} = (¥|Dlp) = (¥D|y)D = ¥’D. 45)

Their squares accordingly determine the corresponding conditional probabilities
between different sets of the orbital events involved:

P =7\ Aral? = 7(@D i) 1D 1a) = 7 (alS; Ja)
=7;1@°CY); 1> =7%|GY 1%,

Puss = |Aamss|* = Za(s|Dla)(a|Dls) = Za(sISals)
= %a|(dC)yss|* = 74| Guss %, (46)

a0 a . o
where S; and S, stand for the relevant scattering operators: from |i), in the promolecu-
lar ensemble, and from |a), in the molecular ensemble, respectively. The normalization
constants are determined from the associated sum rules: ¥, P; ., = ¥, P, ., = 1:

= (i |(D) in~'=1/[@"?);; and
%y = (@D 1a) ™" = 1/[(d) o 47)

where we have observed that in the Hilbert space spanned by the adopted set of GTO
> . lay{al = > Is)(s| = 1. This normalization then assures that summation over the
complete list of the final outputs in the combined GTO — AO — MO channel recov-
ers the probability of the preceding stage in this double cascade: X Pi s = Pi—sq.

Let us examine the entropy/information descriptors of the combined mixed chan-
nel x — ¥ — ¢. Using the relevant normalizations it can be demonstrated that the
overall measure of the average conditional entropy (of the bond covalency) in such
product (bridge) propagations is given by the sum of the noise descriptors of each
stage of the double cascade:
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GTO AO MO
= > > > P(inrsla)log Pi — sla)
i a S

GTO AO MO

:_ZZZPUA“)P(“_)S)[IOgP(i—>a)+10gP(a—>s)]

1

S(x = ol¥)

GTO AO AO MO
=—> D> Pira)logP(i —a)— > > Pans)logPla— s)]
=S(x = ¥ +SW — 9). 48)

The corresponding expression for the channel information ionicity then reads:

GTO AO MO

Z ZZP(;’ A sla)log[P(i — sl|a)/ps]

I(x :ol¥)

MO AO /GTO
—S(x = ol¥) — ZZ(Z PG A s|a))1og s

N a

AO MO /GTO
—S(x = oly) — ZZ(Z P(i A a))P(a — ) log ps

MO s AO
—S(x — 9l¥) — Z(Z P(a A s))logps

N

—S(x = ol¥) + S{pshH . (49)

where S({ps}) denotes the Shannon entropy of the MO probabilities in the molecular
ground-state ensemble. Hence, the latter also determines the overall IT bond index of
this double cascade:

NGely) =Sx = ely)+1(x oY) =SUps) - (50)

The AO resolution thus provides a natural framework to discuss and understand the
bond-formation process. It fixes the ¥ representation, in which Y*¥ = v0 is diagonal,
while the effective molecular occupations of AO are given by the diagonal part of a
non-diagonal matrix Y¥. As we have already argued in Sect. 4, the transformation
of the non-bonded (separated) atoms of the promolecular reference into the bonded
Atoms-in-Molecules (AIM), which is ultimately responsible for the infer-atomic part
of the overall chemical bond phenomenon, is described by the expansion (LCAO
MO) coefficients D = (¥|@) of the “rotation” of |¢) (AO) into |@) (MO). For this
M® — M transition they also generate the relevant displacement of the CBO matrix
in AO representation:
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AYM® = M) = AYY =y¥ =¥V = {Ay,,} = DAY’D’

= N D —D'|y) = N(¥|AD[y) = N@” — d*¥) = NAdY.
(51)

This AO — MO “transition” density matrix is thus fully described by the molecular
CBO-displacement in the AO representation relative to the promolecular reference,

AV =Dn’D" — 0 = {yop, — 0, = Avas). (52)

It is related to the ¥ and ¢ representations of the difference density operator:

A

AD=D — D’ =|9)AYY (¥| = |0)AY* (9|, AY?=¥¢ —¥**=n — D'v'D.

(53)
This equivalence can be straightforwardly demonstrated:
DAY’D' = (¥])[n° — D"Y'Dl{g|y) = N(¥1p) (0| ADIo) (p|¥)
= N(y|AD|y) = Na¥ = AYY, (54)

since |@) (@|¥) = |¢¥) in the Hilbert space spanned by the basis vectors | x ).
The elements of this difference density matrix have a transparent “geometrical”
interpretation in the molecular Hilbert space,

v =y = [lal o)) ] [@) (g1 b)]
[t o202 )|
= @bty — <a°|BO)}, (55)

where |c'zb > and |Ezo) denote the population-weighted projections of |y,) onto the two
compared occupied subspaces: €, of MO in M, and &°, of AO in MO, respectively.
Thus, this representative matrix element measures the displacement in the scalar prod-
uct between the specified pair of AO in the occupied subspaces of the canonical orbitals
determining the ground-states of the molecule and its promolecule.

Therefore, the difference CBO matrix of Egs. (51)—(54) fully describes in the
orbital approximation the displacement aspect of the system electronic structure
due to the M — M transition, thus monitoring the bond formation effects. Its
closure relation, trAY¥Y = Y4Ayaq = 0, reflects preservation of the overall
number of electrons in this isoelectronic transition, while the trace of its square,
tr(AYY)? = 2,3 AYap Aypa = o2, determines the dispersion o of elements in
the molecular CBO matrix in AO representation relative to their promolecular ana-
logs.
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Lo

Fig. 3 The (stationary) closed loop of the molecular [M] and promolecular [MO] information systems
of Egs. (56) and (57). When supplemented with the sign convention for the molecular and promolecular
IT descriptors of the chemical bond, it generates the molecular difference indices of the system chemical
bonds, relative to the promolecular reference

6 Information loop concept and the difference bond descriptors

In Sect. 2 we have demonstrated that the propagation of the promolecular AO signal [10
in the sequential cascade of the molecular channels, equivalent to the direct molecular
scattering POBY la¥) related to Y¥, ultimately produces the molecular AO signal p in
the channel output (Fig. 2b; see also Sect. 4):

P> a?—Po¥a?) > b >p or p°— [M]—>p. (56)

The same argument can be used to demonstrate that the molecular input p applied in
the sequential cascade of the promolecular channels, equivalent to the direct promo-
lecular network PO (bY la¥) derived from y*-¥, ultimately generates the promolecular
signal in its output:

p—a’—P°®Ya") - b¥ - p° or p— [M]— 5" (57)

These two channels can be arranged into the closed information loop shown in Fig. 3,
in which the input of the molecular subchannel is simultaneously identified as the
output of the promolecular subchannel, and the output of the partial molecular com-
munication network simultaneously constitutes the input of the partial promolecular
system. In this closed “cascade” the direction of the probability propagation in one
subchannel is reversed relative to the other subchannel.

Should one adopt the convention ascribing to the molecular (“left-right”) direction
the “plus” sign of the associated entropy/information descriptors of Egs. (40)-(42),
and to the promolecular (“right-left”) direction the “minus” sign of the corresponding
intra-atomic indices,

S‘O(]ﬁo |]l,,) == Z Pa a—)bo 1Og2 ﬁt?—)bo

acy’  pey?

:—Z Z P%a A b)logy ——— (a/\b)

acy’ ey
70,40 130 b0 ~0 <0/ 0
Py =" pa D P olog, == = S@°) — S0 |y,

ac¥’  bey® Pp

NO@O ) =S () +1W° ') = SG°), (58)
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the resultant IT indices of such a molecular communication loop would then generate
the associated difference descriptors of the chemical bonds in AO resolution:

ASY =5 [y =S @O |y, AV =Ty -0y,
ANY = N@% ) — N°% 9) = 5() — SG°). (59)

These displacements describe the net changes in the average communication noise and
information flow in AO resolution, which accompany the chemical bond formation
in the molecule. The associated overall indices are now seen to be normalized to the
molecular shift in the Shannon entropy of AO probabilities relative to the promolecular
reference value.
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