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Abstract The sum-connectivity index is a newly proposed molecular descriptor
defined as the sum of the weights of the edges of the graph, where the weight of
an edge uv of the graph, incident to vertices u and v, having degrees d,, and d, is
(d, + dv)’l/ 2_'We obtain the minimum sum-connectivity indices of trees and uni-
cyclic graphs with given number of vertices and matching number, respectively, and
determine the corresponding extremal graphs. Additionally, we deduce the n-vertex
unicyclic graphs with the first and second minimum sum-connectivity indices for
n>4.

Keywords Randi¢ connectivity index - Sum-connectivity index -
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1 Introduction

The Randi¢ connectivity index [1] is one of the most successful molecular descriptors
in structure-property and structure-activity relationships studies [e.g. 2—7]. Mathe-
matical properties of this descriptor have also been studied extensively as summarized
in [8,9].

Let G be a simple graph with vertex-set V(G) and edge-set E(G) [10]. For v €
V(G), T'(v) denotes the set of its (first) neighbors in G and the degree of v is
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dy = dg(v) = |I"'(v)|. The Randi¢ connectivity index [1] R = R(G) of the graph G
is defined as

R = R(G) = Z (dydy)~ /2.
uveE(G)

We also call this index as the product-connectivity index of G.
Recently, another connectivity index—the sum-connectivity index was proposed
in [11]. The sum-connectivity index of the graph G is defined as

Xx=xG)= D (d+dy) '
uveE(G)

The sum-connectivity index and the Randi¢ (product-)connectivity index are highly
intercorrelated quantities. For example, the correlation coefficient between the sum-
and product-connectivity indices for the set of 134 trees representing the lower alkanes
15 0.99088 and for the set of 30 polycyclic graphs representing lower benzenoid hydro-
carbons is 0.9992.

We also used both the sum-connectivity index and the product-connectivity index
to approximate rather accurately the w-electron energy (E,) of benzenoid hyrocar-
bons [12], the correlation coefficients between x (G) and E, and R(G) and E being
0.9999 and 0.9992, respectively. These results prompted us to study the mathematical
properties of this novel variant of the connectivity index. We determined in [11] the
unique tree of fixed numbers of vertices and pendant vertices (vertices of degree one)
with the minimum value of the sum-connectivity index, and the n-vertex trees with the
minimum, second minimum and third minimum, and the maximum, second maximum
and third maximum values of the sum-connectivity index for n > 7, and discussed its
properties for a class of trees representing acyclic hydrocarbons. We also determined
in [13] the trees and unicyclic graphs of fixed number of vertices and maximum degree
with the maximum values of the sum-connectivity index, and deduced the n-vertex
unicyclic graphs with the maximum and second maximum values of sum-connectivity
index forn > 4.

A matching M of the graph G is a subset of E(G) such that no two edges in M
share a common vertex. A matching M of G is said to be maximum, if for any other
matching M; of G, |M;| < |M|. The matching number of G is the number of edges
of a maximum matching in G. If M is a matching of a graph G and vertex v € V(G)
is incident with an edge of M, then v is said to be M-saturated, and if every vertex of
G is M-saturated, then M is a perfect matching.

For integers n and m with 1 < m < L%J let T(n, m) be the set of trees with n
vertices and matching number m, and let U(n, m) be the set of unicyclic graphs with
n vertices and matching number m. Obviously, T(n, 1) = {S,} and U(n, 1) = {C3}.
In the following, we assume that2 <m < | 5.

Recall that the minimum product-connectivity indices in T(n, m) and U(n, m)
were respectively determined in [14] and [15]. In this paper, we obtain the mini-
mum sum-connectivity indices in T(n, m) and U(n, m), respectively, and determine
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the corresponding extremal graphs. Additionally, we deduce the n-vertex unicyclic
graphs with the first and second minimum sum-connectivity indices for n > 4.

2 Preliminaries

We first establish a few lemmas that will be used.

Lemma 2.1 Let G be an n-vertex connected graph with a pendant vertex u, where
n > 4. Let v be the unique neighbor of u, and let w be a neighbor of v different from
u.

(i) If there are at most k pendant neighbors of v in G, then

dow) —k  2k—dg) k-1

G) = x(G — -
x(G) — x( M)Z\/dc(v)-f‘z Jdg(w) +1  /dg(v)

with equality if and only if k neighbors of v have degree one, and the other
neighbors of v are of degree two.
(ii) Ifdg(v) = 2 and there is at most one pendant neighbor of w in G, then

1 dew)—1  do(w)—3 1
—u—v)>—+ - -
V3 Jdgw)+2 Jdgw)+1 Jdgw)

x(G) — x(G

with equality if and only if one neighbor of w has degree one, and the other
neighbors of w are of degree two.

Proof (i) Denote by vo = u,vq,...,vs—1 the neighbors of v in G, where
s = dg(v). Assume that dg(vy) = -+ = dg(v;) = 1, and dg(vy+1), - - -,
dg(vs—1) = 2, where 0 < r < k — 1. Note that \/%Tl — JLE — ﬁ < 0. Then

1 1 1
X(G)=X(G—u)+m+r(m—$)

s—1
1 1
+ 2 (Jdc<vi>+s BN AT 1)

i=r+1

> x(G—u)+

1 1 1
Vs +1 Jrr(«/erl _ﬁ)
1 1
+(s_1_r)(«/2+s_«/2+s—l)

2 1 1
~x6-0r( - )
+s—1 B s—2
Vs+2 s+ 1

2 1 1
zx(G—u)+(k—1)( — _Hz)
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s—1 s—2
+ .
Vs+2 0 s+

s —k 2k — s k—1

1(G —u)+ NSNS NG
with equalities if and only if dg(vy) = -+ = dg(vk—1) = 1, and dg (vy) =
=dg(vs-1) = 2.
(ii)) Denote by wog = v, wy, ..., wy—1 the neighbors of w in G, where t = dg(w).
Assumethatd(;(wr+1) ,dg(w;—1) > 2,wherer = Qorl,anddg(wq) =1
if r = 1. Note that —=— —L—L < 0. Then

= by Ay e

x(G)=x(G—-u—-v)+ —

1 1 1
f wif”&mj‘ﬁ)

1
* Z («/dc(w)-l-t \/dG(wi)+t_l)

i=r+1
> (G =)+ =+ ( ! 1)
_ - , _ L
=X ‘e f JE+2 JE+1 Wt

1 1
+(t_l_r)(«/2+t _«/2+t—1)

—xG-u—v+ (- - )
RN R W BN

t t—1
+ —
JE+2 e+ 1
> x(G ) + ! +( 2 ! ! )
—U—) + — -
=X V3 O\Wi+1l it Jit2
t t—1
+ —
V42 «/t+
G )+ L t—1 t—3 1
:X _ — vV —_ —_——
f Vi+2  Jit+1 e
with equalities if and only if dg (w1) = 1,anddg(w2) = -+ = dg(w;—1) = 2.
O

+ 2a—x _ a—1 is

Lemma 2.2 (i) Forinteger a > 1, the function f(x) = N R

decreasing for x > a + 1
(ii) The function g(x) = «/F — ﬁ - T is decreasing for x > 2.

s

Proof (i) Let fi(x) = XJXITf + %

x >a+ 1> 2,itis easily seen that

Then f(x) = fi(x +1) — fi(x). For

1 7 3 3
OGRS (Zx ++ Z“) (D7 e = a2
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_3 [x_5/2 —(x+ 1)—5/2] a— (lx + Z) (x+ 172 - zx—S/Z

4 4 4
31 25p -5/2 1 7 53 _sp
Ez[x — D@ -1 - R [CRR e

3
=0 - )x 2 x4+ 1) <0,

implying that f'(x) = f{(x + 1) — f{(x) < 0. The result follows.

(i) Letgi(x) = jx—% + JL} Then g(x) = g1(x + 1) — g1(x). For x > 2, itis

easily seen that g{'(x) = — (‘]—tx + %) (x 4+ 1724 %x‘s/z < 0, implying
that g’(x) = g} (x + 1) — g} (x) < 0. The result follows. O
Lemma 2.3 Let G be a connected graph with uv € E(G), where dg (u), dg(v) > 2,
and u and v have no common neighbor in G. Let G| be the graph obtained from G

by deleting the edge uv, identifying u and v, which is denoted by w, and attaching a
pendant vertex to w. Then x (G) > x(Gy).

Proof Letd, = dg(x) for x € V(G). It is easily seen that

G)—x(Gy= D ( L 1 )
TR = V&t dy  Jd T dgtdy—1

xueE(G)\{uv}

+ > ( L ! )>0
\/dx+dv \/dx+du+dv_l ’

xveE(G)\{uv}

and then the result follows easily. O
For2 <m < L%J , let T,, ,, be the tree obtained by attaching m — 1 paths on two
vertices to the center of the star S, 2,42, and let U, ,, be the unicyclic graph obtained
by attaching n — 2m + 1 pendant vertices and m — 2 paths on two vertices to one
vertex of a triangle; see Fig. 1. Evidently, T, ,, € T(n, m) and U, ,, € U(n, m).

3 Sum-connectivity indices of trees

The following lemma is obvious.

Lemma 3.1 Let G € T(2m, m), where m > 2. Then G has a pendant vertex whose
unique neighbor is of degree two.

Lemma 3.2 [16,17] Let G € T(n, m), where n > 2m. Then there is a maximum
matching M and a pendant vertex u of G such that u is not M -saturated.

First, we consider the trees with a perfect matching.
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n—2m+1 o 4 m—1
L] L]
n,m
L] L]
n—-2m+1 ° ° m—2
L] L]
U

n,m

Fig. 1 The graphs 7}, ;; and Uy s

Theorem 3.1 Let G € T(2m, m), where m > 2. Then

$(G) > —m gzl ]
vm+1  Jm+2 V3

with equality if and only if G = Tom. m-

Proof Let f(m) = J’;—H + m”:z + mT;l We prove the result by induction on m. It
is easily checked that G = Ty if m = 2.

Suppose that m > 3 and the result holds for trees in T(2m — 2, m — 1). Let G €
T(2m, m) with a perfect matching M. By Lemma 3.1, there exists a pendant vertex u in
G adjacent to a vertex v of degree two. Thenuv € MandG—u—v € T2m—2, m—1).
Let w be the neighbor of v different from u. Since |M| = m and every pendant vertex
is M-saturated, we have dg(w) < m. Note that there is at most one neighbor of w

with degree one. By Lemma 2.1 (ii), Lemma 2.2 (ii) and the induction hypothesis,

1 dew)—1  dg(w)—3 1
G G—u—v)+— - -
WO =G =t Bt e Jicw T Jagw)
1 m—1 m—3 1
= f(m)

B Jni2 Jmil om

with equalities if and only if G —u — v = Tp;y—2 -1 and dg(w) = m, ie, G =
Do m- ]

= fim—1)+

Now, we consider the trees with a given matching number.

Theorem 3.2 Let G € T(n, m), where2 < m < |5 |. Then

(G)>n—2m+1+ m—1 +m—1
X T n—m+1 JSn—m+2 V3
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with equality if and only if G = T,, ,,,.

Proof Let f(n,m) = \"/n2—m;+l + m
on n. If n = 2m, then the result follows from Theorem 3.1.

Suppose thatn > 2m and the result holds for treesin T(n —1, m). Let G € T(n, m).
By Lemma 3.2, there is a maximum matching M and a pendant vertex u of G such that
u is not M-saturated. Then G — u € T(n — 1, m). Let v be the unique neighbor of u.
Since M is a maximum matching, M contains one edge incident with v. Note that there
aren — 1 —m edges of G outside M. Thendg(v)—1 <n—1—m,ie.,dg(v) <n—m.
Let r be the number of pendant neighbors of v in G, where 1 <r < dg(v) — 1. Note
that at least r — 1 pendant neighbors of v are not M -saturated, and there are n — 2m
vertices are not M-saturated in G. Then r < n — 2m + 1. By Lemma 2.1 (i) with
k=n—2m + 1, Lemma 2.2 (i) and the induction hypothesis,

+ 2 T We prove the result by induction

do)—(m—2m+1) 2mn—2m+1)—ds©)

G G-
X(G) 2 (G =)+ == NZZOES]
_(n—2m+ 1)—1

Vdg(v)
> f(n—1,m)+

(n—m)—(n—2m+1)+2(n—2m+1)—(n—m)

J(n—m)+2 Jm—m)+1

n—2m+1)—1

Jn—m
= fn,m)

with equalities ifand only if G —u = T,,_1 ., dg(v) =n—mandr =n—-2m+41,
i1e., G =Ty nm. O

4 Sum-connectivity indices of unicyclic graphs

In this section, we determine the unicyclic graph of a given matching number with the
minimum sum-connectivity index.

For a unicyclic graph G with cycle Cj, the forest formed from G by deleting the
edges of Cs consists of s vertex-disjoint trees, each containing a vertex on Cy, which
is called the root of this tree in G. These trees are called the branches of G.

Lemma 4.1 [18] Let G € U(2m, m), where m > 3, and let T be a branch of G
with root r. If u € V(T) is a pendant vertex that is furthest from the root r with
dg(u,r) > 2, then u is adjacent to a vertex of degree two.

Lemma 4.2 [19] Let G € U(n, m), where n > 2m, and G # C,. Then there is a
maximum matching M and a pendant vertex u of G such that u is not M -saturated.

For integer m > 3, let Uj (m) be the set of graphs in U(2m, m) containing a pendant
vertex whose neighbor is of degree two. Let Uy (m) = U(2m, m)\U (m).
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Lemma 4.3 Let G € Uy(m), where m > 4. Then x (G) > «/r’:T-S—i_ ”14_2 + %—i—%

Proof By Lemma4.1,G € U, (m) implies that G is a graph of maximum degree two or
three obtained by attaching some pendant vertices to a cycle Cy, where m < k < 2m.
Let G be a graph in Uy (m) with the minimum sum-connectivity index. Let M be a per-
fect matching and C the unique cycle of G. Suppose thatm+1 < k < 2m. Then there
is at least one edge, say xy, on C such that xy € M. Note that dg, (x), dg,(y) = 2.
Denote by x; the neighbor of x on C different from y. For G, = G| — {xx1}+{x1y} €
U, (m), we have by Lemma 2.3 that x(G2) < x(G1), a contradiction. Thus, k = m,
i.e., each vertex on C is of degree three. Then

m m 1 1
G1) = + =+ —)m.
x(G1) JI+3 0 /343 (2 JE)

Leth(x) = (% + ﬁ) x—(ﬁ + ﬁ + ’%32 + %).Itiseasily seenthat%(x~|—
2)73/2 — (%x + 3) (x+3)3%is increasing for x > 4, and thus

1 1 o1
W (x :—x+23/2—(—x+3) x+3) P — -
(x) 2( ) 5 ( ) ARG
1 1 o1
z—(4+2)‘3/2—(—~4+3)(4+3)—3/2+—+———>o,
2 2 2 V6 V3

i.e., h(x) is increasing for x > 4, implying that 2(m) > h(4) > 0. The result follows.
O

Let Hg be the unicyclic graph obtained by attaching a pendant vertex to every vertex
of a triangle. It may be easily checked that the following lemma holds.

Lemma 4.4 Among the graphs in U(6, 3), Hg is the unique graph with the minimum
sum-connectivity index %,) + % and Us 3 is the unique graph with the second minimum

e 3 1 1 1
sum-connectivity index 7 + 7 + 7 + 5.

In the following, if G is a graph in U (m) with a perfect matching M, then denote
by u a pendant vertex whose neighbor v is of degree two in G, and denote by w the
neighbor of v different from u. Obviously,uv € M andG—u—v e U2m—2, m—1).
Since |M| = m, we have dg(w) < m + 1. Note that there is at most one neighbor of
w with degree one.

Lemma 4.5 Let G € U8, 4). Then x (G) > % + %a + % + L with equality if and
only if G = Ug 4.

4 1 2 1
Proof If G € Uy(4), then by Lemma 4.3, we have x(G) > Wii + G + 7 + 5.
Suppose that G € Uj(4). Then G —u — v € U(6,3). If G — u — v # Hg, then by
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Lemma 2.1 (ii), Lemma 2.2 (ii) and Lemma 4.4,

dg(w) —1 dg(w) —3 1

G +— -
1@ AT w2 Jicw 1 o

v

X(G—u—v

3 1 11 1 5.1 5-3 1
z(—+—+—+—)+—+ - -
V6 V53 V3 2) 3 OJ5¥2 SH+T W5
4 N 1 N 2 +1
V1 V6 3

with equalities if and only if G —u —v = Ug 3 and dg(w) = 5,1.e.,G = Ug 4. If G —
u—v = Hg,thendg(w) < 4, and by Lemma 2.1 (ii), Lemma 2.2 (ii) and Lemma 4.4,

e+ L, dow -1  dow)-3 1

G
K@ B Vo 2 o) +1  Jdgw)

v

- ( 3 N 3) n 1 n 4—1 4-3 1
“\WVe 2 J3OJAE+2 JA+T 4
6 1 L L 1 4 N 1 n 2 N 1
= > —+—+—=+ .
NG ﬁ 7 V6 V32
The result follows. O

Now we are ready to prove our results.
Theorem 4.1 Let G € UQ2m, m), where m > 2.
(i) Ifm =3, then x(G) > \/ig + % with equality if and only if G = Hg.
(ii) Ifm # 3, then

G) > m n 1 n m—2 n 1
X > —

Jm+3 Sm+2 J3 2

with equality if and only if G = Uy .
Proof The case m = 2 may be checked directly since U(4, 2) = {C4, Us 2}, and the
case m = 3 follows from Lemma 4.4.
1

Suppose that m > 4. Let g(m) = «/7 + W)
by induction on m. If m = 4, then the result follows from Lemma 4.5. Suppose that
m > 5 and the result holds for graphs in U2m — 2, m — 1). Let G € UQ2m, m). If

G € Uy(m), then by Lemma 4.3, x(G) > g(m).If G € Uj(m), then by Lemma 2.1
(ii), Lemma 2.2 (ii) and the induction hypothesis,

+ o [ + . We prove the result

(G > (G vyt g de 1 dgw) -3 1
V3 NVdgw)+2  Jdgw)+1  JVdg(w)
! m+1H)—-1  (m+1)-3 1

=8 )+\/_+\/(m+1)+2 JimF+1) 1 \/m-l—l_g(m)
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with equalities if and only if G —u — v = Uyy—2,m—1 and dg(w) = m + 1, i.e,
G =Uyp.m- O

Theorem 4.2 Let G € U(n, m), where2 <m < |5 |.

(i) If (n,m) = (6, 3), then x(G) > Jig + 3 with equality if and only if G = He.
(ii) If (n,m) # (6, 3), then

(G)>n—2m+1+ m +m—2+1
= —mi2 Jnomi3 . V3 2

with equality if and only if G = U, .

Proof The case (n,m) = (6, 3) follows from Lemma 4.4. Suppose that (n, m) #*
(6,3). Let

n—2m+1+ m +m—2+l
Sn—m+2 Jn—m+3 V3 2

gn,m) =

It was shown in [13] that the cycle C,, is the unique n-vertex unicyclic graph with
the maximum sum-connectivity index. Thus, we only need to consider G # C,. If
n > 2m, then by Lemma 4.2, there exists a pendant vertex x and a maximum matching
M such that x is not M-saturatedin G. Let G € U(n, m). Then G —x € U(n — 1, m).
Let y be the unique neighbor of x. Since M contains one edge incident with y, and
there are n — m edges of G outside M, we have dg(y) < n —m + 1. Let r be the
number of pendant neighbors of y in G, where 1 <r < dg(y) — 1. Note that at least
r — 1 pendant neighbors of y are not M-saturated, and there are n — 2m vertices are
not M-saturated in G. Then r < n — 2m + 1. We prove the result by induction on .

Suppose that m = 3. If n = 7, then G — x € U(6,3) : if G — x # Hpg, then by
Lemma 2.1 (i) withk =n —2m + 1 =2, Lemma 2.2 (i) and Lemma 4.4,

dg(y)) =2 2-2—-dg(y) 2-1

Vdg) +2  Jdg) +1  Jdg(y)

>(i+L+L+l)+ 5-2 N 4-5 2-1

T\WV6 V3 OV3 2 J3+2 0 5+ V5
3 2 11

_%+%+J_§+E

x(G) =z x(G —x)+

with equalities if and only if G — x = Ug3, dg(y) =S5andr =2,ie.,G = Uy 3,
while if G — x = Hg, then dg(y) < 4, and thus by Lemma 2.1 (i), Lemma 2.2 (i) and
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Lemma 4.4,

dg(y) =2  2:2—dg(y) 2-1
G) > (G —x)+ B
7 o e s ALY o e S 77T e
>|—=+3)+ + -
V6 2) Vav2 A+l A
5 302 1 1

=%+l>ﬁ+%+ﬁ+z.

Thus, x (G) > % + \/ig + % + % with equality if and only if G = Uy 3. Suppose that
n > 8 and the result holds for graphs in U(n — 1, 3). Then by Lemma 2.1 (i), Lemma
2.2 (i), and the induction hypothesis,

dg(y) —(n—=15) +2(n—5)—d(;(y) (m=5-1
VdG(y) +2 Vdg(y) +1 Vda(y)

n—2)—(n—-295) +2(n—5)—(n—2) _ (n—5 -1
Jn=2)+2 Jin=2)+1 n—2

x(G) = x(G —x) +

>gm—13)+

= g(n,3)

with equalities if and only if G —x = U,—13, dg(y) =n—2andr =n—35,1ie,
G =U,3.

Suppose that m # 3.1f n = 2m, then the result follows from Theorem 4.1. Suppose
that n > 2m and the result holds for graphs in U(n — 1, m). Then by Lemma 2.1 (i)
with k = n — 2m + 1, Lemma 2.2 (i) and the induction hypothesis,

dg(y) — (n —2m +1)
x(G) = x(G—x) + N OES
2(n —2m + 1) —dg(y)
Vdg(y)+1
nm—2m+1)—1
Vdg(y)
m—m+1)—(n—-2m+1)
Vin—m+1)+2
2m—2m+1)—(n—m+1)
NV e Ve |
n—-2m+1)—1
e mil

= g(n, m)

>gln—1,m)+

withequalitiesifandonly if G—x = U, —1,n, dg(y) =n—m+landr = n—2m+1,
ie., G =U,n. O
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5 Small sum-connectivity indices of unicyclic graphs

Recall that we have already determined in [13] the n-vertex unicyclic graphs forn > 4
with the maximum and second maximum sum-connectivity indices. Now we deter-
mine the n-vertex unicyclic graphs for n > 4 with the minimum and second minimum
sum-connectivity indices.

Let S, (a, b) be the graph obtained by attaching a — 2 and b — 2 pendant vertices
to two vertices of a triangle, respectively, wherea > b > 2andn =a + b — 1.

Lemma 5.1 Among the graphs S,(a,b) witha > b > 2andn = a+b —1 >
5, Sy(n—1,2)and S, (n—2, 3) are respectively the unique graphs with the minimum

and second minimum sum-connectivity indices, which are equal to 2+ T+ % + %
n

and —an_l + \/Lﬁ + \/"’%41 + Ls + % respectively.

Proof Actually, we only need to prove x (S,(a, b)) > x (Sy(a+1,b— 1)) fora >
b>3.Let f(x) = (x + D7V2 4 (x —3)x~V/2 for x > 3. Then f"(x) = 3(x +
1H™/2— }‘(x —i—9)x’5/2 < 0, implying that f(x 4+ 1) — f(x) is decreasing for x > 3.
Thus, it is easily seen that

X Snl@a+ 1,0 = 1)) — x (Su(a, b))

=[x Sula+ 1,6 = 1) =x (Sp-1(a, b = 1)] = [x (Sala, b)) = x (Su-1(a, b —
_(a—2_a—2+ 1 )_(b—S _b_3+ 1 )
\Va+2 Va+l Ja+3 Vb+1 Vb Vb2
=[fla+2) - fla+DI-[f(b+1) - fD)]<O0.

Then the result follows easily. O

Theorem 5.1 Among the n-vertex unicyclic graphs, U, 2 = S,(n — 1, 2) forn > 3 is
the unique graph with the minimum sum-connectivity index, which is equal to \/nz? +

% + %, Cy for n = 4 is the unique graph with the second minimum sum-connectivity

index, which is equal to 2, and S,,(n — 2, 3) for n > 5 is the unique graph with the sec-

.. C . . 1 1 n—a 1,1
ond minimum sum-connectivity index, which is equal to T + NG + N + < +5.

Proof The case n = 3 is trivial. Let G be an n-vertex unicyclic graph with matching
number m, where 2 < m < L%J The cases n = 4, 5 may be checked directly since
there are only two and five possibilities for G, respectively. Suppose that n > 6.

If m = 2, then by Theorem 4.2, x(G) > x(U,) with equality if and only if
G = U,. Suppose that m > 3. If (n, m) = (6, 3), then by Lemma 4.4 and direct
calculation, we have x(G) > x(He) > x(Usp2), and if (n,m) # (6, 3), then by
Theorem 4.2 and Lemma 2.3, x(G) > x(Unpm) > x(Unm=1) > -+ > x(Upn2).
Thus, U, 2> = S,(n — 1, 2) is the unique graph among the n-vertex unicyclic graphs
with the minimum sum-connectivity index.

By the above arguments, to determine the graphs with the second minimum sum-
connectivity index, we only need to consider Hs, U, 3 with n > 7, and the graphs
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in U(n, 2) different from U, ». Thus, G may be of five types: (1) G = S, (a, b) with
b > 3, and then by Lemma 5.1,

1 n—4 1 1
x(G) 2 —— t7=t3

~/— NZRIN = N

with equality if and only if G = S,(n — 2,3); (2) G = Hg, and then by direct
calculation, x(G) > x (S¢(4,3)); (3) G = U, 3 with n > 7, for which

3 n—>=5 1 1 1 1 n—4 1 1
C)= =+ =—=+3 +—+ +—=+z,
* NN BV RN E S BN TN e SV

as it may be easily checked that for h(x) = [ \/—7 with x > 6, h'(x) =

Zx*S/z - %(x + 1)7>/2 > 0, implying that i(x) — h(x — 1) is increasing for x > 7,
and then

(i+u+1+¢)_(;+L+u+L+1)
NIV V3 Vil Jno o n—=1 5 2
= h(n) —h(n — 1) f f_h(7) h(6)+f f

(4) G is the graph obtained by identifying a pendant vertex of S,_» and a vertex of a
triangle, for which,

n—4 2 1 1 1 n—4 1 1
by 4
«/_ Jn—2 50020 Un+l i o n—=1 5 2

(5) G is a graph obtained by attaching some pendant vertices to one vertex or two
non-adjacent vertices of a quadrangle. By Lemmas 2.3 and 5.1, we have x(G) >
X (Sp(n —2,3)). Thus, S, (n —2, 3) is the unique graph among the n-vertex unicyclic
graphs with the second minimum sum-connectivity index. O

x(G) =
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