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Abstract
Using the strong coupling diagram technique, we find three phases of the half-filled 
isotropic Hubbard model on a triangular lattice at finite temperatures. The weak-
interaction ( U ≲ 5t ) and strong-interaction ( U ≳ 9t ) phases are similar to those 
obtained by zero-temperature methods—the former is a metal without perceptible 
spin excitations; the latter is a Mott insulator with the 120◦ short-range spin order-
ing. Zero-temperature approaches predict a nonmagnetic insulating spin-liquid 
phase sandwiched between these two regions. In our finite-temperature calculations, 
the Mott gap in the intermediate phase is filled by the Fermi-level peak, which is a 
manifestation of the bound states of electrons with pronounced spin excitations. We 
relate the appearance of these excitations at finite temperatures to the Pomeranchuk 
effect.

Keywords Hubbard model · Triangular lattice · Phase diagram · Pomeranchuk effect

1 Introduction

Crystals of organic charge-transfer salts, natrium cobaltate, and other layered trian-
gular systems demonstrate several unusual properties [1] related to the interplay of 
pronounced electron correlations and geometric frustrations. The Hubbard model on 
a triangular lattice is frequently used for the theoretical description of these crys-
tals. Several methods are applied depending on the considered temperature. For the 
case of zero temperature, they include exact diagonalization [2], the path-integral 
renormalization group [3, 4], the variational cluster approximation [5], and the 
density matrix renormalization group [6, 7]. For finite temperatures, Monte Carlo 
simulations [8], the dynamic mean-field theory (DMFT) [9], the dynamic cluster 
approximation [10], the dual fermion approach [10, 11], and the cellular dynamic 
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mean-field theory [12] are used. In the case of an isotropic hopping constant and 
half-filling, the zero-temperature methods predict the existence of three different 
regions in the model phase diagram—a metal without perceptible spin excitations 
for small Hubbard repulsions, a Mott insulator with a 120◦ long-range spin order at 
strong interactions, and a nonmagnetic insulating phase between them. The finite-
temperature methods also describe two former phases with the correction that the 
long-range ordering gives way to the short-range one due to the Mermin–Wagner 
theorem [13]. The main difference between zero- and finite-temperature approaches 
concerns the repulsion range corresponding to the intermediate phase. In finite-tem-
perature approximations, states in this range have no Mott gap and are characterized 
by pronounced magnetic excitations. This part of the phase diagram is attributed to 
the metallic region in this connection.

In an attempt to clarify this discrepancy, in this work, we investigate the isotropic 
half-filled Hubbard model on a triangular lattice using the strong coupling diagram 
technique (SCDT) [14–17]. The method is intended for the case U ≫ t and uses the 
series expansion of Green’s functions in powers of the kinetic energy. The approach 
has several advantages in comparison with the finite-temperature approximations 
mentioned above. In contrast to the Monte Carlo simulations, SCDT does not suf-
fer from the sign problem and allows one to consider much larger lattices. Unlike 
DMFT and methods using small clusters, the approach accounts for full-scale 
charge and spin fluctuations. In contrast with diagrammatic extensions of DMFT, 
SCDT does not apply vertices obtained for the infinite-dimensional system to the 
two-dimensional problem. For some ranges of parameters, spins in this problem are 
ordered, and the correlation length can be large. For the DMFT extensions, such a 
situation poses the dilemma: vertices of the ordered or disordered DMFT solution 
should be used. Such a problem does not arise in SCDT.

In this work, we sum up an infinite series of ladder diagrams describing inter-
actions of electrons with charge and spin excitations. The range of the Hubbard 
repulsions 4t ≤ U ≤ 12t in the lattices up to 24 ×  24 sites is considered. Main 
results are obtained for the temperature T ≈ 0.13t . Other data derived in the inter-
val 0.06t ≲ T ≲ 0.32t are used for fitting the parameter, ensuring the fulfillment of 
the Mermin–Wagner theorem. We calculate the local spectral function (LSF), spin 
and charge susceptibilities, double occupancy D, and squared site spin ⟨�2

�
⟩ . We find 

that the results obtained in the considered ranges of parameters correspond to three 
qualitatively different types of states. For U ≲ 5t , LSFs are mainly concentrated in 
the narrow peak at the Fermi level (FL) accompanied by weak Hubbard subbands. 
The zero-frequency spin susceptibility is small and semi-structured as a function of 
the wave vector. D and ⟨�2

�
⟩ are close to values inherent in itinerant electrons. We 

classify this region as a weakly correlated metal. For U ≳ 9t , states are characterized 
by the Mott gap at FL in LSF and strong maxima in the zero-frequency spin suscep-
tibility at the K points (the wave vector k = (4�∕3, 0) and its symmetric equivalents; 
here and below the intersite distance is set as the unit of length). D is small and ⟨�2

�
⟩ 

is close to its fully localized limit S(S + 1) = 0.75 , S = 1∕2 . Hence, this region con-
tains states of the Mott insulator characterized by the 120◦ short-range (for finite T) 
ordering of spins. These two regions are similar to those obtained in the above zero-
temperature approaches. However, our calculated states in the intermediate region 
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are metallic, contrasting insulating states obtained in these approaches. Moreover, 
the LSFs have local maxima at the FL. As in the zero-temperature approaches [4, 6, 
7], the states are not entirely nonmagnetic—intensities of maxima in the zero-fre-
quency spin susceptibility at K points are perceptible though smaller than in the Mott 
insulator region. As can be noticed, the strengths of the LSF peaks at the FL grow 
together with the intensity of the K-point susceptibility maxima. This fact points out 
that the LSF maxima are FL peaks, manifesting the bound states of electrons and 
spin excitations. By nature, these bound states are similar to the spin-polaron states 
of the t-J model [18–20]. The FL peak should be distinct from the Abrikosov–Suhl 
resonance [21]. In SCDT, results of the Anderson impurity model are not used; all 
calculations are carried out within the framework of the Hubbard model. Earlier, the 
FL peaks were observed in spectra of the square-lattice Hubbard model [22].

The mentioned property of the FL peaks—their dependence on intensities of 
the K-point susceptibility maxima—suggests a mechanism that transforms a zero-
temperature insulating state to a finite-temperature metallic state in the intermediate 
region. A system with a nonzero chiral order parameter and moderate spin localiza-
tion at T = 0 [4, 6, 7] has the potential to gain its entropy by resetting this param-
eter and increasing spin localization with growing temperature, in analogy with the 
Pomeranchuk effect in 3 He [23, 24]. The localized spins form the 120◦ short-range 
order with respective spin excitations. They generate bound states with electrons, 
the manifestation of which—the FL peak—fills the Mott gap.

The article is organized as follows: The model Hamiltonian, a brief discussion of 
the SCDT, and the main formulas are given in the next section. The results of calcu-
lations and their discussion are brought up in Sect. 3. The last section is devoted to 
concluding remarks.

2  Model and SCDT

The Hamiltonian of the isotropic Hubbard model on a triangular lattice reads

where l and �′ label sites of a triangular lattice with the base vectors a = (1, 0) and 
b = (1∕2,

√
3∕2) , � =↑, ↓ is the spin projection, t

���
= −t

∑
c
�
��,�+� with c = ±a , ±b , 

and ±(� − �) , a†
��

 and a
��

 are electron creation and annihilation operators, n
��
= a

†

��
a
��

 
is the site occupation operator, and � is the chemical potential. In this work, we con-
sider the case of half-filling, ⟨∑

�
n
��
⟩ = 1 , where the angle brackets denote the sta-

tistical averaging with Hamiltonian (1).
As mentioned above, in calculating Green’s functions, we use the SCDT series 

expansion [14–17]. Terms of the expansion are products of the hopping constants 
and on-site cumulants [25] of the electron creation and annihilation operators. We 
consider terms with cumulants of the first and second orders only. These cumulants 
read

(1)H =
∑

����

t
���
a
†

���
a
��
+ U

∑

l

n
�↑n�↓ − �

∑

��

n
��
,
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The subscript 0 at angle brackets indicates that operator time dependencies and aver-
aging are determined by the site Hamiltonian

The two last terms of Eq.  (1)—the unperturbed Hamiltonian of the SCDT expan-
sion—are equal to 

∑
l
H

l
 . The symbol T  is the chronological operator.

In SCDT, frustration reveals itself in the above hopping constant t
��′

 . In the 
square-lattice model with nearest-neighbor hopping, this constant looks differently: 
t�
���
= −t

∑
��
�
��,�+�� , where �� = (±1, 0), (0,±1) . Other elements of diagrams—cumu-

lants—are the same in both models. As seen below, this difference in hopping constants 
connected with frustration leads to entirely different phase diagrams of the two models.

The terms of the expansion can be visualized by depicting t
��′

 as directed lines and 
cumulants as circles with the number of outgoing and incoming lines equal to the num-
ber of creation and destruction operators in them. As in the weak coupling diagram 
technique [26], the linked-cluster theorem is valid, and partial summations are allowed 
in SCDT. A two-leg diagram is irreducible if it cannot be divided into two discon-
nected parts by cutting a hopping line t

��′
 . Denoting the sum of all such diagrams by K, 

the Fourier transform of the electron Green’s function G(����, ��) = ⟨Tā
���
(𝜏�)a

��
(𝜏) is 

written as

Here k is the 2D wave vector and the integer j defines the fermion Matsubara fre-
quency �j = (2j − 1)�T  , t

k
 is the Fourier transform of t

��′
.

Diagrams taken into account in the present calculations are shown in Fig. 1. Here, 
block arrows entering and leaving cumulants and vertices shown by squares are their 
endpoints, lines with open arrows connecting these endpoints are the renormalized 
hopping,

C(s) and C(a) are the second-order cumulants symmetrized and antisymmetrized over 
their spin indices,

C(1)(𝜏�, 𝜏) =
⟨
Tā

l𝜎(𝜏
�)a

l𝜎(𝜏)
⟩
0
,

C(2)(𝜏1, 𝜎1;𝜏2, 𝜎2;𝜏3, 𝜎3;𝜏4, 𝜎4) =
⟨
Tā

l𝜎1
(𝜏1)al𝜎2(𝜏2)āl𝜎3(𝜏3)al𝜎4(𝜏4)

⟩
0

−
⟨
Tā

l𝜎1
(𝜏1)al𝜎2(𝜏2)

⟩
0

⟨
Tā

l𝜎3
(𝜏3)al𝜎4(𝜏4)

⟩
0

+
⟨
Tā

l𝜎1
(𝜏1)al𝜎4(𝜏4)

⟩
0

⟨
Tā

l𝜎3
(𝜏3)al𝜎2(𝜏2)

⟩
0
.

H
l
=
∑

�

[
(U∕2)n

��
n
�,−� − �n

��

]
.

(2)G(k, j) =
{[

K(k, j)
]−1

− t
k

}−1

.

(3)�(k, j) = t
k
+ t2

k
G(k, j),

C(s)(j + �, j, j�, j� + �) =
∑

��

C(2)(j + �, ��;j, �;j�, �;j� + �, ��),

C(a)(j + �, j, j�, j� + �) =
∑

��

���C(2)(j + �, ��;j, �;j�, �;j� + �, ��),



804 Journal of Low Temperature Physics (2024) 216:800–813

with � an integer defining the boson Matsubara frequency �� = 2��T  , V (s) and V (a) 
are analogously symmetrized and antisymmetrized vertices corresponding to sums 
of infinite sequences of ladder diagrams, which are described by the following 
Bethe–Salpeter equation (BSE)

where the superscript i = s or a. T
k
(j, j�) = N−1

∑
��
�(� + ��, j)�(��, j�) , and N is the 

number of sites.
In these notations, the irreducible part K in (2) reads

Expressions for the second-order cumulants appearing in the above equations are 
rather complex [14–17]. However, in the case

they are significantly simplified. This range of chemical potentials corresponds to 
the considered case of half-filling and moderate doping. In this range, cumulants 
read

(4)

V
(i)

k
(j + �, j, j�, j� + �) = C(i)(j + �, j, j�, j� + �)

+ T
∑

��

C(i)(j + �, j + ��, j� + ��, j� + �)T
k
(j + ��, j� + ��)

× V
(i)

k
(j + ��, j, j�, j� + ��),

(5)

K(k, j) = C(1)(j) +
T2

4N

∑

��j��

�(��, j�)T
�−�� (j + �, j� + �)

×
[
3C(a)(j, j + �, j� + �, j�)C(a)(j + �, j, j�, j� + �)

+ C(s)(j, j + �, j� + �, j�)C(s)(j + �, j, j�, j� + �)
]

−
T

2N

∑

��j�

�(��, j�)
[
3V

(a)

�−��
(j, j, j�, j�) + V

(s)

�−��
(j, j, j�, j�)

]
.

(6)T ≪ 𝜇, T ≪ U − 𝜇,

Fig. 1  a Diagrams taken into account in calculations of the irreducible part K(k, j) . The circle with the 
notation C1 is the first-order cumulant, circles with notations Cs and Ca are symmetrized and antisym-
metrized second-order cumulants, lines with open arrows are renormalized hopping �(k, j) , squares with 
notations Vs and Va are infinite sums of ladder diagrams symmetrized and antisymmetrized over spin 
indices. The Bethe–Salpeter equations they satisfy are depicted in parts (b) and (c)
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where

The above approximate formulas somewhat overestimate the tendency to spin order-
ing, which leads to the transition to the 120◦ long-range order at finite temperatures 
for some parameters, in violation of the Mermin–Wagner theorem [13]. The param-
eter � introduced in Eq. 7 shifts the transition temperature to zero. In the above for-
mulas, it is retained only in cases when multipliers T−1�jj� and T−1��0 in the respec-
tive terms are not eliminated by frequency summations. Below, we discuss the way 
to fix the � value.

With expressions (7), vertices V (s) and V (a) acquire the form

where

and quantities zi and yi , i = 1,… 4 satisfy two systems of linear equations

(7)

C(1)(j) =
1

2

[
g1(j) + g2(j)

]
,

C(2)(j + �, �;j, ��;j�, ��;j� + �, �) =
1

4(T + �)

[
�jj�

(
1 − 2����

)

+ ��0

(
2 − ����

)]
a1(j

� + �)a1(j) −
1

2
��,−��

[
a1(j

� + �)a2(j, j
�)

+ a2(j
� + �, j + �)a1(j) + a3(j

� + �, j + �)a4(j, j
�)

+ a4(j
� + �, j + �)a3(j, j

�)
]
,

g1(j) = (i�j + �)−1, g2(j) = (i�j + � − U)−1,

a1(j) = g1(j) − g2(j), a2(j, j
�) = g1(j)g1(j

�),

a3(j, j
�) = g2(j) − g1(j

�), a4(j, j
�) = a1(j)g2(j

�).

(8)

V
(s)

k
(j + �, j, j�, j� + �) =

1

2
f
(2)

k
(j + �, j� + �)

×
{
2C(s)(j + �, j, j�, j� + �) − a2(j

� + �, j + �)z1(k, j, j
�)

− a1(j
� + �)z2(k, j, j

�) − a4(j
� + �, j + �)z3(k, j, j

�)

− a3(j
� + �, j + �)z4(k, j, j

�)
}
,

(9)

V
(a)

k
(j + �, j, j�, j� + �) =

1

2
f
(1)

k
(j + �, j� + �)

×
{
2C(a)(j + �, j, j�, j� + �) +

[
a2(j

� + �, j + �)

− (T + �)−1�jj�a1(j
� + �)

]
y1(k, j, j

�) + a1(j
� + �)y2(k, j, j

�)

+ a4(j
� + �, j + �)y3(k, j, j

�) + a3(j
� + �, j + �)y4(k, j, j

�)
}
,

f
(1)

k
(j, j�) =

[
1 +

1

4
a1(j)a1(j

�)T
k
(j, j�)

]
,

f
(2)

k
(j, j�) =

[
1 −

3

4
a1(j)a1(j

�)T
k
(j, j�)

]
,
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with the coefficients

Hence two BSEs (4) for V (s) and V (a) are reduced to two small systems of linear 
Eqs. 10 and 11, which can be solved exactly for fixed k , j and j′ . Vertices V (s) and 
V (a) describe charge and spin fluctuations, and terms containing them in K(k, j) , 
Eq.  5, allow for their interactions with electrons. The exact solution of the BSEs 
means that ranges of interactions between electrons and spin and charge excitations, 
taken into account in calculations, are limited by a considered crystal size only.

Vanishing determinants of the linear systems (10) and (11), Δch(k, � = 0) and 
Δsp(k, � = 0) , signal the onset of the phase transition, and the symmetry of the 
emerging phase is defined by the momentum, at which Δ → 0 . In the present prob-
lem, Δsp(k, � = 0) vanishes with decreasing T at K points for U > 5t , which indi-
cates the establishment of the 120◦ long-range spin order. To avoid the transition 
at a finite temperature violating the Mermin–Wagner theorem, we set the param-
eter � to a finite value such that Δsp(k = (4�∕3, 0), � = 0) vanishes as the tempera-
ture approaches 0. This fitting procedure is described in Ref. [27] in application to 
the square-lattice Hubbard model. Due to frustration, the parameter � is expectedly 
smaller for a triangular lattice. The stronger the tendency to establish the long-range 
spin order, the larger � value has to be used to suppress it. Frustration mutes the 
ordering tendency, which decreases � needed to shift the critical temperature to zero. 
It equals to zero for U ≤ 5t , 0.06t for 5t < U ≤ 10t , and 0.08t for U = 12t in a trian-
gular lattice, while, for example, at U = 8t in a square lattice � = 0.24t . Presumably, 

(10)
zi(k, j, j

�) = di(k, j, j
�) − ei2(k, j − j�)z1(k, j, j

�)

− ei1(k, j − j�)z2(k, j, j
�) − ei4(k, j − j�)z3(k, j, j

�)

− ei3(k, j − j�)z4(k, j, j
�),

(11)
yi(k, j, j

�) = bi(k, j, j
�) +

[
ci2(k, j − j�) − (T + �)−1�jj�ci1(k, j − j�)

]

× y1(k, j, j
�) + ci1(k, j − j�)y2(k, j, j

�) + ei4(k, j − j�)y3(k, j, j
�)

+ ci3(k, j − j�)y4(k, j, j
�).

eii� (k, �) =
T

2

∑

j

ai(� + j, j)ai� (j, � + j)T
k
(� + j, j)f

(2)

k
(� + j, j),

cii� (k, �) =
T

2

∑

j

ai(� + j, j)ai� (j, � + j)T
k
(� + j, j)f

(1)

k
(� + j, j),

di(k, j, j
�) =

3

4
ai(j, j

�)a1(j)a1(j
�)T

k
(j, j�)f

(2)

k
(j, j�)

− ei1(k, j − j�)a2(j, j
�) − ei2(k, j − j�)a1(j)

− ei3(k, j − j�)a4(j, j
�) − ei4(k, j − j�)a3(j, j

�),

bi(k, j, j
�) = −

1

4
ai(j, j

�)a1(j)a1(j
�)T

k
(j, j�)f

(1)

k
(j, j�)

+ ci1(k, j − j�)
[
a2(j, j

�) − (T + �)−1�jj�a1(j)
]
+ ci2(k, j − j�)a1(j)

+ ci3(k, j − j�)a4(j, j
�) + ci4(k, j − j�)a3(j, j

�).
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one can avoid the need for such a parameter by substituting cumulants in diagrams 
in Fig. 1 with sums of vertical ladders of cumulants of all lengths. We performed 
such calculations for a few sets of parameters in the square-lattice model. The calcu-
lations are computationally consuming, and we could not attain temperatures lower 
than 0.2t. Therefore, we use the simpler way with the fitting parameter in this work. 
As a bonus, we acquire an additional control parameter, which we use below.

The above equations form a closed set, allowing one to find the electron Green’s 
function by iteration for given values of U/t, T/t, and �∕t . As the starting function 
K(k, j) of the iteration, we used C(1)(j) , the first term in Eq. (5), which is the irreduc-
ible part of the Hubbard-I approximation [14].

3  Results and Discussion

Figure 2 demonstrates calculated electron LSFs,

for values of the Hubbard repulsion U = 4t , 8t, and 10t. The analytic continuation to 
real frequencies � was performed using the maximum entropy method [28–30]. For 
the smallest U, the spectrum has features inherent in a weakly correlated metal—
the strong peak at the FL ( � = 0 ) flanked with weak Hubbard subbands. A similar 
spectrum is observed for U = 5t . At U = 8t , the LSF is characteristic of a strongly 
correlated metal with pronounced Hubbard subbands. As in the square lattice, there 
are intensity suppressions near the frequencies −� and U − � in the subbands (for 
Fig. 2b, � = 4.4t ). They are connected with the multiple electron reabsorption near 
the Hubbard atom transfer frequencies [17]. These intensity suppressions lead to the 
four-band shape of the spectrum, which was much discussed for the square-lattice 
Hubbard model. Besides these four bands, there are two less intensive features, one 
on the FL. As seen below, the spectrum would have a gap at the FL without this 
maximum, and the system would become insulating. Similar LSFs are observed 
in the repulsion range 5.5t ≲ U ≲ 8.5t . The character of the spectrum is changed 
for U ≥ 9t —a Mott gap opens near FL. An example of such a spectrum is given in 
Fig. 2c. Hence, in the considered range of U, there are three regions with qualita-
tively different types of LSFs. Spectra in Fig. 2 were calculated at T ≈ 0.13t . Our 
data show that three similar areas are also distinguished for lower temperatures, 
while differences between spectra become less pronounced for higher T.

Spin and charge susceptibilities,

n
l
=
∑

�
n
��

 , n̄ = ⟨n
l
⟩ , are expressed in terms of quantities of the previous section as

A(�) = −
1

�N

∑

k

ImG(k,�),

𝜒 sp(��𝜏�, l𝜏) = ⟨Tā
���
(𝜏�)a

��,−�(𝜏
�)ā

�,−�(𝜏)a��(𝜏)⟩,

𝜒ch(��𝜏�, l𝜏) =
1

2
⟨T(n

��
(𝜏�) − n̄)(n

l
(𝜏) − n̄)⟩,
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where F
k
(j, j�) = N−1

∑
��
Π(��, j)Π(� + ��, j�) and Π(k, j) = 1 + t

k
G(k, j) . The 

momentum dependencies of the zero-frequency susceptibilities calculated for 
parameters of Fig. 2 are shown in Fig. 3.

Both susceptibilities are small and nearly structureless for U = 4t , which 
agrees with our classification of this case as a weakly correlated metal. In the 

(12)

� sp(k, �) = −
T

N

∑

��j

G(� + �
�, � + j)G(��, j) − T2

∑

jj�

F
k
(j, � + j)

× F
k
(j�, � + j�)V

(a)

k
(j + �, j� + �, j�, j),

�ch(k, �) = −
T

N

∑

��j

G(� + �
�, � + j)G(��, j) − T2

∑

jj�

F
k
(j, � + j)

× F
k
(j�, � + j�)V

(s)

k
(j + �, j� + �, j�, j),

Fig. 2  Calculated local spectral functions for U = 4t (a), 8t (b), and 10t (c) at T ≈ 0.13t
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intermediate ( U = 8t ) and insulating ( U = 10t ) regions, the spin susceptibility 
features strong maxima at K points, which points to pronounced 120◦ short-range 
ordering and spin excitations. Strong correlations also reveal themselves in small 
charge susceptibilities. Shapes and values of susceptibilities for U = 8t and 10t 
are very close. Nevertheless, the former is a metal, while the latter is an insulator. 
As was pointed out above, this difference is connected with the FL peak existing 
at U = 8t.

As mentioned above, equations of the previous section contain parameter � , which is 
fitted such that the transition to the long-range spin order occurs at T = 0 in agreement 
with the Mermin–Wagner theorem. For U = 8t , the fitted value of � is equal 0.06t. 
Decreasing or increasing this parameter, we can increase or decrease the strength of 
maxima at K points in the zero-frequency spin susceptibility. Figure 4 demonstrates the 

Fig. 3  Contour plots of the zero-frequency spin (left column) and charge (right column) susceptibilities 
for U = 4t (a), (b), 8t (c), (d), and 10t (e), (f) at T ≈ 0.13t
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LSF and zero-frequency spin susceptibility calculated for U = 8t and the larger value 
of the parameter—� = 0.12t . Compared with Fig.  3c, intensities of the maxima are 
reduced more than two times. Consequently, the FL peak disappears, and a Mott gap 
opens in its place in Fig. 4a. On the one hand, this result justifies that the FL peak is 
connected with the bound states of electrons and pronounced spin excitations. On the 
other hand, it shows that the FL peak masks the Mott gap.

The relation between intensities of the susceptibility maxima in Figs. 3e and 4b is 
close to that obtained in zero-temperature calculations [4, 6, 7] in the “nonmagnetic” 
and spin-ordered insulators. Hence, we could model the result of these calculations to 
some extent. The susceptibility in Fig. 3c, calculated with fitted � for the intermedi-
ate region, has much more pronounced K-point maxima in comparison with Fig. 4b 
modeling zero-temperature approaches. This result indicates that magnetic momenta 
are much more localized at finite temperatures than T = 0 . The respective spin excita-
tions are also more pronounced. The mechanism leading to such temperature variation 
of magnetic moments is known from the physics of 3 He and the square-lattice Hubbard 
model [31–33]. It is the Pomeranchuk effect [23, 24], which is connected with the fact 
that the magnetic moment localization can gain entropy when the temperature exceeds 
the ordering temperature of the moments. Hence, it is believed that the discrepancy—
insulating character of intermediate states in zero-temperature approaches and their 
metallic LSF at finite temperatures—stems from this effect.

The double occupancy

and the squared site spin ⟨S2
l
⟩ = 3n̄∕4 − 3D∕2 are shown in Fig. 5 as functions of U. 

In agreement with our previous discussion, for U = 4t and 5t—the case of a weakly 
correlated metal—the double occupancy is close to its itinerant limit of 0.25, and the 
squared spin is small. Between U = 5t and 6t, the rapid drop of D and the respective 
growth of ⟨S2

l
⟩ is observed, indicating the transition to the intermediate regime with 

D = ⟨n
�↑n�↓⟩ =

n̄

2
−

T

N

�

��

𝜒 sp(k, 𝜈)

Fig. 4  a The local spectral function for U = 8t , T ≈ 0.13t , and � = 0.12t . b The contour plot of the zero-
frequency spin susceptibility for these parameters
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localized magnetic momenta. The boundary between this and the insulating region 
reveals itself as a kink on both curves, underlining similarity in properties of the spin 
subsystem in these two domains. The double occupancy is small for U = 10t and 
12t, and the squared local spin is close to its total localization limit S(S + 1) = 3∕4 
for S = 1∕2.

As the above results show, frustration in a triangular lattice leads to an entirely 
different phase diagram than the square-lattice model. In the latter model, the spin 
subsystem has the short- or long-range antiferromagnetic order (depending on tem-
perature) starting from the smallest repulsion values [27]. In a triangular lattice, 
spins have no perceptible ordering for U ≲ 5t (see Fig. 3a). For T ≈ 0.13t , localized 
magnetic moments, their ordering (spin susceptibility maxima at the K points), and 
intensive Hubbard subbands build up abruptly for U > 5t (see Fig. 5). At the same 
time, in a square lattice, they grow gradually with repulsion. In a triangular lattice, 
the frustrated hopping constant does not produce a nested Fermi surface at half-
filling. Consequently, the region with the Slater dip/gap in spectra is lacking in the 
phase diagram of this model, in contrast to the case of the square-lattice model [33].

The difference in U values separating the three phases between SCDT and, e.g., 
DMRG results is partly connected with the distinction in temperatures—T = 0.13t 
in the former calculations and 0 in the latter. Another source of difference is dis-
similar approximations used in various approaches. Notice that even critical values 
obtained by different zero-temperature methods do not coincide (cf. Refs. [3–6]).

4  Concluding Remarks

In this work, we suggested a possible explanation of the qualitative difference in 
properties of the intermediate phase of the isotropic half-filled Hubbard model on a 
triangular lattice obtained by zero- and finite-temperature approaches. In the former 
methods, the phase corresponds to insulating states, while the states are metallic for 
finite temperature. We carried out calculations using the strong coupling diagram 
technique. An infinite series of ladder diagrams were taken into account to consider 
all ranges of interactions of electrons with spin and charge fluctuations in lattices up 

Fig. 5  Dependencies of the double occupancy D (a) and squared site spin ⟨S2
l
⟩ (b) on U for T ≈ 0.13t
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to 24 × 24 sites. The interval of Hubbard repulsions 4t ≤ U ≤ 12t was studied. Main 
results were obtained for the temperature T ≈ 0.13t . Other data derived in the range 
0.06t ≲ T ≲ 0.32t are used for fitting the parameter � , ensuring the fulfillment of the 
Mermin–Wagner theorem. We calculated local spectral functions, spin and charge 
susceptibilities, double occupancies, and values of the squared local spin. Obtained 
states split into three qualitatively different groups. For small repulsions, U ≲ 5t , the 
shapes of calculated LSFs and zero-frequency susceptibilities, small values of ⟨S2

l
⟩ , 

and D close to the itinerant limit 0.25 point to a weakly correlated metal. For large 
repulsions, U ≳ 9t , the Mott gap at the Fermi level, strong maxima of the zero-fre-
quency spin susceptibility at K points, small values of D, and ⟨S2

l
⟩ close to the fully 

localized spin limit 0.75 indicate a Mott insulator with the short-range spiral order 
of magnetic momenta. The same properties characterize the intermediate region 
except for the absence of the Mott gap, which disagrees with the results of zero-
temperature approaches. In our finite-temperature calculations, a peak is located on 
the Fermi level. Similar peaks were observed in the square-lattice Hubbard model 
for moderate repulsions. They were related to the bound states of electrons with 
spin excitations—an analog of the spin-polaron states of the t-J model. Indeed, 
increasing � from the fitted value can decrease the extent of the spin localization and 
weaken spin fluctuations. The Fermi-level peak disappears in this case, and a Mott 
gap opens. On the one hand, this confirms the fact that the peak is a manifestation 
of the bound state of electrons and spin fluctuations. On the other hand, this result 
points to the fact that the on-site localization of spins is more robust, and, conse-
quently, their fluctuations are more pronounced at finite temperatures than at T = 0 . 
There is a mechanism that ensures the increase of the magnetic moment localization 
and the boost of related fluctuations with temperature growth. It is the Pomeran-
chuk effect—a system possessing such moments can gain entropy from their on-site 
localization if the temperature exceeds their ordering temperature. We deal with the 
two-dimensional system, for which the ordering temperature is zero. Therefore, we 
suppose that in the intermediate region electron spectra are gaped at zero tempera-
ture only. For T > 0 , the bound states of electrons and spin excitations fill the gap.
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