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Abstract
Lens antenna-coupled detectors have emerged as a prominent technology for millime-
ter-wave astronomy over recent decades. The future ground-based cosmic microwave 
background (CMB) observations that target B-modes require the receiver to operate 
across multiple frequency bands while maintaining effective polarization selectivity. 
In this context, we have reconfigured the conventional broadband bowtie slot antenna 
into a dual-flare angle design, exclusively targeting the CMB emission wavelength at 
two bands centered at 150 GHz and 220 GHz. This antenna design facilitates partial 
independent tuning of resonant frequencies, leading to improved impedance-matching 
bandwidth,that achieves a return loss of ( S

11
< −10 dB) spanning over an octave from 

100 to 300 GHz. Simultaneously, it maintains effective linear polarization sensitiv-
ity, with cross-polarization remaining below −15 dB at both sub-bands when coupled 
with a dielectric lens. The integration of on-chip band-pass filters enables the effective 
separation of antenna signals to microwave kinetic inductance detectors. This results 
in a compact, polarization-selective, multichroic pixel solution that perfectly aligns 
with the demands of CMB B-mode observation.
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1 Introduction

Observing the cosmic microwave background (CMB) provides profound insights 
into the origins and evolution of the universe [1]. However, measuring its B-mode 
polarization pattern remains a challenge in millimeter astronomy, mainly due to 
detector limitations arising from photon noise [2–4]. This emphasizes the need for 
next-generation telescopes featuring a significantly increased number of detectors 
and enhanced focal plane efficiency. Additionally, to achieve B-mode reduction 
polarimetry, it is imperative to observe the sky across multiple frequency bands 
due to foreground emissions from both galactic and extra-galactic sources [5, 6]. 
Antenna-coupled detectors can be designed to capture multi-frequency bands and 
offer polarization-selective sensitivity, particularly when integrated with on-chip 
band-pass filters, resulting in a compact and efficient solution for multichroic 
CMB detectors [7].

The bowtie slot antenna, often referred to broadband dipole or tapered slot, is 
preferred to couple with cryogenic detectors due to its simplicity in fabrication 
and broadband capabilities [8, 9]. Its planar structure not only facilitates 
seamless integration into various devices but also ensures consistent impedance 
characteristics across a broad frequency range. This makes it a compact and 
efficient alternative to more conventional designs like horn or sinusoidal antennas. 
For applications involving millimeter and sub-millimeter wave frequencies, 
especially in CMB observation, performance enhancements are often needed 
due to its limitation in impedance bandwidth. One approach is to expand the 
flare angle to 90 degrees [10], broadening the bandwidth at the cost of reduced 
polarization selectivity. Another effective approach involves employing an array 
configuration, such as double or dual-slot designs [11–13]. While potentially 
increasing the physical size, this modification can enhance frequency response, 
quasi-optical coupling efficiency, and overall system directivity.

This paper explores an innovative design for a bowtie slot antenna featuring a 
second flare angle, hence termed the double-flare angle (DFA) bowtie antenna. 
This design is an adaptation of the printed dipole planar bowtie antenna [14] 
where the flare angle is used to increase the bandwidth in dual-band operation. 
Our design is specifically tailored to observe CMB in multiple bands within the 
100–300 GHz range, aligning with two frequency bands targeted by the CMB-
S4 project [15] that are centered at 150 and 220 GHz. Additionally, the antenna 
must maintain sensitive linear polarization capabilities which is essential for 
CMB polarimetry. A compromise between various antenna aspects must be 
carefully considered to meet all requirements. We have limited the flare angle 
to a maximum of 40 degrees to ensure polarization sensitivity. Concurrently, 
the antenna’s effective length also needs to be sufficiently compact to maintain a 
broad operational bandwidth while avoiding dimensions that significantly exceed 
the target wavelengths. Oversizing the antenna could lead to excessive standing 
waves, resulting in increased sidelobes, poor beam shaping, or diminished gain in 
the desired direction, all of which critically impact the optical coupling efficiency 
of the antenna.
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Evaluations in this paper primarily utilize the 3D full-wave simulator—CST 
Studio Suite [16], complemented by Sonnet [17] for enhanced superconductor 
modeling accuracy.

2  Antenna design

2.1  Double‑Flare Angle Bowtie

We employ a rounded-edge bowtie antenna as base geometry, originally known 
for its improved return loss and more stable radiation patterns [18, 19]. The 
conventional bowtie model is mainly defined by its length (L) and flare angle (A). 
The DFA configuration introduces an additional angle and length, denoted as A2 
and L2 (with the geometry constraint L2 < L1 and A2 > A1 ). The primary flare 
angle A and length L are then denoted as A1 and L1, as shown in Fig. 1a.

Our analysis commenced by examining the antenna input impedance ( Z11 ) using 
Transient solver in CST. The simulation model and result are depicted in Fig. 1. A 
lumped discrete port (depicted as a red cone) feeds the antenna at the center, with 
the port’s impedance ( Z0 ) arbitrarily chosen. The Z11 is the antenna’s inherent 
property driven by its geometry and is independent of the input port impedance Z0 . 
The antenna return loss ( S11 ) response, however, can vary widely depending on Z0 
and is easily obtained with the following relationship: S11 =

Z11−Z0

Z11+Z0
.

The parametric simulations of the traditional bowtie, as shown in Fig.  2a, b, 
reveal that the angle A is the primary determinant of the antenna’s bandwidth. 
Increasing A maintains the first resonance point while flattening the real part of Z11 , 
thus broadening the impedance bandwidth. On the other hand, the length L mainly 
influences the resonant frequency of the bowtie by shifting the entire Z11 curve. The 
simulated behaviors of A and L therefore are consistent with theoretical expectations 
[20].

In the case of the DFA bowtie, illustrated in Fig.2c, d, adjustments to length L2 
result in minor shifts in the imaginary part of Z11 and a decrease in resistance at the 
second resonance point when L2 is increased. If L2 approaches L1, the DFA bowtie 

Fig. 1  a Parametric designs of traditional (T-Bowtie) and double-flare angle (DFA-Bowtie) antennas. b 
Z
11

 comparison illustrates the additional flare angle bringing the second resonant frequency point nearer 
to the first one, enabling the second resonant frequency tuning feature but also increasing the overall 
resistivity of the antenna
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transitions back to a traditional configuration, contradicting the DFA’s geometric 
constraints. Expanding angle A2 predominantly impacts the second resonance 
frequency, pulling it closer and increasing the overall resistive component of the 
antenna.

In general, despite the impacts of these parameters on the impedance profile of 
the DFA as we tested, the characteristic shape of S11 remains unchanged, that is, 
there are always 2 points of resonant frequency and the real part (resistance) of these 
two points is always different. Therefore, unless being fed by two different imped-
ances correspondingly, this antenna can never achieve multi-band operation because 
there will always be impedance mismatch in each sub-band.

2.2  Optimization

Our primary objective is to design the antenna for dual sub-band operation, 
specifically targeting 150 GHz and 220 GHz with a 20% bandwidth for each band. 
To ideally achieve this, we aim for Z11 to be purely resistive (zero reactance) at both 
frequencies, and their values must be equal to facilitate multi-band operation with a 
single-input impedance, i.e., one feedline. Essentially, the antenna must satisfy the 
following two conditions simultaneously:

As studied in section  , meeting these criteria at the same time is challenging for 
the DFA design due to its inherent planar physical limitations and the natural fre-
quency-dependent behavior of reactance. Our strategy involves optimizing each con-
dition independently and then finding an optimal balance between them. The final 

(1 )Re{Z11}|f=150GHz = Re{Z11}|f=220GHz,

(2 )Im{Z11}|f=150GHz = Im{Z11}|f=220GHz = 0.

Fig. 2  Parametric study of antenna input impedance Z
11

 . a, b: L and A of T-Bowtie; c, d: L2 and A2 of 
DFA-Bowtie
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optimization is represented by the blue curves in Fig. 3, focusing on the adjustment 
of parameters A1, L1, A2, and L2.

2.3  Microstrip Feedline Integration

The finalized antenna model, depicted in Fig. 4a, features a slot antenna etched into 
a niobium ground plane on a silicon substrate. This antenna is fed via a microstrip 
feedline, separated by an 885-nm-thick SiOx dielectric layer with a relative permit-
tivity of �r = 4.318 ( [21, 22]). The feedline terminates by a radial stub that provides 
wideband impedance matching and exhibits a virtual short circuit to the ground [23, 
24]. The radial stub’s dimensions, including radius (stubR), angle (stubA), and posi-
tion (stubH), are finely tuned to facilitate complete broadband frequency transfer 
from the feedline to the antenna. The feedline, composed of niobium like the ground 
plane, exhibits a surface impedance of 0.2 pH/◻ in cryogenic state. The simulations 
are conducted using the CST frequency domain solver, taking into account the nio-
bium kinetic inductance effect. Notably, the use of CST is crucial to ensure align-
ment with Sonnet for precise 3D superconducting antenna simulations [25].

Fig. 3  a Optimization scheme for Z
11

 and b corresponding S
11

 obtained at Z
0
 chosen to be 48Ω . The 

orange curve zeroes the imaginary part at 150 and 220 GHz; the brown curve aligns the real part with 
46Ω at both frequencies. The blue curve represents the average of these two, constituting the final opti-
mization result. This result is adopted for our DFA-Bowtie configuration, with detailed values provided 
in Table 1

Fig. 4  a Parametric design and model stratification in CST. b Antenna return loss ( S
11

 ) comparison 
between T-Bowtie, DFA-Bowtie, and DFA-Bowtie with feedline
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The microstrip line width ( msW ) is fine-tuned using Sonnet to achieve a charac-
teristic impedance of approximately 48 Ω . This impedance matches the port imped-
ance Z0 that was employed in our previous optimization to yield the optimal S11 . 
Realizing high impedances on a microstrip line is difficult, as it necessitates reduc-
ing the width of the trace to a point where it becomes highly sensitive to fabrication 
tolerances. The optimal value of msW is determined from simulation to be 2.5 μm , 
which is at the threshold of our current fabrication we have.

As shown in Fig. 4b, the S11 obtained from the feedline model aligns well with 
the optimized S11 achieved from Fig. 3b, thereby validating our design approach. It 
is remarkably revealed that a conventional bowtie antenna, defined by dimensions 
A = A1 and L = L1 and without the additional flare angles A2 and L2, can also attain 
an S11 < −10dB across an octave band. This performance is merely achievable when 
the antenna operates at an appropriate impedance of Z0 = 37 Ω These comparisons 
underscore the marginally enhanced performance reliability of the DFA-Bowtie 
design compared to its traditional counterpart.

3  Antenna‑Lens Coupling

3.1  Lens Design and Integration

The antenna is positioned at the second foci of a silicon elliptical lens, as shown in 
Fig. 5a, to improve its gain and directivity. Silicon ( �r = 11.9 ) is the preferred lens 
material for its low-loss properties at millimeter and sub-millimeter wavelengths 
[26]. Following the designs in [27, 28], the simulated lens has a 6 mm diameter—
approximately triple the wavelength of the central bandwidth—and features a rim 

Table 1  Parametric values T-Bowtie DFA-Bowtie Feedline

A = 23◦ A1 = 23, A2 = 40◦ stubA = 90◦

L = 720μm L1 = 720, L2 = 385μm stubR = 100μm
nL = 10μm nL = 10μm stubH = 1 μm
nW = 4 μm nW = 4 μm msW = 2.5μm

Fig. 5  a Silicon elliptical lens schematic with slot antenna positioned at its second focus. b, c Compari-
son of radiation pattern for both bowtie designs at 150 and 220 GHz
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angle of 70◦ . The semi-major axis and semi-minor axis of the elliptical lens are 
a = 3.140 mm and b = 3.005mm.

3.2  Performance and Results

We compared the radiation pattern of the DFA and the traditional bowie with CST at 
150 and 220 GHz, as is shown in Fig. 5b, c. It can be seen that the radiation patterns 
are identical at 150 GHz due to the DFA and traditional bowtie sharing the same 
first flare angle and length. However, at 220 GHz, the DFA demonstrates a notable 
side-lobe reduction of several dB. This improvement suggests a potential for further 
side-lobe reduction by optimizing the shape of the dielectric lens.

The cross-polarization across the operation bandwidth is shown in Fig. 6. It shows 
the lens-coupled DFA maintains a cross-polarization level below −15 dB across the 
band simulated and is comparable with the traditional bowtie, which means there is 
no degradation by introducing the second flare in the design. In general, the cross-
polarization becomes higher as frequencies increase. This tendency is due to the 
current distribution on the antenna surface, which determines its radiation pattern 
and polarization characteristics [19]. As the antenna becomes electrically large 
relative to shorter wavelengths, the potential for multiple radiation modes increases, 
elevating cross-polarization levels.

4  Conclusion and Perspective

In this study, we have proposed an innovative bowtie slot antenna design that 
is specifically optimized for CMB B-mode detectors, which demonstrates a 
performance slightly superior to that of a conventional one. Our latest simulations 
indicate a S11 < −10 dB and cross-polarization less than −15 dB across a wide 
range of frequencies from 100 to 300 GHz. Further optimization of the far-field 
performance, including aspects such as sidelobe and Gaussian coupling efficiency, 
is in progress. This antenna is intended to be used as the receiving element in a dual-
color multichroic CMB detector employing MKIDs. Next step will be to fabricate 
and test this design by the end of the year, aiming to assess its effectiveness for 
CMB B-mode polarimetry and to guide further improvements.

Fig. 6  Comparison of directivity and cross-polarization levels for both bowtie designs
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