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Abstract
We theoretically investigate the Seebeck and Peltier effect across an interacting 
quantum dot (QD) coupled between a normal metal and a Bardeen–Cooper–Schrief-
fer superconductor within the Coulomb blockade regime. Our results demonstrate 
that the thermoelectric conversion efficiency at optimal power output (optimized 
with respect to QD energy level and external serial load) in NQDS nanodevice can 
reach up to 58%�

C
 , where �

C
 is Carnot efficiency, with output power P

max
≈ 35 fW 

for temperature below the superconducting transition temperature. Further, the Pel-
tier cooling effect is observed for a wide range of parameter regimes, which can 
be optimized by varying the background thermal energy, QD level energy, QD-res-
ervoir tunneling strength, and bias voltage. The results presented in this study are 
within the scope of existing experimental capabilities for designing miniature hybrid 
devices that operate at cryogenic temperatures.

Keywords  Quantum dot · Superconductivity · Andreev bound states · Coulomb 
blockade · Seebeck effect · Peltier effect

1  Introduction

In recent years, thermoelectric effects and heat transport in superconductor-quan-
tum dot (QD)-based hybrid nanodevices has received significant attention due to 
its potential applications in energy harvesting and cooling at the nanoscale [1–22]. 
These hybrid devices combine quantum dots, superconductors, normal metals, or 
ferromagnetic materials and have emerged as promising platforms for studying 
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charge and heat transport at the nanoscale. The addition of superconducting compo-
nents introduces novel features, such as diverging quasiparticle density of states near 
the edge of the superconducting energy gap, the formation of subgap Andreev bound 
states, and proximity-induced superconductivity, which can significantly impact the 
transport properties of the system [18, 23]. The operation of hybrid QD-based meso-
scopic devices is based on phenomena that appear only at cryogenic temperatures 
[24–26]. Thus, these devices must be cooled down to a few Kelvin or lower tem-
peratures. However, it also has the advantage that these low-dimensional devices are 
often more efficient than their bulk counterparts [27–30]. Further, the gate-tunable 
discrete energy levels of QD serve as perfect energy filters for electron transport, 
resulting in improved thermoelectric performance [31–36].

In superconductor-QD nanodevices, the Seebeck effect, which describes the gen-
eration of a voltage difference across a temperature gradient, i.e., system works as 
a particle exchange heat engine or power generator (see Fig. 1a), has been studied 
in a few papers [1, 6, 13, 18, 19]. Recently, it has been shown that a hybrid super-
conductor-QD nanodevice exhibits the Peltier effect, which refers to the creation or 
absorption of heat at the QD-reservoirs junction (see Fig. 1b), and the system works 
as a cooler [22]. Few studies have also explored the charge and spin Seebeck diode 
effect [5], cross thermoelectric effect [3], heat transport [14, 17, 18], and thermo-
phase Seebeck effect [9, 21] in hybrid superconductor-QD nanodevices. Moreover, 
thermoelectric effects and heat transport in multi-terminal and multi-dot configura-
tions in the presence of superconducting component have also been explored by sev-
eral authors [2, 8, 10, 15, 16, 20].

In the present work, we examine nonlinear Seebeck power generation and Pel-
tier cooling effect in N-QD-S nanodevice using the equation of motion technique 
within the Hubbard-I approximation and Keldysh non-equilibrium Green’s function 
(NEGF) formalism [18, 37–39]. The term ‘nonlinear regime’ refers specifically to 
the situation when applied bias voltage and/or temperature gradient is finite, and 
Onsager linear response relations, provided in references [3, 13, 18], are not valid. 
While previous studies have explored similar setups, the optimal performance of 
the superconductor-QD-based thermoelectric particle exchange heat engine has not 
been studied so far. Therefore, in the present work, we contribute to previous studies 
by analyzing the nonlinear transport regime and the effect of the external load resist-
ance on the practical optimization of the performance of the N-QD-S heat engine. 
Further, through a comprehensive analysis, the present study sheds light on the 
relatively unexplored regime of heat current or the Peltier cooling effect in N-QD-
S nanodevice. This includes the impact of various system parameters on the Joule 
heating and Peltier cooling effect in the presence of on-dot Coulomb interaction.

This paper is structured as follows: Section 2 discusses the effective model Ham-
iltonian and theoretical formalism. Section  3 contains the numerical results and 
explanation for heat and thermoelectric transport. Section 4 concludes the present 
work.
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Fig. 1   a Energy diagram illustrating the hybrid N-QD-S particle exchange heat engine. The supercon-
ducting reservoir (S) has a finite energy gap Δ ; single electrons or quasiparticles fill the states below the 
energy gap. At the QD-superconductor interface, electron and hole retro-reflections build up Andreev 
bound state (ABS), leading to a finite subgap charge and heat current. The gate-tunable discrete QD 
energy level �d (with on-site Coulomb repulsion U) serves as an ideal energy filter for electron trans-
port. Due to a finite temperature difference � , electrons tunnel from the normal reservoir (N) to the QD 
energy level (with tunneling rate ΓN ) and then to the superconducting reservoir (with tunneling rate 
ΓS ), producing a thermovoltage V

th
 . Due to this thermovoltage, the power generated by the heat engine 

( P = −ICVth
= I2

C
R ) is available for consumption in external serial load R. b Energy diagram illustrat-

ing the N-QD-S cooler wherein a QD-superconductor hybrid structure with an applied bias voltage 
�N − �S = eV  and the gate-tunable QD energy level �d is used to cool ( JQ > 0 ) the normal metallic res-
ervoir (N)
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2 � Model Hamiltonian and Theoretical Description

The N-QD-S system is modeled by single impurity Anderson model and Bogoliubov 
transformed BCS mean-field Hamiltonian [18],

The first term describes the normal metallic reservoir in the non-interacting quasi-
particle approximation with single-electron kinetic energy �k,N and ck�,N(c

†

k�,N
) is the 

annihilation(creation) operator of an electron with spin � and wave vector k.
The second term describes the superconducting reservoir, where �k�(�

†

k�
) is the 

annihilation(creation) operator for Bogoliubov quasiparticles with spin � , wave vec-
tor k and energy Ek =

√
�
2

k,S
+ |Δ|2 . The temperature dependence of the supercon-

ducting energy gap is given as Δ(T) = Δ
0
tanh

�
1.74

√
(Tc∕T) − 1

�
 , where Δ

0
 is 

superconducting energy gap at absolute zero temperature and Tc is critical tempera-
ture with kBTc = 0.568Δ

0
 [17].

Third term describes the Hamiltonian for single-level QD with energy �d , and 
d
�
(d†

�
) is the annihilation(creation) operator of electron with spin � on the QD and 

n
�
= d†

�
d
�
 is number operator. The QD can have maximum occupancy of two elec-

trons with opposite spins. We also consider the intradot electron–electron Coulomb 
repulsion with the interaction strength U represented by the fourth term.

The remaining terms represents the tunneling Hamiltonian between the QD 
energy level and reservoirs with Vk� as the tunneling amplitude between the QD and 
the �-reservoir ( � ∈ N, S ). The coefficients uk and vk read

In order to study the thermoelectric transport properties of N-QD-S system using 
model Hamiltonian in Eqn. (1), we apply the Keldysh non-equilibrium Green’s 
function formalism [38] (see appendix). To truncate hierarchy of Green’s func-
tion equation of motions, we use Hubbard-I approximation [18, 37], which is good 
enough to describe the Coulomb blockade regime at temperatures T >> TK , where 
TK is Kondo temperature. Furthermore, we assume that the coupling strength Vk,� is 
momentum independent. Therefore, the tunneling rate from the dot to the �-leads is 
represented as Γ

�
= 2�|V

�
|2�

0�
 , where the density of states in normal metallic state 

�
0�

 remains constant within a range of energy around the Fermi level (wide-band 
limit).

(1)

H =

∑
k,�

�k,Nc
†

k�,N
ck�,N +

∑
k,�

Ek�
†

k�
�k� +

∑
�

�dn� + Un↑n↓+

∑
k�

(Vk,Nd
†

�
ck�,N + V

∗

k,N
c
†

k�,N
d
�
) +

∑
k�

(Vk,Su
∗

k
d†
�
�k� + V

∗

k,S
uk�

†

k�
d
�
)+

∑
k

[V
∗

k,S
vk(d

†

↑
�
†

−k↓
− d

†

↓
�
†

k↑
) + Vk,Sv

∗

k
(�−k↓d↑ − �k↑d↓)]

(2)�uk�2 = 1

2

⎛⎜⎜⎜⎝
1 +

�k,S�
�
2

k,S
+ �Δ�2

⎞⎟⎟⎟⎠
& �vk�2 = 1

2

⎛⎜⎜⎜⎝
1 −

�k,S�
�
2

k,S
+ �Δ�2

⎞⎟⎟⎟⎠
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After self-consistent calculation of the occupancy and Green’s function of the QD 
(as described in the appendix), the nonlinear thermoelectric transport properties can 
be calculated as follows. It has been shown in previous works that the Onsager lin-
ear approximation quickly fails, implying that the thermovoltage, thermopower, and 
output power in the N-QD-S system are inherently nonlinear [3, 18]. Therefore, in 
the present work, the nonlinear thermoelectric transport properties have been calcu-
lated using the general charge and heat current formulas [38, 40–43]. Let the system 
is under the influence of finite voltage V = (�N − �S)∕e (say �N = eV  and �S = 0 ) 
and/or temperature gradient TN − TS = � (say TN = T + � and TS = T  ). Then, the 
charge current I

C
 and heat current JQ from left to right reservoir across the QD can 

be expressed as

with

and

with

Where IA(IQP) and JA(JQP) are Andreev (quasiparticle) contribution to charge and 
heat current, respectively.

TA(�) = Γ2

N
|Gr

d,12
(�)|2 is the Andreev tunneling amplitude and 

TQP(�) =
ΓNΓS���√
�2−Δ2

�(��� − Δ) ×

�
�Gr

d,11
(�)�2 + �Gr

d,21
(�)�2 − 2Δ

���Re(G
r
d,11

(�) Ga
d,12

(�))

�
 is 

the quasiparticle tunneling amplitude.
In order to use N-QD-S as a heat engine or power generator, the temperature gra-

dient � is set larger then zero. Due to this temperature difference electrons move 
from left reservoir to the right reservoir and thus create a potential difference 
( �N − �S = eV

th
 ) due to accumulation of electrons on the right reservoir and posi-

tive charge to the left reservoir. The thermovoltage ( V
th

 ) is determined from the con-
dition [31, 32]

(3)I
C
= IA + IQP;

IA =
2e

h ∫
[
fN(� − eV , T + �) − fN(� + eV , T + �)

]
TA(�) d�

IQP =
2e

h ∫
[
fN(� − eV , T + �) − fS(�, T)

]
TQP(�) d�

(4)JQ = JA + JQP;

JA =
−4 eV

h ∫
[
fN(� − eV , T + �) − fN(� + eV , T + �)

]
TA(�) d� = −2VIA

JQP =
2

h ∫ (� − eV)
[
fN(� − eV , T + �) − fS(�, T)

]
TQP(�) d�

(5)IC(Vth
, �) +

V
th

R
= 0
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in the presence of external serial load resistance R. Equation (5) is solved numeri-
cally to obtain V

th
 and eventually thermopower S =

Vth

�
 and thermal conductance 

K =
JQ

�
 . The finite power output P = −ICVth

= I2
C
R generated by the heat engine dis-

sipates across R. The thermoelectric efficiency is defined as the ratio between the 
generated output power and the nonlinear input heat current, i.e., � = P∕JQ.

The maximum power output P
max

 is calculated by optimizing V
th

 and �d for differ-
ent values of external load R and the relative efficiency at maximal power output is 
given by,

where �
C
=

�

T+�
 is upper bound Carnot efficiency of the heat engine.

Based on the Peltier effect, the total heat flow JQ = JQP + JA removes or adds 
heat to the normal metal, causing the temperature of the normal metal to decrease or 
increase, and the system can work as a cooler or refrigerator.

In the linear response regime, i.e., for infinitesimally small bias voltage between 
the reservoirs, the Fermi function of the normal and the superconducting reser-
voirs can be expanded around the equilibrium value (average T with Fermi level 
�f = 0 ), which gives the charge and heat current satisfying the Onsager relations 
[3, 13, 18]. Note that the heat current JQ in Onsager linear response relation is 
independent of the Andreev tunneling TA(�) ; therefore, Andreev tunneling does 
not contribute to heat current in the linear response regime. Further, beyond the 
linear response regime, the Andreev heat current JA does not contain the energy 
current, unlike the quasiparticle current JQP . This is due to the intrinsic particle-
hole symmetry present in the subgap regime. In fact, the Andreev tunneling TA(�) 
is always particle-hole symmetric, i.e., TA(�) = TA(−�) , even if the finite gate 
voltage is applied to the quantum dot. This is in contrast to the quasiparticle tun-
neling where TQP(�) ≠ TQP(−�) for finite gate voltages away from the particle-
hole symmetry point. Therefore, the Andreev bound states only contribute to the 
Joule heating or heat dissipation, and the cooling effect is entirely due to quasipar-
ticle tunneling.

3 � Result and Discussion

Numerical calculations for the nonlinear thermoelectric quantities are done using 
MATLAB based on the equations derived in the previous section and Γ

0
(1meV  ) is 

considered as the energy unit. We analyze two situations: (1) In Fig. 2, we discuss 
the optimal power output and corresponding thermoelectric efficiency of the N-QD-
S particle exchange heat engine, and (2) In Figs.  3 and 4, we consider a voltage-
driven case for isothermal reservoirs and discuss the total heat current and Peltier 
cooling power as a function of various system parameters.

Figure 2 shows the variation of maximum power output P
max

 (maximize with 
respect to the QD energy level �d or gate voltage) and normalized efficiency 

(6)
(
�Pmax

�
C

)
=

P
max

JQ
×
T + �

�
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corresponding to the maximum power �Pmax
 of the N-QD-S particle exchange heat 

engine beyond the linear response regime for different values of superconduct-
ing energy gap Δ

0
 , background thermal energy kBT  and external serial load R. It 

is important to highlight here that Andreev tunneling does not contribute to the 
creation of thermovoltage ( V

th
 ) and only suppresses it within the superconducting 

energy gap. Further, the proximity-induced superconducting gap does not affect 
the thermoelectric transport properties for the parameter regimes considered in 
the present work. Therefore, P

max
 and �Pmax

 shown here are generated completely 
by the quasiparticle tunneling close to the edge of the superconducting energy 
gap [3, 13, 18].

Fig. 2   a P
max

 as a function of external load R, and (b) P
max

 as a function of �Pmax
 for different Δ

0
 . The 

other parameters in (a) and (b) are: U = 2.0Γ
0
 , ΓS = ΓN = 0.1Γ

0
 , kBT = 0.2Γ

0
 , and kB� = 0.1Γ

0
 . c P

max
 

as a function of R, and (b) P
max

 as a function of �Pmax
 for different kBT  . The vertical black dashed lines at 

�Pmax
= 0.54�

C
 indicate the Curzon-Ahlborn efficiency, i.e., �CA = 1 −

√
T∕(T + �) . The other parameters 

in (c) and (d) are: Δ
0
= Γ

0
 , U = 2.0Γ

0
 , ΓS = ΓN = 0.1Γ

0
 and kB� = 0.1Γ

0
 . The arrow indicates the direc-

tion for increasing external load R 
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According to Fig.  2a, for a relatively small superconducting gap (say, 
Δ

0
= 0.5Γ

0
 ), the optimal power output ( P

max
≈ 70 fW ) due to quasiparticle 

tunneling is larger than the optimal value of P
max

 for NQDN system ( Δ
0
= 0 ). 

Such enhancement in power output is attributed to the diverging quasiparticle 
density of states near the edge of the superconducting energy gap. However, as 
Δ

0
 increases, a large thermal energy or thermal gradient is required for quasi-

particle tunneling, and hence the thermovoltage ( V
th

 ) and P
max

 are significantly 
reduced. For Δ

0
= 2Γ

0
 , the optimal P

max
 becomes of the order of few fW. Fur-

ther, as Δ
0
 increases, the optimal load, i.e., R corresponding to the peak in P

max
 , 

shifts toward larger values due to the load matching. The optimal load shifts 
from approximately 100kΩ to 100MΩ as Δ

0
 increases from 0 to 2Γ

0
 . Similar to 

the maximum power output P
max

 , for a relatively small superconducting gap, the 
corresponding thermoelectric efficiency �Pmax

 for the N-QD-S system is greater as 
compared to the NQDN system, with optimal �Pmax

≈ 50%�
C
 as shown in Fig. 2b. 

As Δ
0
 is increased from 0.5Γ

0
 to Γ

0
 , the value of optimal �Pmax

 remains almost 
constant and for Δ

0
= Γ

0
 , optimal �Pmax

 reduces by approximately 20%�
C
.

Fig. 3   Total heat current JQ as a function of bias voltage eV for different (a) background thermal ener-
gies kBT  with ΓS = ΓN = 0.5Δ

0
 , �d = 1.5Δ

0
 , U = 2Δ

0
 , b QD-reservoirs tunneling rates ΓS∕ΓN with 

kBT = 0.5Δ
0
 , �d = 1.5Δ

0
 , U = 2Δ

0
 , c QD energy level �d with kBT = 0.5Δ

0
 , ΓS = ΓN = 0.5Δ

0
 , U = 2Δ

0
 , 

and d on-dot Coulomb interaction U with kBT = 0.5Δ
0
 , ΓS = ΓN = 0.5Δ

0
 , �d = 1.5Δ

0
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As background thermal energy kBT  increases, initially, P
max

 is enhanced due 
to increasing quasiparticle tunneling from the normal metallic side, as seen in 
Fig. 2c. When kBT  approaches the energy corresponding to the superconducting 
transition temperature kBTc , the P

max
 begins to decrease due to backward hole 

tunneling from the superconducting side. The thermoelectric efficiency �Pmax
 in 

Fig. 2d follows a similar behavior as that of P
max

 with increasing kBT  . The nor-
malized �Pmax

 can reach up to 58%�
C
 with power output ≈ 35 fW for kBT = 0.3Δ

0
 

and kB� = 0.1Δ
0
.

It is important to note that the optimal value of �d corresponds to the diverging 
quasiparticle density of states near the edge of the superconducting energy gap. The 
on-dot Coulomb interaction U primarily affects the subgap regime and Andreev tun-
neling, while U has a negligible effect on the power output and efficiency generated 
by quasiparticles tunneling close to the edge of the superconducting energy gap, i.e., 
𝜖d ≳ Δ

0
 [9, 13, 18].

Figure  3 shows the variation of nonlinear heat current JQ = JA + JQP given in 
Eqn. (4) as a function of bias voltage(both forward and reverse bias) for different 
values of background thermal energy kBT  , QD-reservoir tunneling strengths ΓS/ΓN , 
QD level energy �d and on-dot Coulomb interaction U. The Peltier cooling effect 
occurs when JQ > 0 , i.e., heat is absorbed from the normal metallic side. If JQ < 0 , 
then Joule heating is dominant, and hence, the applied voltage bias only heats the 
normal metallic reservoir. As discussion in Sect. 2, the Andreev bound states only 
contribute to the Joule heating or heat dissipation, and the cooling effect is entirely 
due to quasiparticle tunneling.

Fig. 4   Total heat current JQ as a function of bias voltage eV for different on-dot Coulomb interaction U 
with kBT = 0.5Δ

0
 , ΓS = ΓN = 0.5Δ

0
 , and �d = 0.5Δ

0
 . The inset shows the close-up view for the low bias 

voltage, i.e., eV < 0.3Δ
0
 , where the Peltier cooling of the normal metallic reservoir is U dependent
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Figure 3a shows the heat current JQ as a function of bias voltage eV for different 
values of the background thermal energy kBT  . At low background thermal energies, 
i.e., kBT ≤ 0.1Δ

0
 , no cooling effect ( JQ > 0 ) is observed as the quasiparticle 

tunneling is strongly suppressed and Andreev Joule heating is significant. In this 
case, the heat current only consists of Joule heating ( JQ < 0 ) generated by Andreev 
and quasiparticle currents and has been analyzed in reference [18]. Now, for higher 
temperatures, i.e., kBT = 0.3Δ

0
 and kBT = 0.5Δ

0
 the cooling effect is observed for 

the forward bias (positive) voltage within the superconducting energy gap, i.e., 
eV ≲ Δ

0
 . The cooling effect is maximum as kBT  approaches the superconducting 

transition temperature due to vanishing Andreev current or Joule heating. Now, 
for large voltages ( eV ≳ Δ

0
 ), the quasiparticle Joule heating predominates, and the 

cooling effect ceases. The negative bias voltage ( eV < 0 ) only heats the normal 
metal reservoir without Peltier cooling.

In Fig.  3b, the heat current JQ shows the cooling effect when total coupling 
strength ΓN + ΓS is varied from 0.1Δ

0
 to Δ

0
 . The cooling effect for eV < Δ

0
 and 

ΓN + ΓS ≤ 0.6Δ
0
 is nearly independent of the ratio ΓS∕ΓN and attains a relatively 

large magnitude for the strong symmetric coupling configuration with ΓN + ΓS = Δ
0
 

as considered in reference [22].
Figure 3c shows the heat current JQ as a function of bias voltage eV for different 

values of the QD level position �d . When �d lies within the superconducting gap, 
i.e., 𝜖d < Δ

0
 , the Andreev and quasiparticle current generates large Joule heating 

effects even at low bias voltages. The Peltier cooling effect caused by the quasiparti-
cles begins to dominate and extends to the larger bias voltage as the position of QD 
energy level �d is tuned far above the Fermi energy level, i.e., 𝜖d ≳ Δ

0
 . However, as 

Fig. 3d illustrates, the heat current JQ , which includes the Joule heating current and 
the cooling effect, is independent of the strength of the on-dot Coulomb interac-
tion U when the QD energy level is outside the superconducting energy gap, i.e., 
�d = 1.5Δ

0
 . The independence of the heat current, and other thermoelectric quanti-

ties on the coulomb interaction strength U for 𝜖d ≳ Δ
0
 is consistent with previous 

results [9, 13, 18].
Figure 4 shows the heat current JQ as a function of bias voltage eV for different 

values of the on-dot Coulomb interaction U when the QD energy level lies within 
the superconducting gap, i.e., �d = 0.5Δ

0
 . For 𝜖d < Δ

0
 , the magnitude of Joule heat-

ing (largely due to Andreev tunneling) and Peltier cooling (due to quasiparticle tun-
neling) depends on the on-dot Coulomb interaction U. The U dependence of the heat 
current can be explained by considering effective QD energy levels. For interacting 
QD ( U > 0 ), two effective levels lie at �d and �d + U . For the non-interacting case 
( U = 0 ), the effective QD energy level �d = 0.5Δ

0
 lies close to the Fermi level �f = 0 

within the superconducting energy gap. Therefore, the magnitude of the heat current 
is enhanced due to the substantial Andreev tunneling amplitude. This Andreev tun-
neling amplitude diminishes as the Coulomb interaction U increases, displacing the 
effective quantum dot energy levels away from �f = 0 and subsequently reducing the 
heat current magnitude. When the on-dot Coulomb interaction is relatively strong 
( U ≥ Δ

0
 ), one of the effective quantum dot energy levels lies beyond the supercon-

ducting energy gap, resulting in a heat current independent of U (as discussed in 
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Fig. 3d above). The Peltier cooling effect ( JQ > 0 for eV < 0.3Δ
0
 ), caused by the 

quasiparticles, dominates when one of the effective QD energy levels aligns with the 
diverging quasiparticle density of states near the edge of the superconducting gap, 
i.e., �d + U ≈ Δ

0
 ( U = 0.5Δ

0
 in the present case). For non-interacting QD ( U = 0 ), 

the effective energy levels are positioned entirely within the superconducting energy 
gap, i.e., �d = 0.5Δ

0
 . Consequently, the Peltier cooling of the normal metallic reser-

voir, resulting from quasiparticle tunneling at low bias, is reduced.

4 � Conclusion

In summary, we have presented a theoretical study of the (1) Seebeck effect and (2) 
Peltier effect in a hybrid N-QD-S nanodevice based on an interacting quantum dot 
coupled between a normal metal and Bardeen–Cooper–Schrieffer superconductor.

In the first case, we show that the presence of a superconducting energy gap ( Δ
0
 ) 

significantly affects the maximum power output ( P
max

 ) and corresponding thermo-
electric efficiency ( �Pmax

 ). For smaller superconducting energy gap ( Δ
0
≤ 0.5Γ

0
 ), 

quasiparticle tunneling led to higher P
max

 values compared to the N-QD-N case 
( Δ

0
= 0 ). However, as Δ

0
 increases, significant thermal energy kBT  or thermal gra-

dient kB� is required for quasiparticle tunneling. As a result, P
max

 and �Pmax
 , which 

are due to quasiparticle tunneling near the edge of the superconducting energy gap, 
are significantly reduced. Background thermal energy ( kBT  ) also played a crucial 
role, enhancing P

max
 initially but decreasing it as kBT  approached the energy corre-

sponding to superconducting transition temperature kBTc due to backward hole tun-
neling from the superconducting side.

In the second case, we analyzed nonlinear heat current ( JQ ) as a function of bias 
voltage and other system parameters. The Peltier cooling ( JQ > 0 ) of the normal source 
reservoir is observed for positive bias voltage ( eV > 0 ), with maximum cooling occur-
ring as kBT approaches kBTc . The coupling strength between the quantum dot and res-
ervoirs influenced the heat current, with symmetric and strong coupling configurations 
leading to larger cooling magnitudes. Additionally, if the quantum dot energy level ( �d ) 
lies within the superconducting gap, Joule heating effects are significant. For, 𝜖d ≳ Δ

0
 , 

the Peltier cooling effect dominates and extends to higher bias voltages. The effect of 
on-dot Coulomb interaction on the heat current became negligible for 𝜖d ≳ Δ

0
 . How-

ever, for 𝜖d < Δ
0
 , the magnitude of the heat current depends on the on-dot Coulomb 

interaction U. In particular, for bias voltages in the range eV < 0.3Δ
0
 , the quasipar-

ticles cause a relatively small Peltier cooling of the normal metallic reservoir. The 
maximum Peltier cooling is observed when, depending on the value of �d and U, one 
of the effective energy levels of the quantum dot aligns with the diverging quasiparti-
cle density of states near the edge of the superconducting gap. Here, it is important to 
highlight that calculating the optimal cooling power involves optimizing not only �d , 
but also the change in the temperature of the normal metallic reservoir. This tempera-
ture change can be calculated using a phenomenological equation based on the thermal 
model, as described in reference [22, 24, 44], and will be considered in future studies. 
These results provide significant insights into the nonlinear Seebeck and Peltier effect 
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in N-QD-S nanodevice, with potential applications for the miniature on-chip power 
generators and refrigerators in cryogenic nanoelectronics.

Appendix

In this section, we present the calculation for the Green’s functions and occupancy of 
the QD. In Nambu representation, we define the single particle retarded Green’s func-
tion of the QD as a 2 × 2 matrices [45]

where the diagonal components of �r
d
(�) represents the single particle retarded 

Green’s function of electron with spin � =↑ and hole with spin � =↓ , respectively. 
The off-diagonal component represents the superconducting paring correlation on 
the QD. The Fourier transform of the single particle retarded Green’s function for 
QD

where �(t) is Heaviside function, must satisfy the following EOM [38]

By evaluating different commutator and anti-commutator brackets we drive the fol-
lowing coupled equations for the single particle Green’s functions

�
r
d
(�) =

���
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d
†
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The terms with summations over k appearing in above equations can be simplified 
by replacing 

∑
k → ∫ �(�)d� and then solving these expressions using the complex 

contour integration in the wide-band limit. Finally after solving above coupled equa-
tions, we arrive at the expression for the retarded Green’s function of electron with 
spin � =↑ and off-diagonal superconducting pairing correlation on the QD, i.e.,

where

and

where �S(�) is the modified BCS density of states, with the real part accounting 
for the Andreev bound states within the superconducting gap. The other matrix 
elements is given by Gr

d,22
(�) = −Gr

d,11
(−�)∗ and Gr

d,12
(�) = Gr

d,21
(−�)∗ . These 

retarded Green’s functions allow us to calculate the advanced and lesser/greater 
Green’s functions and eventually the thermoelectric transport properties.

The average occupancy on the quantum dot ( ⟨n↑⟩=⟨n↓⟩ for non-magnetic sys-
tem) is calculated using the self-consistent integral equation of the form
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where the lesser Green’s function G<

d
 obeys the Keldysh equation [38, 39]

The advanced Green’s function matrix is �a
d�
(�) =

[
�

r
d�
(�)

]† and the lesser self-
energy matrix is obtained using Ng ansatz [38, 46], i.e.,

This ansatz satisfies the continuity equation in steady state, allowing us to derive the 
lesser Green’s function to examine the transport properties.

Now using retarded and advanced self-energy, we get

with

Now, multiplying matrices in the expression of �<

d𝜎
(𝜔) , we get the lesser Green’s 

function for electrons on the QD as

where f
�∈N,S(� ∓ �

�
) =

[
exp((� ∓ �

�
)∕kBT�) + 1

]−1 is the Fermi-Dirac distribution 
function of reservoirs with temperature T

�
 and chemical potential ±�

�
 (measured 

from Fermi level �f = 0).
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