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Abstract
Based on the two-band Bogoliubov–de Gennes theory, we study the boundary 
effect of an interface between a two-gap superconductor and an insulator (or vac-
uum). New boundary terms are introduced into the two-band Ginzburg–Landau free 
energy, which modifies the boundary conditions for the corresponding order param-
eters of the superconductor. A microscopic analysis of these terms is also given 
and the characteristic length scale of the boundary effect can be estimated. The 
theory allows for a simple calculation of the critical temperature suppression with 
the decrease in film thickness for the typical two-band superconductor magnesium 
diboride. Our numerical results are in good agreement with the experimental data 
observed in this material.

Keywords Two-band superconductor · Boundary term · Critical temperature · 
Magnesium diboride

1 Introduction

Since the discovery of superconductivity at about 40 K in magnesium diboride 
[1], the exploration on the superconducting mechanism and physical properties 
of this compound has attracted much attention over the past decades. The MgB2 
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crystal consists of hexagonal-close-packed layers of Mg atoms alternating with 
graphite-like honeycomb layers of B atoms. The electronic structure of MgB2 is 
now rather well-known, and the superconductivity is ascribed to the conventional 
electron–phonon mechanism [2–5]. The Fermi surface of this compound con-
sists of two three-dimensional sheets from the � band, and two nearly cylindri-
cal sheets from the two-dimensional � band. The qualitative difference between 
these two bands suggests a multi-band description of superconductivity [6, 7]. 
This two-gap picture has been clearly confirmed by de Haas-van Alphen quantum 
oscillation measurements, scanning tunneling microscopy, specific heat measure-
ments and other experiments [8–12].

High-quality MgB2 films are also important for both fundamental research 
and electronic, high-field and radio frequency cavity applications. Much effort 
has been devoted to the deposition of MgB2 thin films, and tremendous progress 
has been achieved by various deposition techniques [13]. Of all these techniques, 
hybrid physical–chemical vapor deposition (HPCVD) has been the most effective 
one for MgB2 [14, 15]. So far, a wide range of works by various groups using 
HPCVD films have been performed in the research of MgB2 . For example, a 
series of MgB2 superconducting films with the thickness ranging from 8 μ m to 8 
nm have been fabricated on SiC substrates by this method [16, 17]. It was found 
that Tc stays around the bulk value for the MgB2 film thicker than 300 nm, but it 
will be reduced by 13% when the film thickness decreases from 30 to 8 nm. Pan 
et al. have grown epitaxial MgB2 films between 40 nm and 10 nm on MgO sub-
strates and performed electrical transport measurements to study the thickness 
dependence of the superconducting critical temperature [18]. A dramatic depres-
sion of Tc has also been observed and the critical temperature reaches about 34 
K in the 10-nm film. Different mechanisms have been proposed to account for 
this Tc suppression in MgB2 thin films, such as quantum phase fluctuations of the 
superconducting pair wave function [19] or enhanced Coulomb interaction due to 
disorder [20]. But up to now, there is still no consensus on the explanation of the 
experimental data mentioned above.

In this paper, we propose that the Tc dependence on the film thickness is due to 
the influence of boundary effect between the two-band superconductor and the insu-
lator (or vacuum). We first introduce the appropriate boundary conditions for the 
Ginzburg–Landau (GL)-order parameters at the superconductor–insulator interface. 
We then give a microscopic analysis of new boundary terms based on the two-band 
Bogoliubov–de Gennes theory and obtain the characteristic length scales of the 
boundary effect as 268 and 383 nm for MgB2 . We end up with the computation 
on the film thickness dependence of critical temperature based on the two-band GL 
theory and the tight-binding model. Our theoretical results are consistent with the 
experimental data of MgB2 films, which suggests the boundary effect is an impor-
tant factor for the understanding of superconducting properties in this compound.

The rest of this article is structured as follows. In Sect.  2, we review the 
two-band Bogoliubov–de Gennes theory and the GL equations and propose the 
boundary terms for the superconductor-insulator interface. In Sect. 3, we give a 
microscopic derivation of these boundary conditions based on the Bogoliubov–de 
Gennes formalism. In Sect. 4, we perform the calculation on the film thickness 
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dependence of critical temperature for the compound MgB2 in the frame of the 
GL theory. In Sect. 5, we compute the critical temperature of MgB2 films based 
on the tight-binding model. Section 6 is the conclusion of the paper.

2  Two‑Band Ginzburg–Landau Theory and Boundary Conditions 
at Interface

Based on the work of Zhitomirsky and Dao [21], we write the Hamiltonian of a 
two-band superconductor as

Here, i, i� = 1, 2 are the band indices and � =↑ , ↓ is the spin index. ĥ(r) is the single-
particle Hamiltonian of the normal metal, and gii′ are the electron–phonon interac-
tion constants with g12 = g21.

We can introduce gap functions

and transform the Hamiltonian into the mean field form

This effective Hamiltonian can be diagonalized by means of the Bogoliubov trans-
formation with b and b† the annihilation and creation operators of quasi-particle 
excitations

and

where k is the wave vector. With the anti-commutation relations between the fer-
mion operators and the equation of motion for ci�(r) , we can obtain the Bogoli-
ubov–de Gennes equations for a two-band superconductor [22–25]

where Eik is the energy of the excitation. Then with Eq. (2), we can transform the 
self-consistent gap equations into

(1)H =
∑
i𝜎

c
†

i𝜎
(r)ĥ(r)ci𝜎(r) −

∑
ii�

gii�c
†

i↑
(r)c†

i↓
(r)ci�↓(r)ci�↑(r).

(2)Δi(r) = −
�
i�

gii�⟨ci�↓(r)ci�↑(r)⟩

(3)Heff =
∑
i𝜎

c
†

i𝜎
(r)ĥ(r)ci𝜎(r) +

∑
i

[Δi(r)c
†

i↑
(r)c†

i↓
(r) + H.c.].

(4)ci↑(r) =
∑
k

[uik(r)bik↑ − v∗
ik
(r)b†

ik↓
]

(5)ci↓(r) =
∑
k

[uik(r)bik↓ + v∗
ik
(r)b†

ik↑
]

(6)
(

ĥ Δi(r)

Δ∗
i
(r) − ĥ∗

)(
uik(r)

vik(r)

)
= Eik

(
uik(r)

vik(r)

)
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with f (Eik) = [1 + exp(Eik∕kBT)]
−1.

In the analogy with the single-band case [26], for small gap functions Δi , we 
can obtain the linearized form of self-consistency conditions from Eqs. (6) and 
(7) as

with the kernel

Here, Φi�k(r) is defined as the normal-state eigenfunction of the electron, 
ĥΦi�k = 𝜀i�kΦi�k.

With the explicit expressions of the kernels in the bulk system and the addition 
of nonlinear terms to the gap equations, we can obtain the two-band GL equations 
from Eq. (8) as [21]

and

with the GL parameters

Here, �ii� = gii�Ni� with Ni′ the density of states at the Fermi level for each band, 
� = �11�22 − �12�21 and �max =

1
2

[

(�11 + �22) +
√

(�11 − �22)2 + 4�12�21
]

 are the determi-
nant and the largest eigenvalue of �-matrix, respectively. Tc0 is the bulk critical tem-
perature, and vFi is the average Fermi velocity for each band. A represents the vector 
potential.

In the spatially homogeneous case, we can neglect the gradient �-terms. Equa-
tions (10) and (11) yield the gap equations at T = Tc0

(7)Δi(r) =
∑
i�k

gii�v
∗
i�k
(r)ui�k(r) × [1 − 2f (Ei�k)]

(8)Δi(r) =
∑
i�

∫ Kii� (r, r
′)Δi� (r

′)dr′

(9)
Kii� (r, r

′) =
gii�

2

∑
kk′

[ tanh
(

�i�k

2kBT

)
+ tanh

(
�i�k�

2kBT

)

�i�k + �i�k�

× Φ∗
i�k
(r′)Φ∗

i�k′
(r′)Φi�k(r)Φi�k′ (r)

]
.

(10)�1(T)Δ1 + �1|Δ1|2Δ1 − �1(∇ − iA)2Δ1 − R12Δ2 = 0

(11)�2(T)Δ2 + �2|Δ2|2Δ2 − �2(∇ − iA)2Δ2 − R12Δ1 = 0

(12)�1,2 = N1,2

[
�22,11

�
−

1

�max

− ln

(
Tc0

T

)]
, �i =

7� (3)Ni

16�2(kBTc0)
2
,

(13)�i =
7� (3)ℏ2Niv

2
Fi

16�2(kBTc0)
2

and R12 =
N1�12

�
=

N2�21

�
.
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which obviously give the consistent result.
From Eqs. (10) and (11), we can also read the weak-coupling two-band GL func-

tional as

with

and

For a superconductor–insulator (or vacuum) interface, we can add new surface terms 
which take the form as

with Dii′ as the constant, and the integral runs over the surface of the superconductor.
Now, the total free energy is given by

With the variation condition �F∕�Δ∗
i
= 0 , we can not only obtain the two-band GL 

equations (10) and (11), but also the boundary conditions

In the absence of external magnetic field, we can set A = 0 in Eq. (20). From 
Eq. (20), we can see that the ordinary Neumann boundary condition corresponds 
to Dii� = 0 . But we will find that the boundary effect induced by these D-terms is 
important for the understanding of the Tc suppression in MgB2 thin films.

At this point, we would like to compare this boundary condition with that of the 
TDGL theory. In the GL theory, the effect of surface can be simply described by 
means of the boundary condition. First of all, from the general form of the self-
consistent gap equation, we can find that only the odd powers of the gap function Δ 
will occur in the expansion at the boundary. Secondly, we also expect that nonlinear 
effects are small, and only the linear term is important in the GL region ( Δ ≪ kBTc ). 
Thirdly, higher derivatives of Δ will not exist in the boundary condition since these 
terms can be expressed in terms of the first and zeroth derivatives by the GL equa-
tion. Based on the discussion above, it is easy to justify that the boundary conditions 

(14)
(
�11 �12
�21 �22

)(
Δ1

Δ2

)
= �max

(
Δ1

Δ2

)
,

(15)FV = F1 + F2 + F12

(16)Fi = ∫V

[
�i(T)|Δi|2 + (�i∕2)|Δi|4 + �i|(∇ − iA)Δi|2

]
dr

(17)F12 = ∫V

(−R12Δ
∗
1
Δ2 + c.c.)dr.

(18)FS = ∫S

(∑
ii�

�iDii�Δ
∗
i
Δi�

)
ds

(19)F = FV + FS.

(20)(∇ − iA)Δi ⋅ s|S = −
∑
i�

Dii�Δi� .
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of TDGL and two-band GL theories will take the forms as (∇ − iA)Δ ⋅ s|S = −Δ∕b 
with b the de Gennes surface extrapolation length and Eq. (20), respectively. The 
extra terms in the two-band GL theory are generated by the linear expansion of both 
Δ1 and Δ2 . In principle, all the coefficients b and Dii′ can be precisely determined 
by solving the linearized gap equations. And both boundary conditions assure the 
gauge invariance dictated by the basic structure of the GL theory.

Meanwhile, we would also like to point out that based on the two-gap theory, 
the boundary effect and different interband interactions in multi-band supercon-
ductors have already been extensively studied in the literature. With the Neumann 
boundary condition, the stable edge states and the dynamic response of such states 
to an external applied current have been investigated in the TDGL formalism for 
the mesoscopic superconductors [27–29]. Based on the tight-binding model and the 
free boundary condition, a microscopic study on the behavior of the order param-
eters near the boundaries has also been performed for multi-band superconducting 
materials [30]. With the Neumann boundary condition, Aguirre et al. discussed the 
effect of different interband interactions on the vortex states by solving the two-band 
TDGL equations [31–33]. However, to explain the suppression of critical tempera-
ture with the decrease in film thickness for MgB2 , we need to conduct the detailed 
microscopic analysis and derive the correct boundary terms within the two-band 
Bogoliubov–de Gennes theory for this superconductor.

3  The Microscopic Origin of Boundary Terms

Now, we examine the behavior of the superconducting order parameters near the 
superconductor–insulator interface based on the two-band Bogoliubov–de Gennes 
theory. In all cases, we assume that there is no current flowing through the bound-
ary. We will show that the characteristic length scales of the boundary effect Dii′ can 
be estimated by the linearized self-consistency equations in the neighborhood of the 
surface. The equation to be solved reads

where s measures the normal distance from the boundary. For simplicity, we set the 
cross section of the boundary as 1. Kii� (s, s

�) is defined by Eq. (9) and due to the 
existence of the interface, Δi(s) will decrease exponentially in the insulating regime.

Following the procedure suggested by de Gennes [26], we suppose that the form 
of gap functions close to the surface behaves as

with Δi0 the gap function at the boundary and s > 0 inside the superconductor. It 
is easy to see that the boundary condition Eq. (20) follows naturally from Eq. (22). 
However, beyond the scale of the coherence length from the boundary, the linear 

(21)Δi(s) =
∑
i�

∫ Kii� (s, s
�)Δi� (s

�)ds�

(22)Δi(s) = Δi0 +

(∑
i�

Dii�Δi�0

)
s
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dependence definitely becomes invalid. Δi will then show a negative curvature and 
reach the BCS value deep in the superconductor.

If we introduce K0
ii�
(s, s�) as the kernel of gap functions in the bulk metal, we can 

then transform Eq. (21) as

From Eqs. (10) and (11) with the higher order �-terms omitted, also noting that 
K0
ii�
(s, s�) = K0

ii�
(s − s�) due to the translational symmetry, we can read out the 

Laplace transformation of K0
ii′

 close to the critical temperature as

Plugging Eqs. (24) into (23), we can get

Here, Δi(p) and Hii� (p) are the Laplace transformations of Δi(s) and Hii� (s) , respec-
tively. Since the first two terms of the left-handed side in Eq. (25) can be approxi-
mately cancelled out according to Eq. (14), we then have

We can see that both sides in Eq. (26) take the main contribution from the boundary 
region. Notice that the Laplace transformation of the gap functions in Eq. (22) takes 
the form

Then at p → 0 , we will obtain from Eq. (26)

According to de Gennes’ analysis [26, 34], from the sum rules

with Ni� (s) the local density of states at the Fermi surface, we can write the Laplace 
transformation of the kernel difference at p → 0

(23)

Δi(s) −
∑
i�

� K0
ii�
(s, s�)Δi� (s

�)ds�

= −
∑
i�

� [K0
ii�
(s, s�) − Kii� (s, s

�)]Δi� (s
�)ds� ≡ −

∑
i�

Hii� (s).

(24)K0
ii�
(p) =

�ii�

�max

+
�ii��i�

Ni�
p2.

(25)Δi(p) −
∑
i�

(
�ii�∕�max

)
Δi� (p) −

∑
i�

(
�ii��i�∕Ni�

)
p2Δi� (p) = −

∑
i�

Hii� (p).

(26)
∑
i�

(
�ii��i�∕Ni�

)
p2Δi� (p) =

∑
i�

Hii� (p).

(27)Δi(p) =
Δi0

p
+
∑
i�

Dii�Δi�0

p2
.

(28)
∑
i�i��

(
�ii��i�∕Ni�

)
Di�i��Δi��0 =

∑
i�

Hii� (p = 0).

(29)∫ K0
ii�
(s, s�)ds� =

�ii�

�max

and ∫ Kii� (s, s
�)ds� =

�ii�Ni� (s)

�maxNi�
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Δi� (s)∕Δi�0 approaches zero in the insulating region and is of the order of 1 in the 
metallic region. Ni� (s)∕Ni� also passes from 0 → 1 in a few interatomic distances 
from the boundary. Therefore, the integrand in Eq. (30) is nonvanishing only in a 
width of order of the lattice constant a. We can then estimate Hii� (p = 0) as

Combining Eqs. (28) with (31), we can finally obtain

With these formulae, we successfully demonstrate the microscopic origin of the 
boundary conditions in Eq. (20).

At this stage, we would like to point out that Dii� = 0 (i ≠ i�) is only an approxi-
mation and will become nonzero in the higher-order calculation. Even for a contact 
between a superconductor and an insulator, the Cooper pairs can still diffuse into the 
insulating region with some probability. Algebraically, this means that the gap func-
tion Δi� (s) will also extend up to a distance of a into the s < 0 region, and from the 
self-consistent gap equations, we can qualitatively estimate 
Δi� (s) ∼

∑
i�� Ti�i��Δi��0e

s∕a (s < 0) with Ti′i′′ the element of the transmission matrix at 
the boundary. Including the s < 0 part in the integration of Eq. (30) and noting 
Ni� (s)∕Ni� ≈ 0 in this region, we can get Hii� (p = 0) =

�ii�a

�max

(Δi�0 +
∑

i�� Ti�i��Δi��0) . 
Plugging into Eq. (28), the coefficients of boundary terms are given by

With the transmission coefficient from the superconductor to the insulator Tii′ ≪ 1 , 
we can obviously see that Dii� = 0 (i ≠ i�) is a good approximation.

4  Critical Temperature of MgB
2
 Films in the Ginzburg–Landau Theory

In this section, we try to understand the film thickness dependence of Tc for MgB2 
based on the boundary effect mentioned above. We suppose that the film extends 
from z = −d∕2 to z = d∕2 , and the film thickness is d.

From Eqs. (10) and (11), the two-band GL equations can be written as

with

(30)Hii� (p = 0) = ∫ Hii� (s)ds =
�ii�Δi�0

�max
∫

Δi� (s)

Δi�0

[
1 −

Ni� (s)

Ni�

]
ds.

(31)Hii� (p = 0) =
�ii�a

�max

Δi�0.

(32)Dii =
Nia

�i�max

and D12 = D21 = 0.

(33)Dii =
Nia

�i�max

(1 + Tii), D12 =
N1a

�1�max

T12 and D21 =
N2a

�2�max

T21.

(34)
(
Ĥ11 Ĥ12

Ĥ21 Ĥ22

)(
Δ1(r)

Δ2(r)

)
= 0



121

1 3

Journal of Low Temperature Physics (2023) 212:113–126 

and

Noting that close to the critical temperature, the magnitude of the order parameters 
is small and the higher-order � terms can be neglected.

Similar to the single-band case [34], we set the form of gap functions for the 
superconducting film as

with �i as the constant. Then from the boundary conditions

we have ki satisfying

Let us introduce

we can transform Eq. (34) into

with

and

The critical temperature of the two-band superconducting film will be determined 
by the condition

(35)Ĥii = −𝛾i∇
2 + 𝛼i(T)

(36)Ĥ12 = Ĥ21 = −R12.

(37)
(
Δ1(z)

Δ2(z)

)
=

(
�1 cos(k1z)

�2 cos(k2z)

)

(38)
dΔi

dz

||||z=±d∕2 = ∓DiiΔi,

(39)ki tan

(
kid

2

)
= Dii.

(40)Hii� = ⟨Δi�Ĥii� �Δi�⟩ = ∫
d∕2

−d∕2

Δi(z)Ĥii�Δi� (z)dz,

(41)
(
H11 H12

H21 H22

)(
�1

�2

)
= 0

(42)Hii =
[
�ik

2
i
+ �i(T)

][d
2
+

sin(kid)

2ki

]

(43)H12 = H21 = −R12

⎡⎢⎢⎢⎣

sin
�

k1d

2
+

k2d

2

�

k1 + k2
+

sin
�

k1d

2
−

k2d

2

�

k1 − k2

⎤⎥⎥⎥⎦
.
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at T = Tc , which can be explicitly written as

For the typical two-band superconductor MgB2 , we have Tc0 ≈ 40 K [35] and the 
average lattice constant a ≈ 0.4 nm [36]. The density of states at the Fermi level for 
the � band is N1 = 0.16 eV−1 , and the value for the � band is N2 = 0.25 eV−1 [4]. 
Since the theoretical fit to specific heat data gives �11 = g11N1 = 0.4 and the ratio 
g11:g22:g12 = 1:0.3:0.2 [21], we can get � = 0.066 , �max = 0.44 and R12 = 0.30 eV−1 . 
With the average Fermi velocities vF1 = 3.7 and vF2 = 4.5 in units of 1014 nm ⋅ s−1 
from the numerical integration of the tight-binding calculations [4], we have �1 = 39 
nm2

⋅ eV−1 and �2 = 87 nm2
⋅ eV−1 from Eq. (13). Then from Eq. (32), we can obtain 

the characteristic length scales D11 = (268 nm)−1 and D22 = (383 nm)−1 . For a given 
film thickness d, we get ki from Eq. (39). Plugging into Eq. (45), the critical temper-
ature Tc as a function of d can be calculated numerically and then plotted in Fig. 1. It 
is shown that the critical temperature keeps gradually decreasing with the decrease 
in d and Tc ≈ 33 K when the film thickness is reduced to d = 10 nm. From Fig. 1, we 
can see that our theoretical results fit the experimental data on different substrates 
very well.

(44)H11H22 − H12H21 = 0

(45)

∏
i=1,2

[
�ik

2
i
+ �i(Tc)

][d
2
+

sin(kid)

2ki

]
= R2

12

[
sin(

k1d

2
+

k2d

2
)

k1 + k2
+

sin(
k1d

2
−

k2d

2
)

k1 − k2

]2

.

Fig. 1  Critical temperature as a function of the MgB
2
 film thickness
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5  Critical Temperature Calculations in the Tight‑Binding 
Approximation

In this section, we present the calculation of gap functions and critical temperature 
for MgB2 films based on the tight-binding model. The MgB2 crystal consists of the 
subsequent, equally separated parallel honeycomb graphene-like layers of B and 
hexagonal planes of Mg atoms. Owing to this layered structure, the typical orienta-
tion of films is (0001), and we will limit ourselves to consider only such configura-
tion. The z-direction is chosen perpendicular to the layer plane. As we know, the 
band structure calculations in the tight-binding approximation involve only boron 
electronic orbitals, so that only the boron atom positions inside the film are impor-
tant. Let us label the subsequent boron layers as � = 0, 1, ⋅ ⋅ ⋅,M . Then, the total 
thickness of the MgB2 film is d = Ma.

In the tight-binding model, the dispersion relations for � and � bands are, respec-
tively, given by

and

with e1 = 0.58 eV, t1 = 0.19 eV, t�
1
= 0.23 eV, e2 = 0.04 eV, t2 = 1.84 eV, t�

2
= 1.60 

eV [4]. We assume an infinite quantum well for the electrons at the boundaries in 
the z-direction, and our construction of the trial electron wave functions follows the 
calculation of Szczeniowski and Wojtczak [39–42]. Then for this multi-layer system, 
we can rewrite the linearized gap equation in Eqs. (8) and (9) as

with

Noting here that the factor exp(i�kza) satisfying the Bloch condition in the z-direc-
tion for the bulk crystal is replaced by the more general amplitude

and kz =
m�

d
(m = 0, 1, ⋅ ⋅ ⋅,M) is the discrete wave vector allowed in the infinite 

potential well.

(46)�1k = e1 − t1cos(kza) − t�
1
(k2

x
+ k2

y
)a2

(47)

�2k = e2 + t2cos(kza) − t�
2

����1 + 4cos

�
kya

2

��
cos

�√
3kxa

2

�
+ cos

�
kya

2

��

(48)Δi(�) =
∑
i�,��

Kii� (�, �
�)Δi� (�

�)

(49)Kii� (�, �
�) =

gii�

2

∑
kk′

tanh
(

�i�k

2kBT

)
+ tanh

(
�i�k�

2kBT

)

�i�k + �i�k�
Γ∗
kz
(��)Γ∗

k�
z

(��)Γkz
(�)Γk�

z
(�).

(50)Γkz
(�) =
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We perform the numerical calculations for the films composed of 20 ∼ 10000 
boron layers, corresponding to a film thickness roughly 8 ∼ 4000 nm. For a given 
temperature, we compute the kernel Kii� (�, �

�) first. We use the Monte Carlo tech-
nique to do the summation on kx and ky , and a number of 108 random wave vec-
tors ( kx,ky ) are generated from the two-dimensional first Brillouin zone. The energy 
cutoff for �i′k and �i′k′ is taken as kBΘD with ΘD the Debye temperature. To fit the 
critical temperature for the bulk system, we choose ΘD = 750 K [36]. We then itera-
tively compute the gap function Δi(�) from Eq. (48) with the initial value setting 
as 10 meV. The convergence criterion we adopt is |Δn+1

i
(�) − Δn

i
(�)|∕Δn

i
(�) ⩽ 10−8 , 

where n numbers the iteration. Finally, Tc is determined by the maximum tempera-
ture with the existence of a nonzero solution of Δi(�) in the layered system. The 
calculated critical temperature as a function of the film thickness d is also presented 
in Fig. 1. It is shown that the critical temperature keeps decreasing with the decrease 
in d and Tc drops to about 36 K at d = 10 nm which is 9% greater than the GL result. 
From Fig. 1, we can see that the tight-binding calculations are qualitatively consist-
ent with the experimental data and the GL theory.

6  Conclusion

In conclusion, we introduce the appropriate boundary conditions in the two-band 
GL theory at the interface between a two-gap superconductor and an insulator (or 
vacuum). We also give a microscopic derivation of these boundary terms based on 
the two-band Bogoliubov–de Gennes formalism. For the typical two-band supercon-
ductor MgB2 , we obtain the characteristic length scales of the boundary effect as 
268 and 383 nm. It can perfectly explain the dramatic suppression of Tc when the 
film thickness is reduced to the same order of these scales. Our investigation thus 
suggests that the boundary effect induced by these new terms may play an important 
role in the research of multi-band superconducting films.

Declarations 

 Conflict of interest The authors declare that they have no conflict of interest.

 Informed consent Informed consent was obtained from all individual participants included in the study.

References

 1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63 (2001). https:// 
doi. org/ 10. 1038/ 35065 039

 2. J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov, L.L. Boyer, Phys. Rev. Lett. 86, 4656 
(2001). https:// doi. org/ 10. 1103/ PhysR evLett. 86. 4656

 3. J.M. An, W.E. Pickett, Phys. Rev. Lett. 86, 4366 (2001). https:// doi. org/ 10. 1103/ PhysR evLett. 86. 
4366

 4. Y. Kong, O.V. Dolgov, O. Jepsen, O.K. Andersen, Phys. Rev. B 64, 020501(R) (2001). https:// doi. 
org/ 10. 1103/ PhysR evB. 64. 020501

https://doi.org/10.1038/35065039
https://doi.org/10.1038/35065039
https://doi.org/10.1103/PhysRevLett.86.4656
https://doi.org/10.1103/PhysRevLett.86.4366
https://doi.org/10.1103/PhysRevLett.86.4366
https://doi.org/10.1103/PhysRevB.64.020501
https://doi.org/10.1103/PhysRevB.64.020501


125

1 3

Journal of Low Temperature Physics (2023) 212:113–126 

 5. K.P. Bohnen, R. Heid, B. Renker, Phys. Rev. Lett. 86, 5771 (2001). https:// doi. org/ 10. 1103/ PhysR 
evLett. 86. 5771

 6. A.Y. Liu, I.I. Mazin, J. Kortus, Phys. Rev. Lett. 87, 087005 (2001). https:// doi. org/ 10. 1103/ PhysR 
evLett. 87. 087005

 7. A. Brinkman, A.A. Golubov, H. Rogalla, O.V. Dolgov, J. Kortus, Y. Kong, O. Jepsen, O.K. 
Andersen, Phys. Rev. B 65, 180517(R) (2002). https:// doi. org/ 10. 1103/ PhysR evB. 65. 180517

 8. F. Giubileo, D. Roditchev, W. Sacks, R. Lamy, D.X. Thanh, J. Klein, S. Miraglia, D. Fruchart, J. 
Marcus, P. Monod, Phys. Rev. Lett. 87, 177008 (2001). https:// doi. org/ 10. 1103/ PhysR evLett. 87. 
177008

 9. P. Szabó, P. Samuely, J. Kačmarčík, T. Klein, J. Marcus, D. Fruchart, S. Miraglia, C. Marcenat, 
A.G.M. Jansen, Phys. Rev. Lett. 87, 137005 (2001). https:// doi. org/ 10. 1103/ PhysR evLett. 87. 137005

 10. F. Bouquet, R.A. Fisher, N.E. Phillips, D.G. Hinks, J.D. Jorgensen, Phys. Rev. Lett. 87, 047001 
(2001). https:// doi. org/ 10. 1103/ PhysR evLett. 87. 047001

 11. I.I. Mazin, J. Kortus, Phys. Rev. B 65, 180510(R) (2002). https:// doi. org/ 10. 1103/ PhysR evB. 65. 
180510

 12. Y. Bugoslavsky, Y. Miyoshi, G.K. Perkins, A.V. Berenov, Z. Lockman, J.L. MacManus-Driscoll, 
L.F. Cohen, A.D. Caplin, H.Y. Zhai, M.P. Paranthaman, H.M. Christen, M. Blamire, Supercond. 
Sci. Technol. 15, 526 (2002). https:// doi. org/ 10. 1088/ 0953- 2048/ 15/4/ 308

 13. X.X. Xi, A.V. Pogrebnyakov, X.H. Zeng, J.M. Redwing, S.Y. Xu, Q. Li, Z.K. Liu, J. Lettieri, V. 
Vaithyanathan, D.G. Schlom, H.M. Christen, H.Y. Zhai, A. Goyal, Supercond. Sci. Technol. 17, 
S196 (2004). https:// doi. org/ 10. 1088/ 0953- 2048/ 17/5/ 021

 14. X.H. Zeng, A.V. Pogrebnyakov, A. Kotcharov, J.E. Jones, X.X. Xi, E.M. Lysczek, J.M. Redwing, 
S.Y. Xu, Q. Li, J. Lettieri, D.G. Schlom, W. Tian, X.Q. Pan, Z.K. Liu, Nat. Mater. 1, 35 (2002). 
https:// doi. org/ 10. 1038/ nmat7 03

 15. X.X. Xi, X.H. Zeng, A.V. Pogrebnyakov, S.Y. Xu, Q. Li, Y. Zhong, C.O. Brubaker, Z.K. Liu, E.M. 
Lysczek, J.M. Redwing, J. Lettieri, D.G. Schlom, W. Tian, X.Q. Pan, IEEE Trans. Appl. Supercond. 
13, 3233 (2003). https:// doi. org/ 10. 1109/ TASC. 2003. 812209

 16. Y.L. Chen, C. Yang, C.Y. Jia, Q.R. Feng, Z.Z. Gan, Physica C 525–526, 56 (2016). https:// doi. org/ 
10. 1016/j. physc. 2016. 02. 022

 17. C. Zhang, Y. Wang, D. Wang, Y. Zhang, Z.H. Liu, Q.R. Feng, Z.Z. Gan, J. Appl. Phys. 114, 023903 
(2013). https:// doi. org/ 10. 1063/1. 48127 38

 18. J.Y. Pan, C. Zhang, F. He, Q.R. Feng, Acta Phys. Sin. 62, 127401 (2013). https:// doi. org/ 10. 7498/ 
aps. 62. 127401

 19. M.P.A. Fisher, G. Grinstein, S.M. Girvin, Phys. Rev. Lett. 64, 587 (1990). https:// doi. org/ 10. 1103/ 
PhysR evLett. 64. 587

 20. A.M. Finkel’stein, Phys. B 197, 636 (1994). https:// doi. org/ 10. 1016/ 0921- 4526(94) 90267-4
 21. M.E. Zhitomirsky, V.H. Dao, Phys. Rev. B 69, 054508 (2004). https:// doi. org/ 10. 1103/ PhysR evB. 

69. 054508
 22. L.F. Zhang, L. Covaci, M.V. Milošević, G.R. Berdiyorov, F.M. Peeters, Phys. Rev. Lett. 109, 107001 

(2012). https:// doi. org/ 10. 1103/ PhysR evLett. 109. 107001
 23. L.F. Zhang, L. Covaci, M.V. Milošević, G.R. Berdiyorov, F.M. Peeters, Phys. Rev. B 88, 144501 

(2013). https:// doi. org/ 10. 1103/ PhysR evB. 88. 144501
 24. L.F. Zhang, V.F. Becerra, L. Covaci, M.V. Milošević, Phys. Rev. B 94, 024520 (2016). https:// doi. 

org/ 10. 1103/ PhysR evB. 94. 024520
 25. L.F. Zhang, L. Covaci, M.V. Milošević, Phys. Rev. B 96, 224512 (2017). https:// doi. org/ 10. 1103/ 

PhysR evB. 96. 224512
 26. P.G. de Gennes, Superconductivity of Metals and Alloys (Westview Press, New York, 1966). https:// 

doi. org/ 10. 1201/ 97804 29497 032
 27. W.C. Gonçalves, E. Sardella, V.F. Becerra, M.V. Milošević, F.M. Peeters, J. Math. Phys. 55, 041501 

(2014). https:// doi. org/ 10. 1063/1. 48708 74
 28. V.F. Becerra, M.V. Milošević, Phys. Rev. B 94, 184517 (2016). https:// doi. org/ 10. 1103/ PhysR evB. 

94. 184517
 29. V.F. Becerra, M.V. Milošević, Physica C 533, 91 (2017). https:// doi. org/ 10. 1016/j. physc. 2016. 07. 

002
 30. A. Benfenati, A. Samoilenka, E. Babaev, Phys. Rev. B 103, 144512 (2021). https:// doi. org/ 10. 1103/ 

PhysR evB. 103. 144512
 31. T.N. Jorge, C. Aguirre, A. de Arruda, J. Barba-Ortega, Eur. Phys. J. B 93, 69 (2020). https:// doi. org/ 

10. 1140/ epjb/ e2020- 100418-4

https://doi.org/10.1103/PhysRevLett.86.5771
https://doi.org/10.1103/PhysRevLett.86.5771
https://doi.org/10.1103/PhysRevLett.87.087005
https://doi.org/10.1103/PhysRevLett.87.087005
https://doi.org/10.1103/PhysRevB.65.180517
https://doi.org/10.1103/PhysRevLett.87.177008
https://doi.org/10.1103/PhysRevLett.87.177008
https://doi.org/10.1103/PhysRevLett.87.137005
https://doi.org/10.1103/PhysRevLett.87.047001
https://doi.org/10.1103/PhysRevB.65.180510
https://doi.org/10.1103/PhysRevB.65.180510
https://doi.org/10.1088/0953-2048/15/4/308
https://doi.org/10.1088/0953-2048/17/5/021
https://doi.org/10.1038/nmat703
https://doi.org/10.1109/TASC.2003.812209
https://doi.org/10.1016/j.physc.2016.02.022
https://doi.org/10.1016/j.physc.2016.02.022
https://doi.org/10.1063/1.4812738
https://doi.org/10.7498/aps.62.127401
https://doi.org/10.7498/aps.62.127401
https://doi.org/10.1103/PhysRevLett.64.587
https://doi.org/10.1103/PhysRevLett.64.587
https://doi.org/10.1016/0921-4526(94)90267-4
https://doi.org/10.1103/PhysRevB.69.054508
https://doi.org/10.1103/PhysRevB.69.054508
https://doi.org/10.1103/PhysRevLett.109.107001
https://doi.org/10.1103/PhysRevB.88.144501
https://doi.org/10.1103/PhysRevB.94.024520
https://doi.org/10.1103/PhysRevB.94.024520
https://doi.org/10.1103/PhysRevB.96.224512
https://doi.org/10.1103/PhysRevB.96.224512
https://doi.org/10.1201/9780429497032
https://doi.org/10.1201/9780429497032
https://doi.org/10.1063/1.4870874
https://doi.org/10.1103/PhysRevB.94.184517
https://doi.org/10.1103/PhysRevB.94.184517
https://doi.org/10.1016/j.physc.2016.07.002
https://doi.org/10.1016/j.physc.2016.07.002
https://doi.org/10.1103/PhysRevB.103.144512
https://doi.org/10.1103/PhysRevB.103.144512
https://doi.org/10.1140/epjb/e2020-100418-4
https://doi.org/10.1140/epjb/e2020-100418-4


126 Journal of Low Temperature Physics (2023) 212:113–126

1 3

 32. C.A. Aguirre, Q.D. Martins, J. Barba-Ortega, Physica C 581, 1353818 (2021). https:// doi. org/ 10. 
1016/j. physc. 2021. 13538 18

 33. C. Aguirre, A.S. de Arruda, J. Faúndez, J. Barba-Ortega, Phys. B 615, 413032 (2021). https:// doi. 
org/ 10. 1016/j. physb. 2021. 413032

 34. J.B. Ketterson, S.N. Song, Superconductivity (Cambridge University Press, Cambridge, 1999). 
https:// doi. org/ 10. 1017/ CBO97 81139 171090. 011

 35. X.X. Xi, Rep. Prog. Phys. 71, 116501 (2008). https:// doi. org/ 10. 1088/ 0034- 4885/ 71/ 11/ 116501
 36. S.L. Bud’ko, G. Lapertot, C. Petrovic, C.E. Cunningham, N. Anderson, P.C. Canfield, Phys. Rev. 

Lett. 86, 1877 (2001). https:// doi. org/ 10. 1103/ PhysR evLett. 86. 1877
 37. K.C. Zhang, L.L. Ding, C.G. Zhuang, L.P. Chen, C.P. Chen, Q.R. Feng, Phys. Status Solidi 203, 

2463 (2006). https:// doi. org/ 10. 1002/ PSSA. 20052 2262
 38. X.J. Wang, C. Zhang, Y. Zhang, Q.R. Feng, Y. Wang, Chin. J. Low Temp. Phys. 38, 64 (2016). 

https:// doi. org/ 10. 13380/j. cnki. chin.j. lowte mp. phys. 2016. 04. 012
 39. S. Szczeniowski, L. Wojtczak, Acta Phys. Pol. 36, 241 (1969)
 40. P. Czoschke, H. Hong, L. Basile, T.C. Chiang, Phys. Rev. Lett. 91, 226801 (2003). https:// doi. org/ 

10. 1103/ PhysR evLett. 91. 226801
 41. P. Czoschke, H. Hong, L. Basile, T.C. Chiang, Phys. Rev. B 72, 035305 (2005). https:// doi. org/ 10. 

1103/ PhysR evB. 72. 035305
 42. P. Czoschke, H. Hong, L. Basile, T.C. Chiang, Phys. Rev. B 72, 075402 (2005). https:// doi. org/ 10. 

1103/ PhysR evB. 72. 075402

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.

https://doi.org/10.1016/j.physc.2021.1353818
https://doi.org/10.1016/j.physc.2021.1353818
https://doi.org/10.1016/j.physb.2021.413032
https://doi.org/10.1016/j.physb.2021.413032
https://doi.org/10.1017/CBO9781139171090.011
https://doi.org/10.1088/0034-4885/71/11/116501
https://doi.org/10.1103/PhysRevLett.86.1877
https://doi.org/10.1002/PSSA.200522262
https://doi.org/10.13380/j.cnki.chin.j.lowtemp.phys.2016.04.012
https://doi.org/10.1103/PhysRevLett.91.226801
https://doi.org/10.1103/PhysRevLett.91.226801
https://doi.org/10.1103/PhysRevB.72.035305
https://doi.org/10.1103/PhysRevB.72.035305
https://doi.org/10.1103/PhysRevB.72.075402
https://doi.org/10.1103/PhysRevB.72.075402

	Boundary Effect and Critical Temperature of Two-Band Superconducting Films: Application to MgB
	Abstract
	1 Introduction
	2 Two-Band Ginzburg–Landau Theory and Boundary Conditions at Interface
	3 The Microscopic Origin of Boundary Terms
	4 Critical Temperature of MgB Films in the Ginzburg–Landau Theory
	5 Critical Temperature Calculations in the Tight-Binding Approximation
	6 Conclusion
	References




