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Abstract
In 1963, the late W. F. (“Joe”) Vinen concluded, partly on intuitive grounds, that 
the ab initio creation of a quantized vortex line in superfluid 4 He is impeded by an 
energy barrier. We place this prescient insight into context and review subsequent 
theoretical and experimental research that calculated the height of the barrier and 
validated the result through measurements on negative ions moving through super-
fluid 4 He above the Landau critical velocity. We discuss the implications of these 
results for other superfluids, including laser-cooled dilute atomic gases, and for the 
subsequent development of superfluid hydrodynamics.

Keywords  Superfluid · Quantized vortex · Energy barrier · Macroscopic quantum 
tunnelling · Computer modelling

1  Introduction

When the superfluidity of 4 He was discovered [1, 2] in 1938, it quickly became 
apparent that the phenomenon only persists while the liquid is being treated “gen-
tly”. Thus, the viscous drag on a moving object in the superfluid, or the viscous 
dissipation in flow through a tube, only remains zero provided that some critical 
velocity is not being exceeded. The magnitude of the critical velocity varies widely, 
depending on the experimental geometry and conditions [3, 4].
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Below the superfluid transition at temperature T = T� ≃ 2.17 K the liquid forms a 
phase known as He II. It behaves as though it were composed of two distinct, inter-
penetrating, components: superfluid of density �s and normal fluid of density �n [6, 
7]. The total density of the liquid � = �n + �s . The normal fluid is viscous, albeit 
with a very small viscosity, and it carries all the thermal energy of the liquid. The 
superfluid component has zero viscosity for small velocities, and zero entropy being, 
in effect, at the absolute zero of temperature. As T decreases, the superfluid fraction 
�s∕� rises from 0 at T� to approach unity below 1 K; correspondingly, the normal 
fluid fraction �n∕� falls from unity at T� towards zero below 1 K [8]. Following Lan-
dau [9, 10], the liquid at low temperatures can be perceived as an inviscid “back-
ground” (superfluid component) containing a dilute gas of thermal excitations, pho-
nons and rotons, forming the normal fluid component. Note that the phonons are 
similar to those in crystals, described at long wavelengths (compared to the average 
interatomic separation) by a linear dispersion � = cp where � is the phonon energy, p 
its momentum and c the velocity of sound. Although rotons fall on the same contin-
uous Landau dispersion curve as phonons, they are described by a parabolic parti-
cle-like dispersion � = Δ +

(ℏk−ℏk0)
2

2�
 , as shown near the local minimum in Fig.  1, 

where Δ and ℏk0 are, respectively, the roton energy and momentum at the minimum 
and � is the roton effective mass. The physical nature of the roton remains an 
enigma.

Fig. 1   Energy–wavenumber dispersion relations for elementary excitations in He II. The energy E is in 
units of K and the wavenumber k is in Å−1. The momentum of an excitation is ℏk . The full curve is the 
Landau spectrum based on the data tabulated by Donnelly et al. [5]. The linear part near the origin corre-
sponds to the phonon regime ( E ∝ p ), and the parabolic free-particle-like regime near the local minimum 
corresponds to rotons. At the roton minimum, E∕kB = Δ and k = k

0
 . The dashed line represents the GPE 

dispersion relation (see Sect. 5): it coincides with the Landau spectrum in the phonon regime, but then 
curves upwards in a free-particle-like regime ( E ∝ p2 ) at large p, without exhibiting a roton minimum
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Landau showed that for the kinetic energy of a heavy moving object to be con-
verted directly to heat, i.e., by creation of an excitation of energy � and momen-
tum p, its velocity must exceed �∕p in order to satisfy conservation of energy 
and momentum. This argument led naturally to the Landau critical velocity 
vL = (�∕p)min ≃ Δ∕p0 where Δ and p0 are, respectively, the energy and momentum 
at the roton minimum in the dispersion curve. At around 50 ms−1 , depending on 
pressure, vL has been observed [11, 12] and measured [13] under special conditions. 
The puzzle was that vL is much higher than the critical velocities of cm s−1 or mm s−1 
typically found in experiments. As we discuss in more detail below, the reason for 
the lower critical velocities usually seen in practice is that dissipation in the super-
fluid is more commonly associated with quantized vortices.

The superfluid component can be described by a macroscopic wavefunction � 
[14, 15], related to imperfect Bose–Einstein condensation (BEC) in the liquid for 
which, even in the T → 0 limit, the atomic condensate fraction is only ∼ 0.1 [16] (cf. 
�s∕� → 1 in this limit). Despite the small condensate fraction, liquid 4 He exhibits 
a range of macroscopic quantum phenomena closely analogous to those that arise 
in superconductors [7, 17], in the more-recently discovered BECs formed by laser-
cooled gases [18] including roton modes in dipolar quantum gases [19] and among 
quasiparticles in solids including magnons, excitons and polaritons [20].

For He II, the most dramatic quantum effect is arguably the quantization of the 
circulation [14, 15, 21], which is given by

where �
�
 is the superfluid velocity, n = 0, 1, 2, 3... is the winding number and the 

quantum of circulation � = h∕m4 . Here, h is Planck’s constant and m4 is the 4 He 
atomic mass. Eq. (1) means that the superfluid does not rotate, at least not in a sim-
ple manner, but remains at rest relative to the fixed stars. If held within a rotating 
container (one whose geometry is simply-connected), superfluid either does not 
rotate at all, or one or more quantized vortex lines may appear parallel to the axis 
of rotation; the exception is superfluid 3He-B where, on account of the very high 
vortex nucleation threshold, a vortex-free region can coexist with a cluster of vortex 
lines [22]. Since vortex lines with winding numbers larger than 1 are unstable, here-
after we take n = 1 . Each vortex line consists of a core of atomic dimensions around 
which the tangential superflow velocity falls off inversely with radial distance r from 
the center of the core, vs ∝ 1∕r . Vortex rings [23], or closed loops of any shape 
where a vortex line is joined back on itself, are also possible. Because each element 
of a ring exists within the net superfluid flow field of the rest of the ring, the ring has 
an intrinsic translational velocity that is inversely proportional to its radius.

In practice, it is usually vortex lines or rings that are responsible for the break-
down of superfluidity, rather than creation of thermal excitations via the Landau 
mechanism. However, the dissipation is almost always due to the expansion of 
existing vortices rather than to their creation ab initio (intrinsic vortex nucleation). 
Although the critical velocity for intrinsic vortex nucleation has been calculated [24] 
and measured experimentally [25] (see also Sects. 3 and 4 below), it turns out to be 

(1)∮ �
�
.�� = n�,
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very high ( ≈ 60 m s−1 ) making the process correspondingly uncommon. Expansion 
of pre-existing vortices occurs much more easily, at far lower velocities both in 4 He 
[3] and 3 He [26].

In reality, almost all samples of He II, however prepared, seem to contain a few 
vortices [27] with their ends pinned on the container walls or on solid objects within 
the superfluid. It is these remanent vortices that in practice are usually involved in 
the breakdown of superfluidity [28]. In what follows we will mainly be concerned, 
instead, with the physics of the intrinsic mechanisms underlying the breakdown, 
which in some ways are more interesting and fundamental.

Almost the only way of investigating the breakdown of superfluidity without com-
plications due to remanent vortices is to probe the liquid with ions [29, 30]. These 
consist of semi-macroscopic charged spheres that may be manipulated with electric 
fields and detected by the currents they induce in electrodes. The positive ion con-
sists of a He+ surrounded by solid helium held by electrostriction, with a radius of 
≈ 0.6 nm. The normal negative ion is an electron within an otherwise empty bubble, 
of radius between ≈ 1.15  nm (near the melting pressure) and ≈ 1.7 nm (under the 
vapor pressure). Both ions create charged vortex rings when moving under electric 
fields in He II at low temperatures [23] but the negative ion has the special property 
that, in He II under pressure, it can reach vL without necessarily creating a vortex 
ring [11, 31], enabling the vortex creation mechanism to be studied (because the 
probability of an object as small as an ion interacting with the remanent vortex line 
present in the helium sample is negligible). There are also the elusive fast and exotic 
negative ions [30] whose properties appear to make them very suitable for studies of 
vortex creation, but they seem to be difficult to utilize for this purpose in practice, 
and their structures remain an enigma. The normal negative ion is much more tracta-
ble. It has a hydrodynamic effective mass ranging from 243m4 (vapor pressure) [32, 
33] down to 87m4 (melting pressure) [34].

In Sect. 2, we review Vinen’s argument for there being an energy barrier imped-
ing vortex creation in the superfluid. We discuss how this can be calculated in 
Sect. 3 and in Sect. 4 we describe experimental measurements of the barrier height. 
In Sect. 5, we discuss the likely relevance of Vinen’s energy barrier to other super-
fluids. We summarize and draw conclusions in Sect. 6.

2 � An Energy Barrier Impeding Vortex Creation

At a summer school in 1963, the late W. F. (“Joe”) Vinen made what turned out to 
be a highly prescient remark about the origins of quantized vortices in superfluid 4
He: that exceeding a critical velocity was a necessary, but not sufficient, condition 
for vortex creation. Based on approximate calculations and physical intuition, he 
reasoned that there must be an energy barrier impeding the process [35], and he 
pointed out the need to take this barrier properly into account. His discussion relates 
to the superfluid and thus, in effect, to the interpretation of flow experiments at very 
low T where the normal fluid component can be ignored.

Vinen first estimated the minimum critical velocity vc = (�∕p)min for creation of a 
vortex ring of radius R in a two-dimensional flow channel of width d. Utilizing the 
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classical expressions for the energy and impulse of a vortex ring [36] and, assuming 
that the maximum size of the ring will be of order d, he showed [35] that there is a 
minimum critical velocity

where a0 is the vortex core radius. Thus, the critical velocity should decrease 
with the increasing size of ring created and hence with increasing channel radius. 
Although this dependence agreed with flow experiments, and although the estimated 
magnitude of the critical velocity was of the right order, he pointed out that there 
was a fundamental difficulty.

Even if the relevant critical velocity was being exceeded, so that vortex creation was 
energetically allowed, there also needed to be an appreciable probability of the process 
occurring. It must presumably involve a quantum mechanical transition between a state 
of uniform flow, and a state of flow including the ring. The transition must be induced 
by interaction with the wall, and therefore accompanied by the excitation of some 
motion in the wall. It would involve a change in the wave function over a large volume 
of liquid at a considerable distance from the wall, perhaps 3 × 10−2 cm to match typical 
experiments. Such a process seemed inherently improbable.

Vinen emphasized that the problem cannot be resolved simply by postulating the 
initial formation of a very small ring, for which the quantum transition would be less 
improbable, because even the creation of a small ring involves an increase (not a 
decrease) in the energy of the liquid and the critical velocity would also be higher. In 
effect, therefore, there is a large potential barrier opposing the creation of vortex line.

Feynman wavefunctions proved inadequate as a basis for calculating the largest vor-
tex ring whose probability of creation is appreciable but, in any case, the creation of a 
ring of dimensions much larger than the interatomic spacing seemed intuitively implau-
sible. Vinen also considered the influence of finite temperature and concluded that the 
thermal excitation of vortices can probably be ignored at low T, except perhaps near 
sharp protuberances in the channel walls. Such protuberances would reduce the critical 
velocity, but not to values as low as those seen in experiments.

Vinen concluded that, because the breakdown of superfluidity normally happens at 
velocities of the order of cm s−1 or mm s−1 , well below the expected critical velocities 
for vortex creation, the process must usually be seeded by a few lengths of vortex held 
metastably in the channel, i.e., the remanent vortices discussed above in Sect. 1. It is a 
picture that has not changed to this day. An important consequence of the presence of 
remanent vortices is the inherent difficulty of studying the intrinsic breakdown process, 
a problem to which we return below in Sect. 4.

3 � Calculation of the Barrier for Negative Ions

Here, we deal only with negative ions (cf. the paper by Muirhead, Vinen and Don-
nelly (MVD) [24] that also deals with positive ions). We assume that the ions are 
ideal; smooth, remain spherical under acceleration and are initially vortex free. 

(2)vc =
ℏ

m4R

(
ln

[
8d

a0

]
−

7

4

)
,
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We assume that the velocity field due to motion of the vortex-free ion is strictly 
dipolar (i.e., we ignore any distorting Bernoulli forces and possible complications 
due to the formation of a virtual roton cloud at the surface of the ion when the 
local velocity exceeds the Landau critical velocity). We use computer modelling 
to calculate the minimum velocity at which a vortex can be created at constant 
impulse and the associated energy barrier to vortex creation. Two possible geom-
etries of vortex nucleation are considered, as shown in Fig. 2: the encircling vor-
tex ring and the attached vortex loop.

For conceptual (and computational) purposes, we note the close analogy 
between the motion of an (effectively) incompressible fluid ( � ⋅ v = 0 ) and that of 
magnetic fields ( � ⋅ B = 0):

where J is the current density, i is the total current, B is the resulting magnetic field, 
� is the vorticity, � is the circulation and v is the local fluid velocity. Schwarz and 
Jang stated [37], and Vinen showed more explicitly, that the total momentum (more 
accurately the impulse) of the ion/vortex complex fluid, and the total kinetic energy, 
are given by

where Pc(U) and Ec(U) are the impulse and energy of the ion-vortex complex at ion 
velocity U; P0(U) and E0(U) refer to the free ion, i.e., in the absence of any vorti-
city. This is a considerable simplification from the computational viewpoint. The ion 

(3)� ≡ �0J; � ≡ �0i; v ≡ B;

(4)Pc(U) = Pc(0) + P0(U),

(5)Ec(U) = Ec(0) + E0(U),

Fig. 2   Two possible geometries of the nucleating vortex: a an encircling ring; b an attached loop. R
I
 is 

the radius of the ion; R
0
 is the radius of the ring or loop; and U is the ion’s velocity. In a, Z

0
 is the dis-

placement of the loop from the equatorial plane and, in b, �
0
 is the angle of the loop relative to the equa-

torial plane. Reprinted figure with permission, from Muirhead et al. [24]. Copyright (1984) by the Royal 
Society of London
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of radius RI is virtually empty (see Sect. 1), so it has only the hydrodynamic mass 
MI = (2∕3)�s�R

3
I
 giving us for the vortex-free impulse and energy

where we have equated the superfluid density and the total density at low tempera-
tures. The computations therefore reduce to the calculation of impulse and energy 
for the stationary ion in the presence of a vortex loop or ring.

The velocity field due to the vortex is clearly affected by the presence of the 
fluid-free ion. It may help the reader to consider the magnetostatic analogy, which 
is that of a current-carrying loop or ring in the presence of a superconducting 
sphere. In both geometries shown in Fig. 2, current flows on the surface of the 
sphere and is so distributed that, inside the sphere, the magnetic field is every-
where zero. The problem of calculating the B field (fluid velocity) is most eas-
ily solved by using the method of images. Here, an imaginary current inside the 
sphere (the image) is constructed such that it produces a field outside the sphere 
everywhere the same as that produced by the real currents (on the surface of the 
sphere) and obeys the boundary condition that magnetic field normal to the sur-
face of the sphere is everywhere zero.

This is most conveniently calculated by considering the vector potential A where 
B = ∇ × A . We are at liberty to choose the gauge of A such that ∇ ⋅ A = 0 without 
altering the measurable quantity B . In this gauge, the vector potential due to a cur-
rent element idl is given by A = �0idl∕(4�|r|) , exactly analogous to the equation for 
the scalar potential due to a point charge. The problem of determining the image of 
a current element idl in a superconducting sphere is then formally equivalent to the 
well-known problem of determining the image of a charge in a conducting sphere. 
We simply have to remember to apply this to all vector components of idl . In Fig. 3, 
we show the two components of idl . The image of a current element in the horizon-
tal direction (Fig. 3b) is of magnitude (RI∕z)idI positioned at a radius R2

I
∕z.

It follows immediately that the image of the Schwarz and Jang vortex ring is a 
ring of opposite sense, having circulation �(RI∕z) at the radius shown, irrespective 
of its displacement along the direction in which the ion moves (see Fig. 2).

In the case of the vortex loop, we need to be a bit more careful. Vinen noted that 
the radial component shown in Fig. 2a does not require an image, but we may give 
it one. If we follow the same prescription as used in Fig. 2b, it is easily seen that the 
image lies on a continuation of the real vortex to produce a (vortex + image) that is 
a complete circle of radius R0 . However, the magnitude of the current in the image 
reduces as we move further from the surface of the ion, so the current in the image 
is not conserved. This produces a B field outside the sphere that does not obey Max-
well’s equations and the image must therefore be incomplete.

Vinen realized that you can always add to this image a fan of currents along any 
radius centered on the sphere (Fig. 4). This is allowed because such currents satisfy 
the boundary condition Bnormal = 0 . The currents flowing in the fan elements are 
chosen so that current continuity is obeyed and Maxwell’s equations are satisfied.

(6)P0(U) = (2∕3)�s�R
3
I
U,

(7)E0(U) = (1∕3)�s�R
3
I
U2,
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3.1 � Energy and Impulse

We initially assume that the radius of the vortex core is small compared with 
all other dimensions. This is clearly not the case for a vortex ring very close to 
the ion or for a vortex loop as we approach points F and G in Fig. 4. We will 
find that the energy barrier to vortex formation involves very small vortex loops 

Fig. 3   Images of current elements in a superconducting sphere. Reprinted figure with permission, from 
Muirhead et al. [24]. Copyright (1984) by the Royal Society of London

Fig. 4   Image of a vortex loop in 
a solid sphere. Reprinted figure 
with permission, from Muirhead 
et al. [24]. Copyright (1984) by 
the Royal Society of London
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or rings close to the ion, so corrections to the energy and impulse calculations 
will be important. We outline Vinen’s estimates of the necessary corrections in 
Sect. 3.2.

We return now to the hydrodynamic situation. We first note that the energy 
due to the vorticity

where the integral is taken over the fluid volume. This can be expressed as

where v = ∇ × A and the integral is taken over all surfaces bounded by the fluid 
(the contribution from the surface at infinity being zero); and v is obtained from the 
hydrodynamic equivalent of the Biot–Savart law in magnetostatics. The computa-
tions therefore reduce to the problem of performing an integral over the surface of 
the ion and the vortex (which we again treat as a circular tube of radius a0 ). For the 
stationary ion, there are two contributions to the integral over the vortex: that due 
to the vortex itself; and that due to the image. The energy of a vortex ring in an 
unbounded fluid is given [36] by

where R is the radius of the ring. In the case of a vortex loop this must be corrected 
for the portion of the loop that is missing. We note that the numerical value of 1.62 
is dependent on the particular model for the nature of the vortex core, about which 
little was known at the time of Vinen’s paper [35], and which remains to this day 
something of a conundrum: Table 1 of Ref. [38] lists numerical values of 7

4
 , 2, 3

2
 , 

1.615, and 2.05 corresponding, respectively, to a solid core of constant volume, a 
hollow core at constant pressure, a hollow core with surface tension, the GPE solu-
tion, and a viscous core. The question is hard to resolve experimentally because of 
the effect of the logarithm. In addition, A and v at the surface of the vortex core are 
changed, because the missing part of the complete ring is replaced by the image.

In the case of the encircling ring, it was shown by Schwarz and Jang [37] that 
the vector potential is zero over the surface of the ion and therefore there is no 
contribution to the integral from the core surface. For the vortex loop, the vector 
potential cannot be zero and the contribution from the surface of the ion must be 
evaluated.

Vinen showed that the impulse at zero ion velocity may be written in the form

where the integral is evaluated over the real vortex and its image.

(8)Ec(0) = (1∕2)�s ∫ v2d�,

(9)Ec(0) = (1∕2)�s ∫ (A × v) ⋅ dS,

(10)E =
1

2
�s�

2R{ln(8R∕a0) − 1.62},

(11)�
�
(�) =

1

2
�s� ∫ r × dl,
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3.2 � Corrections for Small Rings

As we have already noted, we expect the dominant energy barrier to vortex 
formation to involve small radii for vortex loops and rings close to the ion sur-
face and, as we shall see, this is confirmed in the results of our computations in 
Sect. 3.4 below.

In the MVD paper [24], Vinen exerted considerable effort to make the best rea-
sonable estimates of the corrections, based on the limited information available at 
the time. These estimates were quite detailed and the interested reader is referred to 
that paper. We should, however, summarize Vinen’s thinking on this issue.

For the case of the vortex loops, Vinen used the best available theoretical calcu-
lations of impulse and energy for small rings in an unbounded fluid [36] and fitted 
them to a mathematical function, which was then scaled according to the size of the 
vortex loop. For the case of the encircling rings, he took the best available calcula-
tions for a pair of rectilinear parallel vortices of opposite strengths, which mimicked 
the vortex ring and its image. Where the vortex ring was displaced from the ion 
along the direction of travel, interpolation between the rectilinear vortex pair and 
small ring was required.

3.3 � Computational Techniques

For integrals over the surface of the ion, the surface was divided into ∼ 1000 ele-
ments and, for the vortex ring and its image, ∼ 500 straight sections. The size of 
each element was reduced in regions where the velocity, vector potential or vorticity 
were changing rapidly with position. As we have already noted, there is no contribu-
tion from the surface in the case of the encircling ring. The number of elements was 
varied and limiting cases were examined in order to determine accuracy within the 
assumptions and approximations referred to earlier. It was estimated the numerical 
accuracy was good to ∼ 0.5 %. Programming was conducted in Fortran.

3.4 � Results of the Computations

The computational results reported in the MVD paper were extensive, covering pos-
itive and negative ions, both the vortex loop and encircling ring geometries, and a 
range of pressures. In keeping with the purpose of the present paper, we will restrict 
ourselves to a few illustrative examples. In Sects. 3.6 and 3.7, we will consider the 
problem addressed by Vinen, which is the probable rate at which vortex lines can be 
generated.

The computed energy changes at constant momentum for negative ions are shown 
in Fig. 5. We see that the critical velocities for the loop and ring are ∼ 45 ms−1 and 
∼ 70 ms−1 , respectively. In both cases, there is an energy barrier to vortex formation, 
but it is much larger for the encircling ring for which the tunnelling distance is larger 
by more than a factor of 2.
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3.5 � Effect of the Nucleating Geometry

So far we have considered vortex loops and rings whose axes lie along the direction 
of the ion velocity and for rings in the equatorial plane. In Fig. 6, however, we show 
contours of constant energy for different positions of the loop and of the ring.

Extensive computations over a range of initial velocities show that the minimum 
critical velocity for vortex loop creation always lies in the equatorial plane. Loops 
can be created outside the equatorial plane for higher initial velocities (Fig. 6a).

Vortex rings are more complicated. Rings can only be created in the equatorial 
plane for initial velocities greater than ∼ 70 m s−1 . At initial velocities comparable 
with, but still significantly higher than those for vortex loop creation (Fig. 6b), rings 
can be created out of the equatorial plane, but with energy barriers that are much 
wider and higher that for vortex loops. This gives strong support for Vinen’s view 
that vortex loops are created at substantially lower initial velocities than for rings.

3.6 � Vortex Nucleation by Quantum Tunnelling

We confine ourselves to vortex loops. Impeding their formation, there is an energy 
barrier of height ∼ 5 × 10−23 J and width ∼ 4 × 10−10 m. Here, we assume that the 
energy barrier drops near to the ion, where the distance of the vortex from the ion 
becomes comparable with the vortex core diameter. Vinen argued that this is physi-
cally reasonable, because the energy barrier must go to zero for zero loop radius. We 
now address the question of the tunnelling probability through such a barrier.

Fig. 5   Energy change at constant impulse as a function of vortex radius R
0
 for negative ions at a pressure 

of 0 Pa, a for a vortex loop, b for an encircling ring at the equator. The number against each curve is the 
value of the initial ion velocity U in m s−1 . Reprinted figure with permission, from Muirhead et al. [24]. 
Copyright (1984) by the Royal Society of London.
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We will see in Fig. 11 (below) that the vortex nucleation rate becomes more or less 
temperature independent at temperatures below ∼ 0.6K. This led Vinen to suggest that 
vortex nucleation at low temperatures was a result of penetration of the energy bar-
rier by quantum tunnelling. Processes of this type had been considered by Volovik 
[39], Sonin [40] and Ichiyanagi [41] but these authors had failed to take account of the 
hydrodynamic mass of the core. Our analysis so far implicitly assumes that the vortex 
has a fluid filled core. We shall see, in this section, that we assume the core is hollow, 
so that it has a hydrodynamic mass due to the missing fluid. This has little effect on our 
previous calculations, at least in the limit where the vortex radius is large compared 
with the core radius. In any case, it is a small logarithmic factor. This can be subsumed 
into a small change in the core radius which was not well known and is still not well 
defined.

Vinen noted that “A realistic calculation of the production of vortex loops by quan-
tum tunnelling is difficult, and we do not know how to do it.” Vinen therefore proposed 
to solve the problem in the simpler geometry of a 2-dimensional sheet of helium and 
then consider how the results could realistically be carried over into the creation of 
vortex loops. The calculation is detailed and beyond the scope of the present paper, for 
which the interested reader is referred to MVD. We will, however, outline the argument 
drawing attention to key points. The geometry used by Vinen is shown in Fig. 7.

The equation of motion due to the Magnus force on the vortex is

(12)mvr̈ = �s(vs − ṙ) × 𝜿.

Fig. 6   Contours of constant energy change at a pressure of 0 Pa and fixed initial velocity: a for a vortex 
loop with initial velocity 46 m s−1 ; and b for a vortex ring with an initial velocity 72 m s−1 . Each graph 
is plotted on a plane of symmetry through the center of the ion (shaded) and parallel to the initial ion 
velocity U. The size and position are specified by the point at which the vortex crosses this plane. The 
axes represent the distances from the center of the ion. The number close to each curve is the value of 
1021ΔE

L
∕J for a loop and 1021ΔE

R
∕J for a ring. The broken curves are the contours of ΔE

L
= 0 (loop) 

and ΔE
R
= 0 (ring). Reprinted figure with permission, from Muirhead et al. [24]. Copyright (1984) by 

the Royal Society of London
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where mv is the hydrodynamic mass which, for a hollow core, is mv ∼ ��sa
2
0
 per unit 

length, vs is the local velocity field, and � is the quantum of circulation treated as a 
vector. We expand this as

This has the same functional form as that of an electrostatic line charge (q per unit 
length) attached to a line mass (m per unit length) moving in a direction perpendicu-
lar to its length in an electromagnetic field (E, B)

Our analogy is therefore

We now assume a Cartesian co-ordinate system. In the special case where E is in 
the x-direction and B and the line charge are in the z direction, the motion of the line 
charge is a drift velocity E/B in the y-direction superimposed on a cyclotron motion 
about a line parallel to, but displaced from, the line charge by the cyclotron radius. 
Its instantaneous potential energy is E(x − b) , where we have taken the potential 
energy as zero at x = b.

For the case of the vortex, we take the local velocity field to be Us in the y-direction. 
It follows from our analogy that, in the geometry shown in Fig. 7, the vortex motion 
will be a cyclotron motion in the x − y plane with a drift velocity Us in the y-direction. 
The potential energy of the vortex is �s�dUs(x − b) . The quantum mechanical wave 
equation is therefore

where we have used a gauge for the vector potential equivalent in the magnetic case 
to (0, Bx, 0). To solve Eq. (16), we first make the substitution

Following a lengthy but straightforward derivation and the use of the WKB approxi-
mation, we obtain

(13)mvr̈ = �s�vs × 𝜿̂ − �s� ṙ × 𝜿̂,

(14)mvr̈ = qE + qṙ × B.

(15)q ≡ �,E ≡ �svs × 𝜿̂,B ≡ −�s𝜿̂.

(16)
�2�

�x2
+

(
�

�y
+

i�s�dx

ℏ

)2

� +
2mvd

ℏ2
{� + �s�dUs(x − b)}� = 0,

(17)� = eikyyu(x).

(18)un(x) ∼ exp

[
−�s�d

ℏ ∫
x

x0±r0

{(x0 − x)2 − r2
0
}1∕2dx

]
,

Fig. 7   Liquid helium is trapped 
between two parallel sheets. 
We assume the vortex is 
short, straight and far from the 
boundaries

z

y
x

d

Us Vortex
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where the eigenfunctions are centered on x0 and the cyclotron radius is r0 . The 
eigenfunctions turn out to be those of a harmonic oscillator with energy index n. 
Only the value n = 0 gives significant tunnelling probability.

We consider the nucleation of a vortex at the edge of a thin film due to quantum tun-
nelling. The tunnelling barrier is given by

The first term is due to the interaction of the vortex with its image: the second term 
is from its interaction with the velocity field Us . This is shown schematically in 
Fig. 8.

In order to make the derivation more tractable, the barrier is replaced by the dashed 
line

where U′
s
 is around half Us . We assume that the film is formed between two smooth 

surfaces and is bounded at x = 0 by a wall in the y − z plane (see Fig. 7). The vortex 
is formed by an interaction between this wall and the helium, involving an exchange 
of momentum between the wall and the helium. This can only occur if the surface is 
rough.

We consider first a single protuberance leading to a perturbation V in the helium. 
Ideally, we would calculate a tunnelling rate given by

where �i is the initial (vortex free) state, �f is the final (with vortex) state, and g(�) 
is the final density of states associated with the vortex. Unfortunately V is not known 
so Vinen took a different approach. He first reasoned that in the absence of the 
potential barrier, the frequency with which vortices were created was the frequency 
with which the vortex would interact with the protuberance, i.e., the cyclotron fre-
quency ( �s�∕mv ), which is very large ( ∼ 1013 Hz). This rate would be reduced by a 

(19)ΔV =
�s�

2d

4�
ln

(
2x

a0

)
− �s�dxUs.

(20)ΔV = �s�dU
�
s
(�0 − x),

(21)�0 =
2�

ℏ

||||∫ �∗
f
V�id�

||||

2

g(�),

Fig. 8   A schematic of the 
potential barrier impeding the 
formation of a vortex. The solid 
line represents Eq. (19) and the 
dashed line is an approximation 
representing Eq. (20)
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factor of order the extent to which the wavefunction of the vortex in its final state 
overlapped the perturbing protuberance in the wall. He found

In order to approximate this to the case of the ion, we replace w0 by our computed 
barrier width, put d equal to the length of a loop at the point of tunnelling (roughly 
�w0 ) and the prefactor to be the cyclotron frequency multiplied by the number of 
atoms on the surface of the ion. We note that Eq. (17) implies that, in the case of the 
2-dimensional sheet, the vortex is delocalized in the y-direction, so in the ion case, 
is delocalized in the azimuthal plane. The assumption that the protuberances involve 
all atoms on the ion surface is therefore not unreasonable.

This procedure was found to give quite good agreement with experimental data 
for the critical velocity [42].

There is, however, a feature of the experimental results that Vinen’s theory does 
not correctly predict: at higher velocities the vortex nucleation rate actually drops. 
Our computations do not support the explanation proposed by Bowley et  al. [42], 
that this is due to escape from nascent vortex rings, so Vinen proposed quite a dif-
ferent explanation. It had been widely assumed that vortex creation and the genera-
tion of rotons (intrinsic to the experiments of McClintock et al.) could be treated as 
independent processes.

Roton generation, however, constitutes a form of scattering and hence a fric-
tional force. The effect of friction on quantum tunnelling was considered by Caldeira 
and Leggett [43]. They found that in the presence of friction, the tunnelling rate is 
reduced by a factor

where � is the friction coefficient, Δq is the barrier width and A is a constant of 
order unity. Applying this to a vortex loop and using the substitutions above we get 
a factor

where � is the relaxation time, which we identify with the inverse rate of emission of 
roton pairs.

The data of Bowley et  al. [42] at a pressure of 1.7 × 106 Pa shows a fall-off in 
nucleation rate for fields greater than 7.5 × 105 V/m, which implies a nucleation 
rate for vortex pairs of about 2.7 × 1010 s −1 . Using our previous parameters and 
wo = 3 × 10−10 m we find that the above exponential is exp(− 0.27). Given the 
uncertainty in A and the crudeness of our model,  it is not unreasonable to assume 
that the fall in vortex creation rate is depressed by roton emission and therefore that 
the processes of roton emission and vortex creation should not be taken as entirely 
independent.

Vinen was very clear that the whole of this quantum tunnelling theory was 
approximate and tentative. He stated in the conclusion that “Our own discussion of 

(22)�0 ∼
�s�

m
exp

{
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�s�d

ℏ
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ℏ

2mvdU
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}

.
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2
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this effect is speculative and possibly wrong”. It is a testament to his intuition and 
analytic skills that so much of it has stood the test of time.

3.7 � Vortex Nucleation by Thermal Excitation

The main thrust of (MVD) was the creation of a vortex by quantum tunnelling at 
zero Kelvin. At finite temperature, however, nucleation of a vortex by thermal acti-
vation becomes possible. As we will see in Fig. 11, there is a sharp rise in nucleation 
rate at temperatures above ∼ 200 mK. The height of the potential barrier against vor-
tex nucleation is typically 5 × 10−23 J, corresponding to a temperature of ∼ 3.6 K. 
Thermal activation over this barrier requires only a single roton or phonon and, due 
to the nature of the dispersion curve, the roton density greatly exceeds that of pho-
nons except at the lowest temperatures. The roton density falls exponentially with 
temperature, however, and below ∼ 200 mK it becomes negligible. The nucleation 
of vortex loops by thermal activation had been considered  [44] by Donnelly and 
Roberts in 1971, but without proper consideration of energy and momentum con-
servation. Thermal activation by absorption of a roton, taking these conservation 
conditions into account, was dealt with by Bowley et al. [42] and thermal activation 
by phonons at the lower temperatures was investigated by Hendry et al. [25].

4 � Experiments to Measure the Barrier

In order to investigate the ab initio creation of quantized vortices in He II one would 
like, ideally, to monitor vortex-free superfluid flowing at a constant, controlled 
velocity or, alternatively—in line with the theory presented in Sect. 3—to study the 
dynamics of a negative ion moving through the superfluid at a constant velocity. The 
small size of the ion means that, even though the superfluid contains a small density 
of remanent vortices, their influence can be ignored because it is most unlikely that 
the ion will encounter any of them.

4.1 � Controlling the Ionic Velocity at Low T

To move an object through superfluid with constant velocity at very low temperature 
is a challenging problem, because the smallest force will cause it to accelerate con-
tinuously and because of heating where mechanical actuators are used. Nonetheless, 
methods have been developed to pull a grid at constant velocity with minimal heat 
generation [45] and to move wires or grids at constant speed in arcs of circle [46, 
47]; very recently, a technique has been proposed [48] that would enable a levitated 
macroscopic object to be moved at constant velocity in a short straight line, or per-
petually in circular motion at constant speed, but its successful realization has yet to 
be reported.

In the case of ions, small stray electric fields will cause continuous acceleration. The 
simple method of controlling the ionic velocity used here involved balancing the force 
on the ion from an applied electric field against the rate of momentum loss associated 
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with roton creation at velocities above the Landau critical velocity vL . The applied 
fields were much stronger than any stray fields, so the influence of the latter could be 
ignored. The variation of the ionic velocity with time is believed to take the form of a 
sawtooth [12]: the ion accelerates freely until it becomes energetically possible to emit 
a pair of rotons [31]; in doing so, its velocity decreases discontinuously due to its small 
effective mass; after which it accelerates again. The sawtooth shape is unobservable 
in practice because the contribution from a single ion is too small, and the stochastic 
roton emission processes are not synchronized for different ions in the ensemble. The 
whole sawtooth rises in average velocity with increasing electric field. It is assumed 
that roton creation and vortex nucleation are independent processes and that the most 
likely circumstance for vortex nucleation will be when the ion is at its maximum veloc-
ity, because of the decreased barrier height (see Fig. 5). At one of the sawtooth max-
ima, therefore, the ion is expected to generate a vortex loop rather than emitting a pair 
of rotons.

For the method to work, the critical velocity vV for vortex creation must obviously 
be higher than vL . Fortunately, this condition can readily be met by adjustment of the 
ambient pressure P: vL falls with increasing P [13], whereas vV increases [42]. It is also 
necessary to use isotopically purified 4He, because tiny quantities of 3 He exert a dra-
matic influence on the vortex creation process, reducing the critical velocity and simul-
taneously increasing the probability of vortex creation [49].

4.2 � Measurement of the Vortex Nucleation Rate

The rate � at which negative ions nucleate vortices can be measured by use of the elec-
tric induction method described in detail by Bowley et al. [42]. Briefly, a disk-shaped 
ensemble of ions is propagated in a strong electric field between a pair of parallel elec-
trodes whose diameter is much larger than their separation and than the diameter of 
the ion disk, as sketched in Fig. 9. If there were no vortex nucleation, a constant cur-
rent would be induced in the collecting electrode towards which the ions are moving, 
which is held at fixed potential. When an ion nucleates a vortex, however, the resultant 
charged ring grows very rapidly and correspondingly slows down abruptly. The charge 
effectively stops, almost instantaneously, and it therefore ceases contributing to the 
induction current in the collector. The measured current therefore takes the form of a 
decaying exponential ∝ e−�t , enabling � to be measured. A typical induction signal is 
shown in Fig. 10.

4.3 � Experimental Results

Some measurements of � made in this way are shown in Fig. 11 as a function of recip-
rocal temperature T−1 . There is evidently a temperature-independent regime below 
∼ 100 mK and a rapid rise in � above ∼ 200 mK. The data can be fitted to a relation of 
the form

(25)� = �(0) + Ae−�∕kBT ,
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where �(0) represents the temperature-independent value of � in the low T limit, and 
A and � are constants. In the light of the theory and discussions of Sects. 2 and 3, it 
is natural to identify �(0) with quantum tunnelling through Vinen’s energy barrier 
and the second term in Eq. 25 with thermal activation over the barrier, of height � . 
Figure 12 compares relevant results from Sect. 3 with the barrier height � from the 
measurements. The agreement is excellent and, in fact, better than expected given 
that the calculated height is an estimate with an uncertainty of up to a factor of ∼ 2.

Taken with the MVD calculations [24] described in Sect. 3, these results consti-
tute a convincing vindication of Vinen’s inferred energy barrier [35] impeding the 
nucleation of vortices in superfluid 4He. It is interesting to consider whether or not 
similar barriers to vortex nucleation occur in other superfluids.

5 � Further Developments

5.1 � The Gross–Pitaevskii Equation

Although the MVD calculations [24] and the experiments [12] which we have 
described settled the main physics issue, a fundamental problem still remains: in the 
MVD scenario, what creates the “proto-vortex" (the encircling ring or the attached 
loop), which, in the presence of a superflow, may or may not expand and become 
observable?

The MVD approach is semi-classical: it is based on the theory of inviscid fluids, 
neglects density variations (waves) and assumes that the core of the quantum vortex 
is much smaller than any other length scales of the problem. The MVD paper relies 
primarily on the latter assumption. Vinen made use of considerable intuition to 
derive and justify modifications to the computations when this approximation is no 
longer applicable (see Sect. 3.2). However, the radius of the negative ion, a ≈ 1 nm , 
is larger, but not much larger than the radius of the vortex core, a0 ≈ 0.1 nm , and the 

Fig. 9   Idealized cell geometry for measuring the vortex nucleation rate � by electric induction [42]. An 
infinitesimally thin disk-shaped ensemble of bare ions, total charge Q, is driven at constant velocity from 
the lower plate at potential Φ(S) = 0 towards the upper one at potential Φ(S) = V  by a uniform electric 
field. If there is no vortex nucleation between the plates, a constant current will flow from the upper plate 
in order that its potential should remain equal to V. If nucleation is occurring at rate � , however, the cur-
rent will be proportional to e−�t , where t is time. Reprinted figure with permission, from Bowley et al. 
[42]. Copyright (1982) by the Royal Society of London
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critical velocity of vortex nucleation, vc ≈ 60s−1 s, is smaller, but not much smaller 
than the speed of sound in 4He, c ≈ 238 m∕s . The condensate model which we sum-
marize below provides an alternative approach which avoids the MVD approxima-
tions of infinitesimal vortex core thickness and incompressibility.

In the mean field approximation, the macroscopic complex wavefunction �(x, t) 
of a condensate of N bosons of mass m which weakly interact via the potential U 
obeys the equation

(26)iℏ
��

�t
= −

ℏ2

2m
∇2� + � ∫ |�(x�, t)|2U(|x − x

�|)��� + V� − �� ,

Fig. 10   Typical signal recorded at the collector [42] under a pressure of P = 17 bar. a Measured signal 
as a function of time. The actual induction signal starts at D corresponding to the moment when the front 
of the charge disk first enters the induction space; the finite rise-time corresponds to the finite thickness 
of the charge disk, unlike the idealized disk shown in Fig. 9. The transients that occur at A, B, C and E, 
overloading the signal pre-amplifier, relate to the operation of the field emission source and the gating of 
the charge to create the disk. b Enlarged version of the induction signal in a. c Logarithm of the signal 
shown in b. It has a linear top, demonstrating the exponential decay of the signal. Reprinted figure with 
permission, from Bowley et al. [42]. Copyright (1982) by the Royal Society of London
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where � is the chemical potential and the normalization of the wavefunction is

The potential V(x, t) is imposed externally to confine the gas or to model a mov-
ing ion. Assuming repulsive contact interactions between pairs of bosons, the 
potential U becomes a delta function of strength g > 0 , and Eq. 26 reduces to the 
Gross–Pitaevskii equation (GPE):

A property of the GPE which is particularly important in the vortex nucleation prob-
lem is that it conserves both energy and momentum. Using the Madelung trans-
formation �(x, t) =

√
n(x, t)eiS(x,t) , where S(x, t) is the phase of � , the condensate 

can be described as a fluid [51] of velocity v(x, t) = (ℏ∕m4)∇S(x, t) and density 
�(x, t) = m4n(x, t) where n(x, t) = |�(x, t)|2 is the number of atoms per unit volume. 
The fluid’s pressure consists of two parts: an ordinary barotropic pressure gn2∕2 , 
and a so-called quantum pressure which is proportional to ℏ2 (hence vanishes in the 
classical limit ℏ → 0).

A quantum vortex is a solution of the GPE such that � = 0 along a line around 
which the phase changes by 2� . In this way Eq. 1 is satisfied. The line (the vortex 
axis) is surrounded by a tubular region of depleted density of radius a0 ≈ � where 

(27)N = ∫ |�(x�, t)|2d3x�.

(28)iℏ
��

�t
= −

ℏ2

2m4

∇2� + g|�|2� + V� − �� .

Fig. 11   The vortex nucleation rate measured for negative ions in isotopically pure He II, plotted as a 
function of reciprocal temperature T−1 for three electric fields E [50]. The curves represent fits of Eq, 
(25) to the experimental data (points). Reprinted figure with permission, from Hendry et al. [50]. Copy-
right (1988) by the American Physical Society
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� = ℏ∕
√
m4ng , called the healing length—a characteristic length scale of the con-

densate representing the distance at which kinetic energy and interaction energy 
are balanced.

At distances larger than � , the quantum pressure is negligible compared to the 
ordinary pressure [51], and the condensate behaves like a solution of the clas-
sical Euler equation for an inviscid compressible irrotational fluid. At distances 
smaller than � , the quantum pressure becomes dominant and is responsible for 
effects which are outside the realm of classical Euler dynamics, such as vortex 
reconnections and vortex nucleation, as we shall see.

Vortex nucleation by a moving ion and the onset of drag were first demon-
strated in the context of the GPE by Frisch et  al. [52]. They solved Eq.  (28) in 
two-dimensions (2D) around a disk of diameter d = 10� moving at constant 
velocity v (for convenience they performed the calculation in the frame of refer-
ence of the disk). They imposed the boundary condition � = 0 at the surface of 
the disk, thus modelling the ion as an infinite potential well. An annular region 
of thickness ≈ � forms around the disk (the superfluid analog of a laminar bound-
ary layer) where the density drops from its bulk value far from the disk to zero 
at the disk’s surface. Frisch et al. found that at small velocities v, the flow around 

Fig. 12   Change in energy ΔE at constant impulse that occurs when a vortex loop of radius R
0
 is formed 

in the equatorial plane by a negative ion, for the three different ionic velocities (meters per second) 
shown by the numbers adjacent to the curves (see Sect. 3) [50]. The energy barrier for the case of an 
ion that slightly exceeds the critical velocity (middle curve) is the hatched area; the part for values of 
R
0
 lower than those for which the calculations of Sect. 3 are valid, and the dashed line, are just sketched 

as guides to the eye. As noted in Sect. 3.6, the energy barrier must go to zero as the loop radius goes 
to zero, so this extrapolation is reasonable. The experimental barrier height � deduced from the data of 
Fig.  11 is indicated by the bar. Reprinted figure with permission, from Hendry et  al. [50]. Copyright 
(1988) by the American Physical Society
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the disk is symmetric fore and aft, and frictionless; however, if v is larger than a 
critical velocity vc ≈ 0.4c (where c =

√
n0g∕m4 is the speed of sound in the bulk 

where the density is n0 = �∕g ), the disk experiences a drag force. The onset of 
drag for v ≥ vc is accompanied by the nucleation of vortex-antivortex pairs at the 
opposite sides of the disk, where the local velocity is the highest. It is therefore 
convenient to use the Mach number M = v∕c as the control parameter of the prob-
lem. The critical Mach number Mc = vc∕c is less than unity because the nuclea-
tion takes place in the annular region of depleted density n < n0 around the disk 
where the local speed of sound is reduced compared to the value in the bulk.

Frisch et  al. found that in the laboratory frame, each vortex pair moves slower 
than the disk; the vortex pair is therefore left behind as shown in Fig.  13, and a 
second pair is nucleated. Increasing v, this vortex shedding becomes more frequent, 
time dependent (including the alternating vortices of the von Karman vortex street) 
and then irregular. This is because each vortex depresses the total velocity near the 
disk, preventing the nucleation of the next vortex until the mainstream velocity value 
v is recovered at which the next nucleation can take place.

Different energy branches of solutions of the GPE were computed by Huepe and 
Brachet [54] and Mueller and by Krstulovic [55], who determined stable (stationary) 
and unstable solutions using a Newton-Raphson method. Figure 14 shows a sche-
matic example of their findings in the form of a bifurcation diagram: the quantity 
ΔE = E(v) − E(0) , plotted as a function of the Mach number for a prescribed disk 
diameter, is used to characterize different solution branches, where E(v) and E(0) 
are, respectively, the energy of the condensate at velocities v > 0 and v = 0 . The 
solid black line is the stable branch which corresponds to frictionless stationary flow 
without vortices, and the dashed black line is the unstable branch corresponding to 
a vortex-antivortex pair. The other energy branches correspond to unstable solu-
tions with two (dashed black line), four (dashed red line) and six (dot-dashed line) 
nucleated vortices. For a given disk diameter, such a bifurcation diagram allows the 
identification of the critical Mach number Mc at the cusp where stable and unstable 
branches merge. For M > Mc there are no stationary solutions and the disk nucleates 
vortices experiencing a drag force. The precise value of Mc depends on the disk’s 
size d: as d increases, the critical Mach number Mc decreases.

Fig. 13   Density n(x,  y) vs x,  y corresponding to flow of the condensate around a 2D disk [53]. Dark 
regions correspond to n = 0 , light regions to the bulk density n = n

0
 . The flow is from right to left with 

speed v. Left: subcritical flow ( v = 0.3c < v
c
 where c is the speed of sound in the bulk; the critical veloc-

ity is v
c
= 0.36c ): the flow is frictionless and fore-aft symmetric, like classical potential flow. Right: 

mildly supercritical flow ( v = 0.365c > v
c
 ): quantum vortices are shed behind the disk. Reprinted figure, 

with permission from Stagg [53]
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Qualitatively, this 2D nucleation scenario is also seen in 3D calculations (the vor-
tex-antivortex pairs being replaced by vortex rings) and in variants of the problem 
(the ion can be modelled either as a hard object or as a penetrable object; it can be 
held fixed or have its own dynamics) resulting in slightly different values of Mc [54, 
56, 57].

In particular, the 3D calculation of Winiecki et al. [58] included the backreaction 
of the flow onto the ion (modelled as a hard object), which makes the ion change 
velocity at the moment of nucleation. They noticed that the encircling vortex ring 
which first appears at the equator (corresponding to the vortex-antivortex pair nucle-
ated at the opposite poles in 2D) is unstable, and quickly re-attaches to the sphere, 
forming a vortex loop which then grows, as shown in Fig. 15; this result is in agree-
ment with the MVD scenario which favors the attached loop as the starting “proto-
vortex". The same effect was noticed by Villois and Salman [59] who modelled 
the ion bubble with a linear Schroedinger equation in the adiabatic approximation, 
allowing for bubble deformations. In their 3D calculation, they also noticed that, if 
the driving electric field is large enough, the ion alternates accelerations and decel-
erations while chaotically shedding and recapturing vortex rings.

5.2 � The Nonlocal Gross–Pitaevskii Equation

It must be stressed that the Gross–Pitaevskii equation is only a qualitative model of 
superfluid helium, which is a liquid, not a dilute gas (the condensate is only a frac-
tion of the superfluid density, as we said in Sect. 1). In the GPE, the excitations of 
the uniform ground state of density n0 have energy

This dispersion relation is consistent with the phonon branch ( E ∝ p for p → 0 ) 
of the Landau dispersion curve, but increases quadratically ( E ∝ p2 ) at large p, 
thus lacking helium’s characteristic roton minimum, as shown by the dashed line 

(29)E =

√
p4

4m2
4

+
n0gp

2

m4

,

Fig. 14   Schematic bifurcation diagram of the solutions of the GPE corresponding to flow at speed v 
around a disk of diameter d. The quantity ΔE represents solution branches as a function of the Mach 
number, M = v∕c [54, 55]. The bottom black line is the stable branch corresponding to frictionless 
motion without vortices; this branch terminates at the critical Mach number M

c
 . The other branches are 

unstable solutions: the dashed black line corresponds to two vortices, the dashed red line to four vortices, 
and the dot-dashed red line to six vortices. There are no stable solutions for M > M

c
 (Color figure online)
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in Fig.  1. As a consequence, the Landau critical velocity predicted from Eq.  (29) 
is vc = min(E∕p) =

√
n0g∕m4 = c , corresponding to the process of vortex nuclea-

tion described by Frisch et al. [52], which gives too large a value when applied to 
helium, where c ≈ 238 m∕s.

To bring the condensate model closer to the physics of superfluid helium, Ber-
loff followed a suggestion of C.A. Jones. She proposed [60, 61] to use Eq.  (26) 
choosing a convenient interaction potential U(|x − x�|) so that the resulting dis-
persion relation matches the Landau dispersion relation. More precisely, this 
potential was

where r = |x − x�| . An extra nonlinear term proportional to �|�|2(1+�) , represent-
ing beyond-mean field corrections, was also added to Eq. (26) to prevent focusing 
instabilities. The resulting equation (which for simplicity here we do not write fully) 
is now called the “nonlocal" Gross–Pitaevskii equation. The coefficients � , � , � , � 
and A are chosen so that its dispersion relation is a good fit to the Landau dispersion 
curve of superfluid helium (meaning the observed sound speed at small p and the 
correct roton minimum at large p) [62].

Recently, Mueller and Krstulovic [55] used the nonlocal GPE to determine 
the critical velocity of vortex nucleation by a moving 2D disk. Given a small 
disk size, e.g., d = 10� , they found that the stable branch (which, for the ordi-
nary GPE, would be the solid black line of Fig.  14) terminates abruptly at the 
critical Mach number Mc = 0.25 which hereafter we call ML , in agreement with 
the Landau critical velocity vL ≈ 60 m∕s . When the disk’s Mach number is larger 
than ML , they observed the emission of density oscillations with the wavenumber 
of rotons, without any vortex nucleation; vortex nucleation appears at a larger 
Mach number and, as for the ordinary GPE, it depends on d. Their results are 
summarized schematically in Fig. 16. If d < 100𝜉 , there is a range of Mach num-
bers ( ML < M < Mc ) where the disk emits rotons but does not nucleate vortices. 
For d > 100𝜉 , vortex nucleation is accompanied by roton emission. The depend-
ence of Mc on the obstacle’s size is significant for relatively large obstacles. For 

(30)U(|x − x
�|) = (� + �A2r2 + �A4r4)e−A

2r2 .

Fig. 15   Three-D contour plots of the condensate’s density at different times [58]. The vortex nucle-
ates as an encircling ring (equivalent to Fig. 13) but the ring is unstable and moves to the side, forming 
an attached vortex loop. Reprinted figure with permission, from Winiecki and Adams [58]. Copyright 
(2000) by Europhysics Letters 
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d ≫ 𝜉 , the critical Mach number Mc is less than ML and decreases with increas-
ing d. The fact that the curves of the critical Mach number Mc versus d∕� for the 
ordinary GPE and the nonlocal GPE become essentially the same at large d∕� 
suggests that rotons are irrelevant to vortex nucleation by large objects. Practi-
cal computing limitations prevented calculations for the typical size of obstacles 
used in experiments. For example, Efimov et al. [63] used vibrating forks of size 
d ≈ 0.4 mm ≈ 4 × 106� , which is four orders of magnitude larger than the larg-
est disk side which Mueller and Krstulovic could compute. In this experiment, 
Efimov et  al. observed a critical velocity vc ≈ 10 cm∕s , which corresponds to 
Mc ≈ 4.2 × 10−4 (clearly far too much to the bottom and to the right in Fig. 16 to 
calculate).

In conclusion, the nonlocal variant of the GPE has brought the condensate model 
into better agreement with the physics of liquid helium than the original (local) 
GPE, in the sense that the model now contains roton excitations and predicts the 
correct value for the Landau critical velocity. However, the effect of changing the 
pressure on the roton/vortex nucleation has not yet been investigated.

6 � Conclusions

The good agreement between the MVD calculations [24] reviewed in Sect. 3 and 
the experiments [12] described in Sect.  4 vindicated Vinen’s intuition [35] that 
an energy barrier impedes the nucleation of vortices in superfluid 4 He and that, 
quite generally, the vortex nucleation problem is important. This conclusion is 

Fig. 16   Schematic critical Mach number M
c
 as a function of the disk’s diameter, d, computed by Muel-

ler and Krstulovic [55] using the nonlocal GPE. Note that the horizontal axis is logarithmic. The hor-
izontal dashed line marks the Mach number M

L
≈ 0.25 corresponding to the Landau critical velocity 

v
L
≈ 60 m∕s computed for the dispersion curve with rotons. The red curve and the blue curve mark, 

respectively, the thresholds for creation of roton excitations and vortices. For d < 100𝜉 there is a region 
of Mach numbers (between the red line and the blue line) in which the moving obstacle creates rotons 
but no vortices. For d > 100𝜉 , roton radiation and vortex nucleation happen together. In contrast, in 
the ordinary GPE model, the blue curve remains essentially the same, the red curve is absent, and M

L
 , 

predicted by Landau’s argument for a dispersion curve without rotons, is higher ( M
L
= 1 ) (Color figure 

online)
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strengthened by follow-up studies, described in Sect. 5, in which, lacking a better 
microscopic model of superfluid helium, Gross–Pitaevskii theory has been applied 
to illuminate the dynamics of the nucleation mechanism.

There has also been significant experimental progress since Vinen’s original 
work. For example, a filtering technique [64] has been developed which achieves 
a 4 He sample effectively free of remanent vortex lines. Above all, the existence of 
critical velocities has been studied in other quantum fluids, notably 3 He [65], atomic 
Bose–Einstein condensates [66] and polariton condensates [67]. The Karman vor-
tex street, predicted for ion velocities exceeding the nucleation velocity of the first 
vortex pair, has been observed in atomic condensates [68, 69] and further analyzed 
[70], leading to a better understanding of vortex clustering and the classical inverse 
energy cascade [71]; the effects of density inhomogeneities [57, 72, 73], particularly 
important for atomic condensates, have been considered.

Finally, it is worth remarking that a dynamical model like the GPE, which, 
although simplified, includes vortex nucleation, has opened the way to study small-
scale superfluid motions near a boundary which are still inaccessible to low tem-
perature flow visualization. One example is the detailed formation of a vortex lattice 
inside a rotating cylinder [74]: small vortex loops nucleate on the boundary’s rough-
ness (for all experimental boundaries are “rough" on the scale of the healing length 
of 4He), grow, interact, and, after a brief transient turbulent state, settle down into a 
regular vortex array. Another example is the prediction of a turbulent boundary layer 
created by a superflow flowing past a rough boundary [75]. The legacy of Vinen’s 
intuition runs deep.
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