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Abstract
In the present work, we studied the magnetization, vorticity, Cooper pairs density, 
and the spatial distribution of the local magnetic field in a three-dimensional super-
conductor with a SQUID geometry (a square with a central hole connected to the 
outside vacuum through a very thin slit). Our investigation was carried out in both 
the Meissner-Ochsenfeld and the Abrikosov state solving the two-band Ginzburg-
Landau equations considering a Josephson coupling between the bands. We found a 
non-monotonic vortex behavior and the respective generation of vortex clusters due 
to the Josephson coupling used between condensates.

Keywords SQUID · Two bands · Magnetization · Vorticity · Vortex state · Magnetic 
field perfil

1 Introduction

The application of superconducting technology in different nano- and mesoscopic 
systems has been of great importance in recent years [1, 2]. Special interest has 
been placed on the low-temperature superconductors (LTS) which have been used 
in various applications; among them, the production of magnets with high mag-
netic fields in the range of 5 − 10 T [3], which are used in particle accelerators and 
magnetic resonance devices [4]. Furthermore, LTS’s are used in the manufacture 
of high-precision superconducting electronic devices such as microwaves detectors, 
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superconducting quantum interference devices (SQUID), etc [5, 6]. Due to an 
increase in the application of different superconducting devices, such devices are 
expected to show an increase in critical temperatures Tc , to the so-called high criti-
cal temperature superconductors (HTCS). These implementations range from the 
application to the management and treatment of extensive databases, to solutions 
for mobility in high-speed trains around the world. However, the most widely used 
magnetometer is the SQUID, since it allows measuring even very slight magnetic 
fields.

The discovery of superconductivity in MgB2 in 2001 [7] opened the door to ana-
lyze and try to understand unconventional superconductivity. Numerous experi-
ments revealed unconventional results such as a shoulder in the specific heat C at 
several temperatures, or a positive curvature of the upper critical field near Tc . These 
results initiated a lot of theoretical investigations of the two-band systems. Today 
attention has been diverted to iron-based superconductors. Their unconventional 
behavior is partly different from that of MgB2 , which may be due to quite different 
Fermi surfaces and gap structures. Theoretical work on the MgB2 and iron-based 
materials systems are anticipated to be a powerful tool to understand the multi-band 
effects. The two-band behavior can be explained from the anisotropy in the sam-
ple, from gap-symmetries different from s-wave, and from a second superconducting 
phase, among other effects. So, we can say that non-conventional behaviors originat-
ing from two-band effects are due to the variations of the gap values or the Fermi 
velocities.

A SQUID can be made from a high critical temperature superconductor, 
such as a cuprate [8–12] which has a critical temperature Tc ≈ 92K [12], alloys 
Nb∕Al − AlOx , Bi1−xSbx2Se3 or topological insulator (TI) nano-ribbon (NR) con-
nected with Pb0.5In0.5 superconducting electrodes [13–18]. Additionally, an attempt 
has been made to adapt and apply this multi-band system to other problems with 
various techniques that have allowed one to study theoretically the vortex state. For 
example, Rogeri et al., using a genuinely three-dimensional approach to the time-
dependent Ginzburg–Landau theory, studied the local magnetic eld profile of a mes-
oscopic superconductor in the so-called SQUID geometry. They studied the mag-
netic induction in both the Meissner and the mixed state as a function of temperature 
[19]. Brandt et al., using the London theory, calculated dynamic electromagnetic 
properties in thin flat superconducting films of rectangular and circular films with-
out and with slits and holes. The sheet currents and the coupling between the vorti-
ces and the defects were expressed by a stream function. They found that due to the 
long-ranging magnetic stray field, the interaction energy between vortices and the 
magnetic field depends on the size, the cross-section of the sample, and shape of the 
film [20–22].

The influence of the boundary conditions on the magnetization curve of the sample 
in a thin mesoscopic superconductor in the SQUID geometry (circular with a hole at 
the center connected to the outer rim by a very thin slit) was studied in the reference 
[23]. They found that the first vortex penetration field and vorticity strongly depend 
on the boundary condition. H. J. M. ter Brake et al., made an interesting roadmap 
that describes in a general way the developments of superconducting digital electron-
ics under simulations and circuit design, circuit manufacturing, and new devices and 
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materials [24]. T. Noh et al., described a SQUID in which the Josephson junctions are 
formed from strips of normal metal in contact with a superconductor. They measured 
the flux dependence of the critical current of this system without applying a finite volt-
age bias across the Superconductor-metal normal-superconductor junction, enabling 
sensitive flux detection without generating microwave radiation [25]. M. Mori et al., 
studied the �−SQUID comprising 0− and �− Josephson junctions, they found that the 
�−SQUID can be a �−Qubit with spontaneous loop currents by which the half-integer 
Shapiro-Steps are induced, then the 0− and �−Josephson junctions equivalent is a key 
for the half-integer Shapiro-Steps and realizing the �−Qubit [26]. Thus, it is difficult to 
reiterate the extensive importance of this measurement instrument. However, we pro-
pose an extension in the manufacture of the same device, but in a two-band extension 
considering a Josephson type coupling between them. This extension generates a non-
monotonic behavior between the vortices and the creation of vortex clusters.

This article is organized as follows: the theoretical formalism is presented in Sect. 2. 
In Sect.  3, we present the main results for the studied system. We show the vortex 
states, vorticity, magnetization, and profile of the magnetic induction as functions of 
external magnetic field � for a mono and two-band three-dimensional SQUID. Finally, 
in Sect. 4 we detail the main results.

2  Theoretical Formalism

In this work, we studied the vortex matter in a mesoscopic superconductor in the so-
called SQUID geometry, through the functional of a two-band superconductor system. 
We will consider the interaction between the two bands (or condensates �1,�2 ) in a 
Josephson-type coupling. Thus, the Gibbs energy for the superconducting order param-
eter complex pseudo-function �i = |�i|ei�i ( �i its phase) [27–30], and magnetic poten-
tial � , where � = ∇ × � , is:

where:

and

�i = �i0(1 − T∕Tci) and �i are two phenomenological parameters, i = 1, 2 in the 
equations 1 and 2. We used the Josephson coupling showed in the equation 3. In 
the London gauge ∇ ⋅ � = 0 , we express the temperature T in units of the critical 
temperature Tc1 , length in units of the coherence length �10 = ℏ∕

√
−2m1�10 , the 

order parameters in units of �i0 =
√
−�i0∕�i , time in units of the Ginzburg-Landau 

characteristic time tGL = �ℏ∕8kBTc1 , and the vector potential � is scaled by Hc2�10 , 

(1)G = ∫ dV

(
2∑

i

F(�i,�) +
1

2�0

|∇ × �|2 + Θ(�i)
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�i
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|�i|4 +
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where Hc2 is the bulk upper critical field. The general form of time dependent Gin-
zburg-Landau equations for a two-band system in dimensionless units [29, 30] is 
given by:

with:

and

For more details for the calculus of the relation 6 and the relation 7 (see Ref. [27]). 
The equations (4) and (5) are solved in Ωsc , while the equation for the vector poten-
tial �:

are solved in �Ωsc , where:

For this case, �1 = �2 , also � = i∇ − � . The domain Ωsc is filled by the supercon-
ducting parallelepiped of high c and square lateral sizes a and b. The superconduct-
ing vacuum interface is denoted by �Ωsc . Due to the demagnetization effects, we 
consider a larger domain Ω of dimensions A × B × C , such that Ωsc ⊂ Ω . The vac-
uum-vacuum interface is indicated by �Ω . The domain Ω is taken sufficiently large 
such that the local magnetic field equals the applied field � at the surface �Ω or at 
x = ±A∕2 , y = ±B∕2 , and z = ±C∕2 planes. We have studied a mesoscopic super-
conducting parallelepiped in the domain Ωsc of height c = 1� and lateral dimension 
a = b = 12� ; the central hole has dimensions 2.4� × 2.4� . In order to solve the 3D 
Ginzburg-Landau equations, the size of the simulation box Ω was taken C = 11� , 
A = B = 19� . The grid space used was Δx = Δy = Δz = 0.25� (see reference [31] 
for more details).

�̂�1, �̂�2 represents the Josephson coupling between the i and j band. The boundary 
conditions � ⋅ (i� + �)�i = 0 , i = 1, 2 with � a surface normal outer vector. Also, 
we defined mr2 = m2∕m1 = 0.5 , �r2 = �2∕�1 = 0.7 , � = −0.01 , �1 = �2 = 0.01 , 
� = 5.0 , simulating a MgB2 sample [32]. We choose the zero-scalar potential 

(4)
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gauge at all times and use the link variables method to solve the Ginzburg-Lan-
dau equations [32–37] (and references therein).

3  Numeric Results

In Fig. 1, we present the layout of the studied sample. It is a SQUID in a perpendicu-
lar external applied magnetic field � with dimensions c = 1� , a = b = 12� ; the cen-
tral hole has dimensions 2.4� × 2.4� . We show the magnetization −4�� , vorticity 
N, superconducting electronic density for the band 1 |�1|2 , and for the band 2 |�2|2 
, respectively and the profile of the magnetic induction � in (x, b/2, c/2) plane as a 
function of the external applied magnetic field � when is increasing and decreasing. 
This loop in the magnetic field, aims to describe a hysteresis cycle and computation-
ally the magnetic field will vary between 0 ≤ � ≤ �2 , ( �2 is the upper magnetic 
field, where we found that �2 = 2.0 for the single-band sample and �2 = 1.8 for the 
two-band sample). Finally for magnetization, we will use � = � − �∕4� , for � and 
� the average value in the sample is taken. For the vorticity or vortex number, we 
use N = Im(�i∇�

∗
i
)∕(�∗

i
�i) , with i = 1, 2 , indicating the band index.

3.1  Single‑Band SQUID

In Fig. 2, we present the magnetization −4�� , for the single-band SQUID system 
in a loop of the magnetic field. We observe that for the upward branch of the mag-
netic field, the behavior of the magnetization is conventional. On the other hand in 
the downward branch of the loop, we observe that the sample does return to the 
starting point. Additional in 0 < � < �1 , ( �1 ≈ 0.7 is the lower critical field), the 
sample is in Meissner-Ochsenfeld state in the upward branch of � and 0 < � < 0.12 
in the downward branch of � . This behavior has already been studied, and in general 
terms, it is that of a conventional superconducting sample.

In Fig. 3, we present the vorticity N as a function of the applied magnetic field � . 
We observe the quantized entrance of the magnetic flux in the sample, when having 
pinning centers into the sample, we observe that in the upward branch, the sample 
presents a different number of vortices, accounting for the anchoring of vortices by 
the barrier of energy between the sample and the pinning. Additionally, note that 

Fig. 1  Layout of the studied 
sample in a perpendicular exter-
nal applied magnetic field � . 
c = 1� , a = b = 12� ; the central 
hole has dimensions 2.4� × 2.4� 
(Color figure online)
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the jump in magnetization in Fig. 2, coincides with the in-flux of fluxoids shown in 
Fig. 3.

Now, in Fig. 4, we show the vortex state (|�|2) (or density of Cooper pairs), for 
the single-band sample as a function of � in the upward branch (upper panels) and 
downward branch (lower panels). Thus, by increasing � we observe the entry of 
the vortices in the superconducting sample; now, due to the entry of these vortices, 
there is a competition between the surface energy barrier at the external boundary 
and the internal pinning. This competition causes the vortices to move in the sample 
until reaching different positions where the energy is minimized and stabilized in the 

Fig. 2  Magnetization −4�� as a function of the external applied magnetic field � in the upward branch 
and downward branch for a single-band Squid (Color figure online)

Fig. 3  Vorticity N (or vortex number) as a function of � in the upward branch and downward branch for 
a single-band Squid (Color figure online)



91

1 3

Journal of Low Temperature Physics (2022) 207:85–96 

sample (observe a horizontal reflection �̂�h (see figure) when the field increases and 
decreases for the same � ). This process is repeated with a greater number of vorti-
ces as the external magnetic field � increases, we observe that as the field increases, 
the loss of the superconducting state is evident (conventional behavior).

3.2  Two‑Band SQUID

Now, we concentrate on the study of a superconductor SQUID composed of two-
bands �1,�2 (or two condensates). To do this, we will start at Fig.  5, where we 
present the magnetization −4�� curve. Initially, we note that for 0 < H < H1 , 
( H1 ≈ 0.5 is the lower critical field), it is in the Meissner-Ochsenfeld state and 
that for 0.5 < � < 0.8 there is a non-conventional behavior in the system, hav-
ing drops in magnetization and a successive increase; initially, we observe that 
the lower critical fields are different for the single-band and two-band systems; 
�1−Single−band > �1−Two−band and �2−Single−band > �2−Two−band . After this, the system 

Fig. 4  Square modulus of the order parameter |�|2 (density of Cooper pairs/vortex state) as a function of 
the external applied magnetic field � in the upward branch (upper panels) and downward branch (lower 
panels), for the indicated values of � for a single-band Squid sample (Color figure online)

Fig. 5  Magnetization −4�� as function of � in the upward branch and downward branch for a two-band 
Squid system (Color figure online)
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behaves similarly to a single-band Squid, in the sense that there are jumps in mag-
netization, which are indicators of the entry of fluxoids into the sample. In the down-
ward branch of � (lower panels), we have a non-conventional behavior, even with 
very strong variations in the magnetization drops. However, for −4�� , we observe 
the effect of non-homogeneity in the sample, observing the anchoring of vortices in 
the superconducting sample, an effect due to the competition between the energy 
barriers in the present system.

Now, in Fig.  6, we present the vorticity N as a function of � for bands 1 and 
2. Initially, we observe that the vorticity N is different for each of the condensates, 
with which we expect different vortex states. Now, as the sample is an overlay of the 
superconducting condensates, the vortex centers are not coincident, giving possible 
fractional states in the total vortex state (a result of the two-band Josephson coupling 
type), which allows tunneling of vortices and anti-vortices between superconducting 
bands. Of greater importance is Fig. 6, where we observe a collective behavior of 
the two superconducting bands; this means that when the two-band system passes to 
a normal state at �2 = 2.0 , the phases and the superconducting condensates stabilize 
and generate behavior in phase, establishing a stable and organized loss of the vor-
tices; as you vary in the upward branch for � , this is a novel behavior in a two-band 
Squid system, where a decrease in vorticity would be expected with different values 
for each of the condensates.

Now, in Fig. 7, we present the square modulus of the order parameter |�1|2, |�2|2 
or Cooper pairs density for each band. We can see from Fig. 7 that at � = 0 , the 
sample remains in the Meissner-Ochsenfeld state, when the magnetic field increases, 
the vortices enter through the border of the regions closest to the slit, then they move 
entering the sample until they reach the normal state at �c2 . Then, when the mag-
netic field decreases, the vortices are expelled from the sample until � = 0 where 
we found N = 0 , so, there are not any pinning effects due to the presence of the hole. 

Fig. 6  Vorticity N as a function of � in the upward branch and downward branch for a two-band Squid 
superconductor system (Color figure online)
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For some values of the � field, there is some observation of specular reflection, we 
think it is due to the type of coupling, which presents a break in the inversion sym-
metry [38]. In addition to producing hysteresis in the relaxation of the electronic 
states present in the superconductor SQUID system.

Now, in Fig. 8, we have plotted the local magnetic field or magnetic induction 
� along the x axis, which passes through the slit and the hole of the SQUID as 
is shown in Fig.  8, for the indicate values of � in the upward branch and down-
ward branch for a two-band case. As can be seen from this graph, the profile of 
the magnetic field Bz(x, b∕2, c∕2)∕H is very dependent on � in both upward branch 
and downward branch. We found that at the point in which the profile is calculated 
(x, b/2, c/2), the magnetic induction profile is identical for both bands, that is, the 
condensates act in phase under the application of an external magnetic field � , even 
though the magnetic field in each condensate presents different values and different 
vortex states  (See Fig. 7).

4  Conclusions

In the present work, we have studied the magnetic properties and vortex state in 
a superconducting three-dimensional SQUID (single- and two-band) based on a 
Josephson-type coupling. This study was carried out by solving the Ginzburg-Lan-
dau time-dependent equations. We study magnetization, vorticity, vortex state, and 
profile of the magnetic induction, observing non-conventional behavior of the vortex 
state in the two-band system. Additionally, we present the typical behavior of the 
vortex matter for a single-band sample but a non-conventional vortex state for a two-
band case, which establishes the existence of non-monotonic interaction between the 
vortices (short-range repulsion and long-range attraction). Finally, we did not find 

Fig. 7  Square modulus of the order parameter |�1|2, |�2|2 for the band 1 and the band 2, respectively as 
a function of � in the upward branch (arrow up) and downward branch (arrow down) for the indicated 
values of � (Color figure online)
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any difference in the magnetic profile of the magnetic induction between the bands. 
Our results in the mono-band case are in qualitative nature agreement with previous 
works.

Fig. 8  Intensity of the z component of the magnetic induction � , normalized to � , along the axis x for 
indicates values of � in the upward branch (up) and downward branch (down) for a two-band Squid. (SC 
means Superconductor) (Color figure online)
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