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Abstract
Past investigations of thermal counterflow in He II were mostly conducted in pipes/
channels of constant cross-sections, which are often unduly influenced by the pres-
ence of walls. We devise and carry out an experiment using a spherically symmetric 
setup to study unbounded counterflow in order to gain better understanding of inter-
actions between quantized vortices and counterflow; the preliminary analysis shows 
that this method is viable.
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1 � Heat transport in superfluid 4He

Heat transport in superfluid 4He  (He  II) differs from that in classical viscous flu-
ids in that He II at T ≳ 1K can be described as a mixture of two components, the 
superfluid component and the normal one; the total density is the sum of the two 
component densities � = �s + �n [1]. In the past, thermal counterflow of He II had 
frequently been studied in pipes and channels of constant cross-sections [2–5, 10], 
typically by applying a heat flux q̇ to the dead end of the channel with the other end 
open to the helium bath.

For small q̇ , the flow of the normal fluid is laminar, and there are no quantized 
vortices in the potential flow of the superfluid component except, in practice, of 
few remnant vortices due to surface roughness of the channel walls. The normal 
and superfluid velocity fields are nearly independent, and a constant temperature 
gradient along the channel is established. Upon increasing q̇ thermal counterflow 
becomes turbulent. In some cases, a tangle of quantized vortex lines becomes gen-
erated in the superfluid while the normal fluid remains laminar, forming so-called 
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TI state of counterflow turbulence  [6]. Further increase in heat flux causes the 
flow to enter the TII state,1 where both components are turbulent [7, 8]. The pres-
ence of the ångström-sized vortex lines couples the normal and superfluid veloc-
ity fields by an effective mutual friction force �

��
 arising from phonons and 

rotons scattering off the vortices. Each vortex carries one quantum of circulation 
� = h∕m4 ≈ 9.97 × 10−8m2∕s , where h is the Planck’s constant, and m4 denotes the 
mass of a 4 He atom [9].

Since the pioneering work of Vinen  [2–5], many experimental, theoretical and 
numerical studies followed. Despite these efforts, many aspects of counterflow tur-
bulence are still not well understood. One reason for the difficulty is that, due to its 
quantum nature, turbulent thermal counterflow of He II is more complex than clas-
sical viscous fluid flow in pipe or channels [10], and various aspects of bulk coun-
terflow and the influence of channel walls are generally very difficult to disentangle.

A possibility to overcome this obstacle is to study unbounded thermal counter-
flow, thus eliminating the influence of walls. The main idea for the present work 
follows the first theoretical and numerical study of spherically symmetric counter-
flow by Varga  [11], the subsequent work of Inui and Tsubota  [12], as well as the 
2D cylindrically symmetric studies of the Newcastle group [13, 14]. We expect the 
spherical symmetry to confine the direction of counterflow, and consequently of the 
vortex line density gradient, to be essentially in the radial direction, such that we 
may avoid the complications arising near boundaries. Here we report the design and 
working progress of an experiment studying turbulent 3D thermal counterflow of 
He II in a spherical cell, generated by a small heater and probed by second sound 
attenuation  [15]. Additionally, we discuss our companion experiment where the 
temperature gradient in 3D counterflow  [16] is directly measured using sensitive 
thermometry.

2 � Spherical counterflow

Heat transport in He  II follows the empirical relationship ∇T = −f (T)q̇3.4 , where 
f(T) can be viewed as a generalized conductivity [17, 18]. This agrees2 with recent 
measurements performed directly in the bulk liquid for turbulent thermal counter-
flow in a channel of rectangular cross-section of 7mm side [16]. Macroscopically, 
temperature gradient ∇T  and vortex line density L are related by Hall-Vinen-Beka-
revich-Khalatnikov (HVBK) equations and described by [16, 19] 

(1a)�n
D�

�

Dt
= −

�n

�
∇p + �nΔ�� − �s�∇T + �

��
,

1  Additionally, in rectangular channels of high (1:10) aspect ratio with the small dimension less than 
100 μ m, only one transition has been observed, denoted by Tough as T III [6].
2  Except within a thin boundary layer adjacent to the heater, physical origin of which is not yet fully 
understood [16]
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 where D�∕Dt ≡ ��∕�t + (�∇)� , and p, � , �n and �ns are, respectively, the pres-
sure, the specific entropy, the normal fluid dynamic viscosity and the mutual friction 
force. The latter can be written in a simplified form as [9]

where � is the tabulated dissipative mutual friction parameter [20]. The vortex line 
density is related to counterflow velocity uns by

where � is a temperature dependent parameter known within the accuracy of about 
20%, while uc is the critical velocity typically of the order of 1mm∕s.

For spherically symmetric heat flow, Eq. 1 reduce to the 1D case

At a distance r from the center, in the steady-state, the heat supply Q̇ is carried away 
by the normal fluid alone: Q̇ = 4𝜋r2𝜌𝜎Tun , which, when substituted into Eq. 4, ena-
bles us to numerically calculate the temperature gradient.

It is instructive, however, to examine the approximate analytical solution. Assum-
ing that the first two terms on the right-hand side of Eq. 4 are typically negligible 
(the validity of which can be corroborated by the result of this very calculation) and 
that the resulting temperature gradient is small, we obtain

where T0 is the bath temperature at infinity. This approximation is sufficiently accu-
rate when compared to the result of full numerical calculation of Eq. 4 under our 
experimental conditions, i.e., when Q̇ is of the order of 100mW and the distance r 
varies from millimeters to centimeters.

3 � Temperature profile measurement

We separately conducted a complementary experiment to directly measure the tem-
perature distribution surrounding the spherical heater. The setup is shown in Fig. 1. 
The main body is a hollow frame, 3D printed using the copper-doped PLA filament. 
The spherical heater ∼ 2mm in diameter is made of a surface-mount device resistor 
encased in Stycast and silver epoxy, suspended from a thin tube which houses the 
heater leads. The upper end of the tube is connected to the driving shaft of a preci-
sion linear motor, thus the heater assembly can be moved in the vertical direction 

(1b)�s
D�

�

Dt
= −

�s

�
∇p + �s�∇T − �

��
,

(2)�
��
= −���sL(�� − �

�
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(3)L = �2(uns − uc)
2 ≈ �2u2

ns
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freely within its range of travel ∼ 13mm . Three TTRG thermometers  [21–23] are 
∼ 0.5mm in size and are mounted on the sides of the frame such that when the 
heater travels along its vertical path, each thermometer will be as close as ∼ 0.1mm 
to the heater surface.

The entire setup is then put into the helium bath with its temperature controlled 
using a pumping unit consisting of a Roots pump and a mechanical backing pump. 
We apply power ranging from 200mW to 660mW to the heater at temperatures from 
1.25K to 2K . For each power and temperature, the heater was set at multiple verti-
cal positions and readings of all three thermometers were recorded, all automated by 
a custom LabView program. Thus, we obtain the relation between the temperature 
change at each thermometer and its distance from the heater, from where we can 
deduce the temperature profile around a stationary heater.

Preliminary analysis (e.g., Fig. 2) shows that the measured temperature profiles 
agree with the formulation given in the previous section. In particular, if r ≳ 2mm 
or the heater power is below ≲ 200mW , Eq. 5 is sufficient in describing the temper-
ature profile; only when both these conditions are violated do we need to resort to 
the full numerical solution of Eq. 4. These measurements indicate that in our main 
experiment (see the next section) we should expect the temperature rise outside the 
heater up to a few mK.

4 � Main experimental setup

Our main experimental cell is a 3D-printed regular dodecahedron surrounding a 
spherical cavity ∼ 16mm in diameter that contains He II. A small spherical resis-
tive heater ∼ 1.8mm in diameter is placed in the center, suspended by a cylindrical 
holder with a diameter of ∼ 1mm (see Fig. 3). On each of the remaining eleven flat 
outer surfaces, a circular hole is cut such that a circular second sound transducer 

Fig. 1   Schematic diagram and photograph of the temperature profile measurement setup. Labels in the 
diagram denote the connection to the linear motor (1); and to the TTRG thermometers (2–4) (Color fig-
ure online)
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9mm in diameter can be mounted in it. Each transducer consists of a brass cylinder 
connected to an electrode, with a thin micro-pore membrane attached on its inward 
face. The membrane is coated with a thin layer ( ∼ 30nm) of gold on the side facing 
away from the electrode. The second sound attenuation technique is described in 
detail in Refs. [15, 24].

The cell is affixed onto a cryogenic insert in a cylindrical helium bath (diameter 
∼ 200mm ). The temperature of the bath is lowered and stabilized using a pumping 

Fig. 2   The difference between the local temperature (measured using thermometers No 2, 3 and 4 shown 
in Fig. 1) and the bath temperature stabilized to T = 1.5 K, plotted together with the numerically calcu-
lated temperature gradient (Eq. 4) versus the distance from center of the heater, powered by 500mW. The 
data points are highly scattered, likely due to noise; some of them might be rejected based on pending 
further analysis (Color figure online)

Fig. 3   Experimental cell is of the form of a regular dodecahedron outside (left) containing a nearly 
spherical sample of liquid helium inside. The photograph shows the cell with second sound transducers 
attached and the spherical heater in its center (Color figure online)
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unit consisting of a Roots pump and a mechanical backing pump, with a PID regu-
lation loop using a resistive heater for fine control. Vapour pressure of the bath is 
monitored by the MKS Baratron, and additional calibrated resistive thermometers 
[21–23] are installed at various locations inside the bath and measured by the Lake-
Shore 336 temperature controller.

The heater is a small ∼ 50Ω resistor encased in a Stycast 2850 sphere, as seen in 
the photograph in Fig. 3. It is driven by a DC voltage using a Keithley power sup-
ply and generates a nearly spherical counterflow. For the present experiment, we 
installed two second sound transducers diametrically opposing each other, one as the 
sound source driven by an AC signal from the Agilent 33220A function generator, 
the other as the second sound sensor monitored by the Stanford Research SR830 
lock-in amplifier.

We performed measurements at various bath temperatures using different heater 
powers. At each temperature, with heater power off, we swept the frequency of the 
driving voltage on the second sound driver and measured the response from the sen-
sor, locating the second sound resonance frequencies. Then, after fixing the drive at 
a chosen resonance frequency and the sensor being constantly monitored, we swept 
the heater power within a preset range, and the sensor signal amplitude was recorded 
as a function of power. We ensured that heater power stopped at each set value for 
sufficiently long time so that the temperature and vortex line density inside the cell 
had settled to steady-state distributions. Each amplitude A so measured can be com-
pared to the amplitude without the heater A0 and used to infer the vortex line density 
inside the cell.

To obtain the vortex line density L, we need accurate knowledge of the second 
sound waves inside the cell. Although similar experiments have been performed and 
analyzed in rectangular channels [15, 16, 24], we are still in the process of finaliz-
ing the numerical methods for the spherical geometry, therefore the detailed analy-
sis will be available in a later paper. Meanwhile, however, we do have approximate 
solutions for second sound in a sphere.

5 � Second sound in a spherical cell

Neglecting dissipative phenomena, the second sound wave can be described in 
terms of a scalar potential Φ , with the counterflow velocity given as �

��
= ∇Φ . 

Assuming small temperature variations, Φ satisfies the standard wave equation 
∇2Φ = c−2�2Φ∕�t2 , where c = c(T) is the second sound velocity. As our cell is 
spherical, we seek the radial modes of standing waves, thus

Separating variables, by letting Φ ≡ R(r)T(t) , leads to
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for some constant C. The eigen-solutions to the above equations are

where jn and yn are the nth order spherical Bessel and Neumann functions, respec-
tively. The equations are coupled through the wave vector k.

The solution domain is limited between two spherical surfaces, the inner one at 
the heater surface with radius r0 , and the outer one at the cell wall with radius r1 . A 
standing wave solution requires the sound amplitude to be zero at the boundaries, 
meaning �R∕�r = 0 at r = r0 and r = r1 . Therefore, for there to be a resonance at 
some wave vector k of mode n, there must exist values �n and �n such that

Here we used j′ and y′ to indicate spatial derivatives for brevity. For every given 
mode number n, multiple solutions for k can be obtained numerically. Each mth 
root of the nth mode, kn,m , corresponds to a resonance frequency fn,m = ckn,m∕2� . 
Note that solutions of k depend on geometry but not temperature. The frequency of 
the same resonance mode varies with temperature only through c = c(T) . In other 
words, all the curves in Fig. 4 have the same shape except for being scaled differ-
ently in the vertical direction.

(7)R(r) =�njn(kr) + �nyn(kr),

(8)T(t) =a cos(ckt) + b sin(ckt),

(9)C = − k2,

�nj
�
n
(kr0) + �ny

�
n
(kr0) = 0, �nj

�
n
(kr1) + �ny

�
n
(kr1) = 0.

Fig. 4   Left: An example of the second sound sensor response to the frequency sweep with the heater off, 
at T = 1.45K . The arrows mark the resonance frequencies chosen for subsequent attenuation measure-
ments. Right: The second sound resonance frequencies calculated based on spherical Bessel functions 
plotted versus the temperature, in comparison with those measured. The legend denotes the order num-
ber, n, of the spherical Bessel function (Color figure online)



433

1 3

Journal of Low Temperature Physics (2022) 208:426–434	

This calculation enables us to compare the measured resonance frequencies 
against the theoretically predicted values. They match well, as shown in Fig. 4.

6 � Conclusions

We have generated spherically symmetric thermal counterflow and verified the 
method of probing it by second sound attenuation inside a spherical cell surrounding 
a spherical heater placed in its center. Additionally, we have performed an accompa-
nying experiment and directly measured the temperature gradient outside a spherical 
heater in open He II bath. The results of both experiments qualitatively confirm our 
model of thermal counterflow in spherical geometry. The ongoing detailed analysis 
should enable better knowledge of the vortex line distribution inside the cell and 
provide new insights into the generation, transportation and annihilation of quan-
tized vortices in unbounded spherical thermal counterflow of He II.

The authors thank E. Varga for stimulating discussions and help at the early part 
of this project and acknowledge the support by the Czech Science Foundation under 
Project GAČR 20-00918S.
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