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Abstract
Quantum hydrodynamics analysis of electrostatic oscillations in single-walled car-
bon nanotubes (CNTs) is presented by considering a metallic CNT as a long cylin-
drical shell surrounded by degenerate electron-hole plasma, as well as non-degen-
erate ions and charged nanoparticles. Charging of nanoparticles takes place due 
to field emission with space charge effect over large distance relevant to ions and 
nanoparticles length scales. Electron- and hole-density perturbations are obtained by 
including the exchange effects in the local density approximation, whereas dynamics 
of ions and nanoparticles is considered via classical dynamical equations. Terahertz 
frequency acoustic wave dispersion properties are examined numerically including 
an additional case of axial ion drift at equilibrium giving rise to an unstable mode. 
The effects of exchange-correlations, density balance and quantum-scale forces are 
elaborated for different angular modes with illustrations using typical parameters.

Keywords Nanotubes · Space charge effect · Exchange interaction · Dispersion

1 Introduction

After the discovery of carbon nanotubes (CNTs) three decades ago [1], extensive 
studies have been carried out due to their remarkable properties and indispensa-
ble role in shaping the modes of futuristic technologies [2]. The dynamic character 
of CNTs depends strongly on their geometrical structure and physical properties. 
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Collective electronic excitation and surface mode propagation in various settings 
have been fascinating to understand the transport and interactions properties of 
CNTs [3]. That’s why, there have been a great deal of interest in theoretical [4–9], 
and experimental [10–12] investigations of localized collective oscillations, surface 
plasmons, acoustic modes and instabilities in single- and multi-walled CNTs. In 
carbon nanotubes, plasma oscillations with wavelength comparable to electron skin 
depth are effected by Fermi degeneracy of electrons. Earlier studies of collective 
excitations utilized different theoretical models like classical hydrodynamics [13] 
and quantum dielectric response method by random phase approximation [14, 15]. 
The role of quantum effects like electrons tunneling and statistical pressure is found 
significant in self-consistent quantum hydrodynamics using the mean-field approach 
[16–22]. The excited modes in CNTs and their dispersion properties help in deter-
mining the parameters and scales to control electronic and energy transport proper-
ties of CNTs.

The characteristics of propagating modes depend upon the nature of CNTs which 
can be metallic or semiconducting owing to their energy gaps, radii and geometric 
angles. Mowbray et  al. have found the significant role of quantum corrections to 
fluid modeling of propagating quasiacoustic plasmons [23]. In CNTs, the electron 
and ion components can be considered as two-species quantum plasma in which 
both the species can oscillate under the influence of low frequency perturbations. 
This was considered by Wei and Wang [24] to study the quantum ion-acoustic 
waves in single-walled CNTs. The assumption of low frequency or long wavelength 
𝜆 ≫ 𝜆TF (Thomas–Fermi length) is valid when the resolvable length scale is several 
times larger than the average inter-electron distance.

By assuming the cylindrical geometry of single-walled CNTs with surfaces popu-
lated by electron-ion-dust plasma, low frequency oscillations on ion and dust time 
scales have been studied. In dust-ion acoustic wave oscillations in CNTs, it is shown 
that the increasing dust charge density increases the phase velocity of the wave as 
compared to the conventional ion-acoustic wave in a plasma [25]. Under the similar 
conditions, low frequency dust-ion acoustic wave oscillations in multi-walled CNTs 
[26] and dust acoustic wave oscillations in single-walled CNTs [27] have been stud-
ied. The modes frequencies have shown strong influence of the presence of dust and 
the change of density balance.

In different physical processes like nanoscale engineering and plasma treatment 
of metallic or semiconducting nanotubes, deposition of metastable charged ion clus-
ters and/or metallic nanoparticles takes place as a covering on single-walled CNTs 
[28–30]. The space charge effect varies appreciably over large distances in charged 
CNTs as compared to average inter-particle separation. This was considered by 
Shukla [31] in plasma-assisted CNTs taking charging of the CNTs by electric field 
emission [32, 33] into account. Excitation of low frequency dispersive oscillations 
was studied by considering the CNTs as charged dust rods surrounded by ions and 
electrons. In a similar setting, Shukla and Morfill [34] have considered degenerate 
electron-hole plasma in CNTs including the surrounding of non-degenerate ions and 
nanoparticles. The authors have investigated the excitation of low frequency modes 
due to species collective interactions using the quantum fluid equations and assum-
ing a three-dimensional form of quantum statistical pressure law for electrons and 
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holes. Stable electrostatic excitations in degenerate electron-hole plasmas have also 
been studied earlier [36, 36, 37].

In metallic CNTs, electron-hole excitation takes place at the surface of CNTs 
due to the crossover of valence band and conduction band by thermal effects at 
equilibrium [38]. Hence, geometrical constraint of the CNTs should be taken into 
account with a 2D form of Fermi energy for reasonably correct explanation of 
stable and unstable perturbations. It is also worth noting that the exchange inter-
actions were not considered in the model of Ref. [34] which give rise to an addi-
tional force on electrons and holes. Exchange-correlation force was included in 
quantum hydrodynamics by Manfredi et al. [39] with an inspiration by the density 
functional theory (DFT). It should be stressed here that the inclusion of exchange 
and correlation effects in quantum hydrodynamics is of phenomenological nature 
which provides a simple way to include many-particle effects, but limited in 
scope for flawless application to dynamical problems. The fermion exchange and 
correlation effects have been proved significant in quantum plasmas [40, 41] and 
single-walled CNTs [42, 43]. To investigate the low frequency (as compared to 
ion plasma frequency) electrostatic oscillations and instability threshold of a non-
thermal wave in the present work, a charged single-walled CNT is regarded as a 
long cylindrical shell of radius a surrounded by charged nanoparticles, thereby 
constituting a plasma of degenerate electrons and holes, and non-degenerate ions 
and nanoparticles. The 2D geometry of the tubule is taken into account to obtain 
the dispersion equation and discuss the effects of electron and hole exchange 
interaction, ion axial drift and hole mass by applying quantum hydrodynam-
ics equations. The species concentration for a typical system is considered for 
numerical study and illustration of the wave dispersion. In organizing the paper, 
we have described the mathematical model in Sect. 2, analyzed waves and stabil-
ity condition in Sect.  3, discussed the results numerically in Sect.  4, and con-
cluded the study in Sect. 5

2  Mathematical Formulation

In a simple representation, let us consider a single-walled CNT as a cylindrical shell 
surrounded by degenerate electrons and holes, non-degenerate ions and charged 
nanoparticles. The quasi-neutrality condition requires that the equilibrium number 
density should satisfy

 where subscript ’0’ refers to the unperturbed state, qe(qh) = −e(e) with e the ele-
mentary charge, qi = Zie is the ion charge state, and qd = Zde(−Zde) for positively 
(negatively) charged nanoparticles (dust). For degenerate electrons and holes, we 
can write the set of continuity and momentum balance equations

(1)qini0 + qhnh0 + qene0 + qdnd0 = 0,
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and

where mj is the species ( j = e, h ) effective mass, �j the species fluid velocity and ℏ 
the Planck’s constant divided by 2�. We assume cylindrical coordinates by defining 
� = {a,�, z} for an arbitrary point on the surface of nanotube with r = a and 
� = êz(�∕�z) + ê�a

−1(�∕��) . Furthermore, Φ(�, t) is the self-consistent electrostatic 
potential, Wj =

(
�ℏ2∕mj

)
nj is the Fermi energy, and 

VBj = (ℏ2∕2mj)�(1∕
√
nj)△

√
nj is the quantum Bohm potential (also known as 

von Weizsäcker correction) arising due to quantum diffraction effects representing 
the quantum pressure. The last term in Eq. (3) includes the gradient of species 
exchange potential [44] given by

where � is the relative dielectric constant of the system, and kFj = (2�nj0)
1∕2 is the 

magnitude of Fermi wavevector. It is noted that contribution of the exchange interac-
tion is increased by the correlation potential [45]. The dynamics of heavy species 
( s = i, d ) can be described by the fluid equations

where ms is the species mass. The self-consistent electrostatic potential Φ1(�, t) is 
given by

where d2�� = a d�� dz� . For cylindrical geometry, the Coulomb potential 1∕ ∣ � − �
� ∣ 

can be expressed as [24]

where m is azimuthal quantum number, k is the longitudinal (axial) wave number, 
g(a, k,m) = 4�Im(ka)Km(ka) , while Im and Km are the cylindrical Bessel functions 
order m.

(2)
�nj

�t
+ � ⋅ (nj�j) = 0,

(3)mj

[
�

�t
+ �j ⋅ ∇

]
�j = −qj�Φ − �Wj + �VBj + e�Vxj,

(4)Vxj =
2�e

�kFj
nj,

(5)
�ns

�t
+ ∇ ⋅ (ns�s) = 0,

(6)ms

[
�

�t
+ �s ⋅ ∇

]
�s = −qs�Φ,

(7)Φ(�, t) = ∫ d2�
� qini(�

�, t) + enh(�
�, t) − ene(�

�, t) + qdnd(�
�, t)

∣ � − �� ∣
,

(8)
Φ(�, t) =

∞∑
m=−∞

∫
∞

−∞

dk
(2�)2

g(a, k,m)∫ d��[qini(�
�, t) + qdnd(�

�, t)

+ enh(�
�, t) − ene(�

�, t)eik(z−z
�)+im(�−��)],
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3  Linearized Wave Analysis

Let us consider the first-order perturbations and linearize the set of Eqs. (2)–(3) and 
(5)–(7). For small inertial force of electrons and holes in the limit mj∕ms ≪ 1 , the l.h.s. 
of Eq. (3) vanishes under the low frequency limit. Then, one can write for the density 
perturbation nj1(≪ nj0) from Eq. (3) as

The space charge electric field couples the electrons and holes with the heavier spe-
cies (ions and charged nanoparticles). Equations (5)–(7) on linearizing reduce to

and

Using the expansion of the Coulomb potential (8), we apply the Fourier transform

where F(a,�, z, t) denotes any of the abovementioned perturbed quantities. Then, the 
Fourier transformed perturbed densities and potential obtained from Eqs. (9)–(12) 
result in

(9)qj∇Φ = −

(
�ℏ2

mj

−
ℏ2

4mjnj0
∇2 −

2�e2

�kFj

)
nj1⋅

(10)
�ns1

�t
+ ns0∇ ⋅ �s1 = 0,

(11)ms

��s1

�t
+ qs�Φ1 = 0,

(12)Φ1(�, t) = ∫ d2�
� qini1(�

�, t) + enh1(�
�, t) − ene1(�

�, t) + qdnd1(�
�, t)

∣ � − �� ∣
⋅

(13)F(a,�, z, t) =
∞∑

m=−∞
∫

∞

−∞

dk
(2�)2 ∫

d�
(2�)

× F(a,m, k,�)eik(z−z
�)+im(�−��)−i�t,

(14)ne1(a, k,m) =
4emene0Φ1(a, k,m)[

ℏ2
(
k2
m
+ 2k2

Fe

)
− 4m2

e
v2
xe

] ,

(15)nh1(a, k,m) = −
4emhnh0Φ1(a, k,m)[

ℏ2
(
k2
m
+ 2k2

Fh

)
− 4m2

h
v2
xh

] ,

(16)ni1(a, k,m) =
qik

2
m
ni0Φ1(a, k,m)

�2mi

,

(17)nd1(a, k,m) =
qdk

2
m
nd0Φ1(a, k,m)

�2md

,
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and

where vxj = (2�e2nj0∕�kFj)
1∕2 and k2

m
=
(
k2 + m2∕a2

)
 . Equations  (14)–(18) lead to 

the dispersion relation

where the species plasma frequencies are defined by �2
pj
= 4�nj0e

2∕amj , 
�2
pi
= 4�ni0Z

2
i
e2∕ami , and �2

pd
= 4�ndZ

2
d
e2∕amd . The dispersion relation shows a 

significant effect of exchange interaction and system’s geometry. Curvature effects 
diminishes for large a corresponding to kFja ≫ 1.

For analysis, let us consider the modified Bessel functions Im(x) and Km(x) in 
the long wavelength limit ka → 0. In this case, Im(x) ⟶ amx

m , Km(x) ⟶ bmx
−m 

(for m ≠ 0 ) for x ⟶ 0 with am = 2−m∕Γ(m + 1) , bm = 2m−1∕Γ(m) and 
K0(x) ⟶ ln (1.123∕x). In this situation, it is seen that � = 0 for m = 0 , whereas for 
m ≠ 0, the dispersion relation reduces to

In the asymptotic case, we can set Im(x) = exp (x)∕
√
2�x and 

Km(x) =
�√

�∕2x
�
exp (−x) as x ⟶ ∞. This is pertinent to the limit ka ⟶ ∞ 

which yields

In both the cases above, it is evident that the quantum effects due to Fermi degen-
eracy of electrons and holes and many-particle effect of exchange interaction in 2D 
geometry have significant role on wave dispersion. We have considered the first-
order perturbations of plasma parameters for equilibrium charge neutrality condition 
(1). In some situations, mode excitation in CNTs is accompanied by various drift 
effects like velocity drift of change carriers in the presence of high field streaming 
[46] or flow induced currents and voltages [47]. A small perturbation in the presence 
of species streaming can lead to unstable modes. For a scenario of electron-hole 
plasma system surrounded by ions and charged nanoparticles (dust) on the nano-
tube surface, the ion density perturbation produces electric field which eventually 
gives rise to ion plasma excitation. Let us consider a simple case when ions have an 

(18)
Φ1(a, k,m) = ag(a, k,m)

[
qini1(a, k,m) + enh1(a, k,m) − ene1(a, k,m) + qdnd1(a, k,m)

]
,

(19)
�2 =

k2
m
a2(�2

pi
+ �2

pd
)

4�

g(a,k,m)
+ 4a2

∑
j=e,h

(
m2

j
�2
pj

ℏ2

�
k2
m
+2k2

Fj

�
−4m2

j
v2
xj

)

(20)
�2 =

m2(�2
pi
+ �2

pd
)

4

�
m

2
+ a2

∑
j=e,h

�
m2

j
�2
pj

ℏ2

�
k2
m
+2k2

Fj

�
−4m2

j
v2
xj

�� ⋅

(21)
�2 =

k2
m
a2(�2

pi
+ �2

pd
)

4

�
ka

2
+ a2

∑
j=e,h

�
m2

j
�2
pj

ℏ2

�
k2
m
+2k2

Fj

�
−4m2

j
v2
xj

�� ⋅
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equilibrium axial drift v0 against the nanoparticles caused by dc electric field. In this 
case, a non-thermal wave excitation can take place. A streaming term appears in the 
ion fluid equations which can be included simply by replacing � by � − kv0 in Eq. 
(16). The resulting dispersion relation from Eq. (18) becomes

For threshold value to determine the possibility of an instability, let us consider 
� = kv0 + Δ which yields

and

where

One can observe that a solution of Eq. (24) above

is unstable leading to the growth rate

where Ωid = �
2∕3
pi

�
1∕3
pd

 is the contribution of ion and dust plasma oscillations. The 
growth rate � is influenced by the nanotube parameters and fermionic character of 
electrons and holes.

(22)
1 =

g(a, k,m)k2
m
a2

4�

�
1 + g(a,k,m)a2

�

∑
j=e,h

�
m2

j
�2
pj

ℏ2

�
k2
m
+2k2

Fj

�
−4m2

j
v2
xj

��
�

�2
pi

(� − kv0)2
+

�2
pd

�2

�
⋅

(23)kv0 =

√
g

�

kma�pd

2(1 + Qj)1∕2
,

(24)Δ3 =

(
�2
pi

2�2
pd

)
(kv0)

3,

(25)Qj =
g(a, k,m)a2

�

�
j=e,h

⎛⎜⎜⎜⎝

m2
j
�2
pj

ℏ2

�
k2
m
+ 2k2

Fj

�
− 4m2

j
v2
xj

⎞⎟⎟⎟⎠
⋅

(26)Δ =
(1 + i

√
3)

24∕3

�
�pi

�pd

�2∕3

kv0,

(27)� =

√
3g(a, k,m)

�

kma

27∕2(1 + Qj)1∕2
Ωid,
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4  Numerical Results and Discussion

Let us analyze the dispersion relation (19) numerically for species density, and char-
acteristic parameters of electrons and holes. In many situations [48–52], the pres-
ence of heavy charged species (ions, ion clusters, nanostructures, etc.) surrounding 
the CNTs is inevitable. The ions and charged nanoparticles influence the dynam-
ics of electrons and holes of the tubule which change of density balance and wave 
potential affecting the transport and dispersion properties of the plasma system 
[53]. Similar situation is also seen in encapsulation of heavy ions in nanotubes, 
their laser-mediated engineering, and self-organization phenomena [54]. The space 
charged effect created by heavy positive or negative species surrounding the charged 
nanotubes can be described in a self-consistent way.

There are variety of types and sizes or electronic structures of carbon nano-
tubes and typical ones vary in diameter from 1 to several nanometers. For a metal-
lic carbon tubule, we can estimate the 2D electron density by ne = nC� where � is 
the number of conduction electrons released per carbon (C) atom, and the density 
of carbon atoms nC = 0.38Å−2 [55]. The electron Fermi wavevector is deduced by 
kFe =

√
2�ne which amounts to 3.5 × 108 cm−1 . Low frequency or long wavelength 

modes are observed in the metallic carbon nanotubes usually with slightly different 
electron and hole effective masses, mh∕me ≥ 1 , and similar electron and hole con-
centrations. For quasi-neutral case, the wave phase velocity should be much smaller 
than the electron Fermi velocity. For qualitative analysis of dispersion effects, we 
assume singly charged ions and negatively charged dust particles with typical 2D 
atomic density of graphite sheet 38 nm−2 with surface electron density approxi-
mated by 4 × 38 nm−2 [8, 24]. Various hole to electron effective mass ratios mh∕me 
are considered with akFj ≫ 1 taking care of the charge neutrality condition [56].

Figure 1 shows the behavior of low frequency (as compared to ion plasma fre-
quency) sound mode against kaB for different angular mode numbers, m = 0, 2, 4, 6 

Fig. 1  (Color online). The wave frequency � normalized by the ion plasma frequency ( �pi ) is plotted 
versus kaB for various values of azimuthal quantum number m where a = 16aB
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and 8 where a = 16aB with aB the Bohr radius. The exchange effects of elec-
trons and holes are included for mh∕me = 3 , where me is assumed to be the bare 
electron mass. The wave frequency is normalized by the ion plasma frequency 
�pi ≃ 1.44 × 1013 rad/s . The electron plasma frequency is �pe ≃ 6.67 × 1015 rad/s , 
which is slightly smaller for relatively massive holes. In real numbers, the wave fre-
quency is in terahertz (THz) range ( ∼ 1012 rad/s ) which appears to be an order of 
magnitude lower than the ion plasma frequency. It is seen that the wave frequency 
increases with m showing an asymptotic behavior in the short wavelength regime. 
The trend of the frequency curves shows agreement with the hydrodynamic behavior 
of collective oscillations [8, 23]. THz sound modes in graphene and carbon nano-
tubes have also been studied using other approaches like Boltzmann transport equa-
tion to investigate landau damping [57] and elastic-beam models to predict critical 
frequencies for coaxial and noncoaxial waves [4].

Many-particle effect of exchange interaction on dispersion relation is illustrated 
in Fig.  2. In the presence of exchange force, it is found that the wave frequency 
decreases. For the same electron to hole mass ratio, two cases were considered 
with m = 0 and m = 2 . The curve separation with and without exchange interaction 
increases for larger k and more significant at smaller k for nonzero m. The influence 
of the radii on low frequency oscillations against the dimensionless parameter kaB 
is shown in Fig. 3. The behavior of the curves for m = 0 (upper panel) and m = 2 
(lower panel) is almost similar at higher frequencies. For smaller radii, the frequency 
is higher and rate of increase of frequency with k is larger. It is evident that the role 
of nanotube radii on wave dispersion is very important in long wavelength limit and 
change of frequency for larger k is almost linear. The tubule radius is measured in 
the units of aB which is larger than 10 aB in most of the cases in literature.

Figure  4 shows the wave frequency for different electron to hole mass ratios. 
The hole effective mass is larger than the electron effective mass which influences 
the wave dynamics due to different values of parameters like Fermi energy, Fermi 

Fig. 2  (Color online). The normalized wave frequency �∕�pi versus kaB showing the effect of exchange 
interaction on wave dispersion where a = 16aB , m = 0 (red lines) and m = 2 (green lines). The solid 
curves show that the frequency of the wave reduces in the case of nonzero exchange term
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momentum, etc., of holes and electrons. In Fig. 4a (upper panel) for m = 0 and 4b 
(lower panel) for m = 2 , mh is considered either equal to me or 3, 6, and 9 times 
of me . For heavier holes, the wave frequency is very small and dispersion effects 
are weak. The difference of electron and hole mass does not influence the exchange 
potential which is independent of species mass. The presence of heavy holes in an 
electron-hole plasma is a signature of the low frequency modes with frequency fall-
ing in the acoustic range [55].

In the presence of equilibrium ion axial drift, the electrostatic wave produced in 
a non-thermal process exhibits an unstable solution with growth rate given by Eq. 
(27) which is illustrated in Fig. 5. For a = 16aB and mh = 3me , the growing modes 
m = 0, 2 and 4 are plotted which show saturation for higher wave number. A possi-
ble reason of the instability and growth can be identified as transfer of energy to the 
plasma wave which has been identified previously as a mechanism of the drift veloc-
ity thresholds for plasma wave instabilities in cylindrical nanotubes [58].

In experimental observations on nanotubes and other nanostructures, acous-
tic modes in GHz and THz frequency range have been identified using various 

(a)

(b)

Fig. 3  (Color online). The dispersion relation is plotted for various values of radii a with m = 0 (upper 
panel) and m = 2 (lower panel). Increase in the radii is expressed in terms of the Bohr radius aB . The 
wave frequency goes on reducing with a 
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(a)

(b)

Fig. 4  (Color online). Effect of hole mass on the wave dispersion for m = 0 (upper panel) and m = 2 
(lower panel) where a = 16aB . Increase in the hole mass reduces the frequency which can lead to static 
approximation of heavy-hole case with mh∕me ≫ 1

Fig. 5  (Color online). The unstable mode corresponding to Δ given in Eq. (26) is plotted for nonzero ion 
streaming velocity. The normalized growth rate �∕�pi for different m values is shown which displays the 
curves saturation for large wave number where a = 16aB
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approaches. The studies include THz dispersion properties of super-aligned multi-
walled carbon nanotubes [59], acoustic phonon scattering in carbon nanotubes [60], 
acoustic properties of carbon nanotubes and their interplay with coherent transport 
[61], acoustic phonon absorption in degenerate carbon nanotubes [62], and so on. 
In the present work, electrostatic oscillations on time scales defined by ion plasma 
frequency are considered for k ≪ kFe including exchange force in the spirit of DFT, 
and an equation of state for degenerate fermions. Our main purpose here is to show 
qualitative properties of low frequency wave on ion time scale which falls in the 
THz range. The approach subsumes the linearized quantum hydrodynamics invoked 
earlier [24, 31] in a general way for electrons and holes to elucidate the contribu-
tions of exchange interaction, quantum Bohm potential and Fermi degeneracy on 
low frequency stable and unstable acoustic modes.

It is worth mentioning that collective oscillations are more pronounced for 
decreasing electron effective mass and increasing mobility. The electron and hole 
densities and characteristic (Fermi) velocities in graphene based structures can be 
effectively varied by the gate voltage [63]. In the linearized quantum hydrodynam-
ics formulation of degenerate electron-hole plasma in the presence of massive spe-
cies here, influence of an external potential on the wave dynamics is not considered. 
If a gate voltage is applied to the nanotube, one has to take into account various 
implications on steady-state and dynamic electron and hole transport properties 
due to dependence of carrier mobility and density on chemical potentials and vari-
ous scattering phenomena. This has been pointed out in collective THz excitations 
and sound modes in an electron-hole plasma in gated graphene heterostructures and 
nanotubes [64, 65]. Extension of the present study for propagating and damping 
modes in degenerate electron-hole plasma with nonzero gate voltage will be consid-
ered in our future work.

5  Conclusion

To conclude, we have studied the low frequency electrostatic oscillations in single-
walled CNTs including exchange interactions. The changed single-walled CNT is 
modeled as a long cylindrical shell which is surrounded by uniform distribution of 
degenerate electrons and holes as well as non-degenerate ions and nanoparticles 
(dust). Variation of space charge effect over large distance relevant to ions and nano-
particles scale lengths is considered including fermionic character of electrons and 
holes. The important role of electrons and holes exchange interaction is emphasized 
and its influence is discussed in 2D geometry. The dispersion properties of THz fre-
quency acoustic waves for various angular mode numbers and radii of the tubules 
are discussed with illustrations using typical parameters. In the case of heavy holes, 
the frequency of the wave goes on decreasing to low values with very weak disper-
sion. As a special case, ions axial drift at equilibrium is considered which may be 
caused by a dc electric field and excites an electrostatic wave non-thermally giving 
an unstable solution. The unstable solution leads to a growing mode possibly due 
to transfer of energy to the plasma. The low frequency oscillations owing to spe-
cies collective motion can be useful to determine the wave propagation range and 
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damping properties, like those in typical electron-hole plasmas in CNTs [56], and to 
study the nanoparticle charging phenomena in a dense plasma [34].
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