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Abstract
In the present paper, we study the quantum phase transition in a spin-1 Heisenberg 
model with two and three particles by using pairwise classical and quantum ther-
mal correlations and entanglement measures, that is, the generalized concurrence 
and the negativity at finite temperatures. We have used thermodynamic functions 
of particle number and particle susceptibility to characterize the thermodynamical 
behavior. The pairwise correlations are derived based on a necessary and sufficient 
condition for the zero-discord state. We obtain analytical results for the coherence-
vector representation of a bipartite state. Using the exact diagonalization technique, 
we demonstrate that the quantum critical points, detected by the particle number and 
the particle susceptibility, are ultimately in close correspondence to that of thermal 
pairwise correlations and entanglement measures.

Keywords  Thermal correlations · Quantum phase transition · Spin chains

1  Introduction

Correlations are a major concept in many-body physics, and they play an important 
role in quantum information and quantum computation sciences. In fact, when the 
correlation between constituents of a many-body system changes, usually the physi-
cal properties of the system are drastically impressed. The study of entanglement is 
one of the major goals of quantum information science and has wide application in 
quantum computation, teleportation and cryptography [1]. Entanglement is a kind of 
correlation which does not exist in a classical system. Recently, an extended kind of 
entanglement, that is, thermal entanglement, [2–11], has been introduced and stud-
ied, extensively, in spin chain models. The connection between the quantum infor-
mation theory and the condensed matter physics is provided by studying the thermal 
entanglements, ground state entanglements [12, 13] and the relationship [14, 15] 
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between them and QPTs [16]. However, recent studies show that entanglement is 
not the only kind of nonclassical correlation and there exist other nonclassical cor-
relations that cannot be captured by entanglement measures [17, 18]. For instance, 
quantum discord (QD), an information-theoretic measure originally introduced by 
Olivier and Zurek [17] and by Henderson and Vedral [19], has gained special atten-
tion, recently. QD is defined as the minimum difference between mutual informa-
tion in a quantum system and its classical counterpart. Such a quantum correlation 
is more general than entanglement because it is capable to measure the quantum 
correlations of mixed separable states that cannot be captured by investigating the 
entanglement.

QPT occurs when the ground state of a quantum system acquires critical changes 
because of quantum fluctuations. As quantum critical phenomena, QPTs are acces-
sible by varying some parameters of the system, for example, external magnetic field 
or the coupling constant, at absolute zero temperature [16]. However, in order to be 
able to detect QPT, one has to work at sufficiently low but finite temperatures where 
the quantum nature of the QPTs is not negligible. Quantum entanglement usually 
reveals the existence of quantum and classical correlations among the constituents 
of a system, in the sense that entanglement satisfies the properties of QPT close to 
quantum critical points via nonanalyticities in the ground state energy [15, 20].

Recently, many studies are devoted to explore the relation between quantum cor-
relations, quantified by QD and QPT. In Ref [21], it is shown that both quantum dis-
cord and classical correlations are effective tools in detecting QPTs. More generally, 
recently it has been verified that several correlation measures can detect the critical 
points of QPT in quantum critical spin systems [22–24].

According to Haldane’s prediction, the one-dimensional spin-1 Heisenberg model 
has a spin gap, in contrast to the spin-1/2 case [25]. Some quasi-one-dimensional 
Haldane chains have, already, been investigated which show a magnetic gap in the 
excitation spectra. Haldane states are destroyed by different types of perturbations. 
For example, single-ion anisotropy can lead to a long-range order in a quantum dis-
ordered magnet [26]. For large positive single-site anisotropy interaction, the Hal-
dane ground state changes into a large-D state without any obvious magnetic order. 
While, for large negative single site anisotropy, D, the Haldane state changes into 
the Neel state [27]. Hence, tuning the value of the parameter D can induce phase 
transitions. Tzeng et  al. [28] have investigated the scaling relation of the fidelity 
susceptibility and the entanglement entropy for the spin-1 XXZ spin chains, with 
a single-site anisotropy term, by means of a density matrix renormalization group 
technique. Ren et al. [26] have evaluated the ground state fidelity susceptibility, the 
entanglement entropy and the Schmidt gap in 1D spin-1 XXZ chains, with alternat-
ing single-site anisotropy.

In this work, we investigate pairwise correlations in a spin-1 Heisenberg model in 
the presence of an alternating single-ion anisotropy term for two and three particles. 
Based on a necessary and sufficient condition for zero-discord states in the coherence-
vector representation of density matrices [29], we use a measure for classical, non-
classical and total amount of correlations. On the other hand, we use the generalized 
concurrence [30–37] and the negativity [38–40] as measures of entanglement and also 
particle number and particle susceptibility as the thermodynamic functions to detect 
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QPTs. We demonstrate that pairwise correlations, measures of entanglement and ther-
modynamic functions yield the same results for the critical points of QPT. The paper 
is organized as follows. In Sect. 2, we review the concepts of classical, quantum and 
total amount of correlations. In Sect. 3, we introduce the system Hamiltonian, thermal 
states, entanglement measures and thermodynamic functions. In Sect. 4, we investigate 
the role of model parameters, for example, anisotropic spin–spin interaction, single-ion 
anisotropy and temperature, in the entanglement measures, pairwise correlation func-
tions and thermodynamic functions for anti-ferromagnetic and ferromagnetic couplings 
for the two-spin-1 case. In Sect. 5, the same procedure is performed for the three-spin-1 
system. The conclusions are drawn in Sect. 6.

2 � Correlation Measures

Based on a necessary and sufficient condition for a zero-discord state, Zhou et al. [29] 
proposed a measure of quantum, classical and total amount of correlations in bipartite 
states. The general form of the density matrix of a bipartite state, �AB , of Hamiltonian 
HAB in coherence vector representation is

where the two components of the local Bloch vectors �A , �B and the second-order 
correlation tensor Kij are defined as

Here, I is the identity operator and 𝜆̂𝛼i(𝛼 = A,B) denote the generators of the SU(N) 
with i = 1, 2...,N2 − 1 . The generators satisfy the properties:

For the particular case where our model is the spin-1 Heisenberg chain, the explicit 
form of the SU(3) generators are

(1)

𝜌AB =
1

dAdB
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1

2dB
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According to theorem  2 in Ref. [29] and the above bipartite quantum states, the 
measure of the classical, nonclassical and total amount of correlations for any bipar-
tite state, �AB , can be defined as

 where Λi s are obtained by diagonalizing the criterion matrix � = ��T − �
2

B
�A�

T
A
 , 

in descending order. In the next section, we introduce the entanglement measures 
and thermodynamic functions in detail.

3 � Model and Method

The purpose of this study is to show how classical, quantum and total amount of cor-
relations do coincide with thermodynamic functions in revealing critical points of a 
system, through a few examples. The Hamiltonian describing the one-dimensional 
spin-1 XXZ chain with alternating single-ion anisotropy can be written as follows:

 where S�
i
(� = x, y, z) denote the components of �, the spin operator vector on the 

site i and N is the total number of sites. We assume the periodic boundary condition, 
namely, �N+1 ≡ �1 . The first term is the exchange interaction in which J can take two 
values, ±1 . The parameters Δ and D denote anisotropic spin–spin interaction and 
single-ion anisotropy, respectively. The sum over sites with 

(
Sz
i

)2 can be expressed 
as spin concentration (particle number)

 where P0 is the number of sites with Sz
i
= 0 [41].

In the canonical ensemble, the thermal equilibrium state is given by the Gibb’s 
density operator, �(T) = e−�H

Z
=
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i
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Z
���i⟩⟨�i�, , where Z = Tr(e−�H) =

∑
i
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the partition function, Ei are the energy eigenvalues, � =
1
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 and kB is Boltzmann’s 

constant which is assumed to be unity.
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The concept of concurrence which was originally proposed by Hill and Woot-
ters for qubit states [42–45] is one of the well-known bipartite entanglement 
measures which can be used to quantify the amount of entanglement for arbitrary 
finite-dimensional bipartite as well as multipartite pure and mixed states [31, 46].

For any arbitrary bipartite state, the generalized concurrence [36] can be 
defined as follows:

 where C�� are the components of the concurrence vector � , defined as follows:

 where ���
i

 , with i = 1...4 are the square roots of the eigenvalues of the matrix 
𝜌
(
L𝛼 ⊗ L𝛽

)
𝜌∗
(
L𝛼 ⊗ L𝛽

)
 , and L�(� = 1, ...,

d1(d1−1)

2
) and L�(� = 1, ...,

d2(d2−1)

2
) are the 

generators of the SO
(
d1
)
 and the SO

(
d2
)
 , respectively. Here, �∗ denotes the complex 

conjugate of the density matrix �.
Another well-accepted entanglement measure is the negativity, which is based 

on the positive partial transposition (PPT) criterion [38, 47]. Negativity is consid-
ered as a quantitative version of Peres’ criterion for separability, which states that 
an arbitrary bipartite state, �AB , of HA ⊗ HB is entangled if the matrix obtained by 
partial transposition with respect to A or B subsystem, �AB , has at least one nega-
tive eigenvalue.

Comparing with the concurrence, calculation of the negativity is in general 
easier than the concurrence of mixed states, since it does not need the convex-
roof extension. The value of negativity, corresponding to either a pure or a mixed 
bipartite state, �AB , can be defined as follows:

where �i s are the negative eigenvalues of �T2 , where T2 denotes the partial transpose 
with respect to the second subsystem. If Ne > 0 , the state is entangled. In describing 
the thermodynamical nature of the system, we use the response of the thermody-
namical potential with respect to D, which is as follows

where the expectation value is taken with respect to the thermal density matrix and 
F = −T ln Z is the free energy. We also define the particle susceptibility as [41]

In what follows, we examine two separate cases of two and three particle systems.
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∑
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.
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4 � Two Particle Systems

In this section, the Hamiltonian of the two-particle system is given by the following:

Here, by diagonalizing the Hamiltonian matrix (13), we obtain the thermal density 
matrix and the above-mentioned thermodynamic functions. In the following sec-
tion, we study the behavior of the pairwise correlations, entanglement measures and 
also particle number and particle susceptibility at low and high temperatures for two 
ferromagnetic, that is J = −1 , and anti-ferromagnetic, that is J = 1 , cases in more 
detail. Figure 1 shows the generalized concurrence and the negativity (Fig. 1a), the 
total amount of correlation, classical correlation and quantum correlation (Fig. 1b) 

(13)H2 = J
(
Sx
1
Sx
2
+ S

y

1
S
y

2
+ ΔSz

1
Sz
2

)
− D

(
Sz
1

)2
+ D

(
Sz
2

)2
,

Fig. 1   (Color figure online) Generalized concurrence (solid), negativity (dotted) (a), total correlation 
(solid), classical correlation (dotted) and quantum correlation (dashed) (b) and particle number (solid) 
and particle susceptibility (dotted) (c) versus D for J = 1 and Δ = 2 at T = 0.1
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and particle number and particle susceptibility (Fig.  1c) versus D, for the anti-
ferromagnetic case, J = 1 , and Δ = 2 at T = 0.1 . As depicted in the figure, all the 
functions yield similar critical points at D ≃ ±2.48 . Within the range specified by 
−2.48 < D < 2.48 , classical correlations are smaller than quantum correlations, 
whereas outside of this range classical correlations are larger than classical correla-
tions. Except for the particle number, all other functions vanish for large D values. 
Also, except for the particle susceptibility, the other functions peak in the interval 
D ∈ (−2.48, 2.48).

Here, we investigate the behavior of entanglement measures, pairwise correla-
tions and thermodynamic functions, P, and �D in the ferromagnetic case, that is 
J = −1 , when Δ = 2 at T = 0.1 , as represented in Fig.  2. In this case, the criti-
cal points happen at D ≃ ±1.5 . In contrast to the J = 1 case, the amount of clas-
sical correlations is larger than the quantum correlations so that the classical 

Fig. 2   (Color figure online) Generalized concurrence (solid), negativity (dotted) (a), total correlation 
(solid), classical correlation (dotted) and quantum correlation (dashed) (b) and particle number (solid) 
and particle susceptibility (dotted) (c) versus D for J = −1 and Δ = 2 at T = 0.1
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correlations get their maximum value while quantum correlations become zero in 
the interval D ∈ (−1.5, 1.5).

Let us now study the effect of parameter Δ when J = 1 and D = 0 at T = 0.01 . 
Looking at Fig. 3, we observe that all functions display a critical point at Δ = −1 . 
Note that in the limit of large positive and large negative values of Δ , all func-
tions become constants with different values. For Δ > −1 , quantum correlations 
can be larger or smaller than classical correlations depending on the Δ parameter. 
On the other hand, for Δ < −1 , entanglement and quantum correlations become 
zero while the value of classical correlations coincide with total correlations. The 
results for J = −1 are symmetric with respect to J = 1 in the sense that for J = −1 , 

Fig. 3   (Color figure online) Generalized concurrence (solid), negativity (dotted) (a), total correlation 
(solid), classical correlation (dotted) and quantum correlation (dashed) (b) and particle number (c) versus 
Δ for J = 1 and D = 0 at T = 0.01
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the critical point occur at Δ = 1 and the behavior of system for Δ > 1 and Δ < 1 is 
similar to Δ < −1 and Δ > −1 in the former case, respectively.

The effect of parameter Δ when J = D = 1 at T = 0.01 is shown in Fig. 4. The 
same argument as above can be applied to the D = 1 case, except for the two criti-
cal points corresponding to Δ = −1.5 and Δ = 0 , found for the D = 1 case. For 
J = −1 , the system behaves as symmetric with respect to J = 1 in the sense that 
the critical points are located at Δ = 0 and Δ = 1.5 . Let us now look at the behav-
ior of the system in the limit of high temperatures. As temperature is increased, 
the physical properties of the system will change. As shown in Fig. 5, the vari-
ations of all functions with respect to D for J = 1 , Δ = 2 and T = 1 , are smooth 
compared to the low-temperature results, and there is no sharp behavior change in 
this case. We note that at the rather high temperature, T = 1 , the degree of clas-
sical correlations is larger than quantum correlations, this is actually a property 

Fig. 4   (Color figure online) Generalized concurrence (solid), negativity (dotted) (a), total correlation 
(solid), classical correlation (dotted) and quantum correlation (dashed) (b) and particle number (c) versus 
Δ for J = 1 and D = 1 at T = 0.01
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of classical physics. That is, as temperature increases, the system behaves clas-
sically. In addition, comparing with the low-temperature cases, we see that the 
amount of entanglement and correlation functions decreases by increasing the 
temperature of the system. The results for J = 1 , D = 0 and T = 1 are depicted 
in Fig.  6. As in the previous case, no critical point occurs and the variation of 
functions are more smooth with respect to the low-temperature cases. Moreover, 
the value of the classical correlations is everywhere larger than the quantum cor-
relations. In Fig.  7, pairwise correlation functions are plotted as a function of 
T for D = 1 (Fig.  7a) and D = −1 (Fig.  7b) when J = 1 . From the figure, it is 
clear that the correlation functions tend to zero at large temperatures. If we com-
pare the behavior of the correlation functions for two cases, we observe that for 
T < 1 when D = 1 , the amount of classical correlations is larger than the quantum 

Fig. 5   (Color figure online) Generalized concurrence (solid), negativity (dotted) (a), total 
correlation(solid), classical correlation (dotted) and quantum correlation (dashed) (b) and particle num-
ber (solid) and particle susceptibility (dotted) (c) versus D for J = 1 and Δ = 2 with N = 2 at T = 1
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correlations, while for D = −1 , the classical correlations are smaller than quan-
tum correlations. For T > 1 , the classical correlations are larger than the quantum 
correlations for both values of D.

5 � Three‑Particle System

Here, we consider the case of three-spin-1 chain (N = 3) . The Hamiltonian of this 
system can be written as follows:

Fig. 6   (Color figure online) Generalized concurrence (solid), negativity (dotted) (a), total correlation 
(solid), classical correlation (dotted) and quantum correlation (dashed) (b) and particle number (c) versus 
Δ for J = 1 and D = 0 at T = 1
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Like the two-particle case, we obtain the eigenvalues of the Hamiltonian matrix (14) 
and calculate thermal density matrix to derive pairwise correlations, entanglement 
measures and particle number. Here, we assume the bipartition 3⊗ 9 ; that is, we 
perform the calculations for the correlation between one particle and the remaining 
two particles.

Figure 8 displays the behavior of the entanglement measures, correlation func-
tions and particle number, for anti-ferromagnetic case, J = 1 , at T = 0.02 . From the 
figure, it is clear that sudden jumps appear at D = ±2.56 . For large positive and neg-
ative values of D, all functions are constants with different values. For D < −2.56 , 
the negativity is larger than the concurrence. Depending on D parameter, classical 
correlations are smaller or larger than quantum correlations in the interval between 
the two critical points, that is, −2.56 < D < 2.56 , in contrast to the two-particle case. 
For outside of this range, classical correlations are larger than quantum correlations 
similar to the two-particle case. For J = −1 , two critical points appear at D = −2.5 
and D = 3.54 . In the interval −2.5 < D < 3.54 , the values of entanglement and 
quantum correlations are zero while classical correlations and particle number take 
their maximum values. Outside the range, D < −2.5 and D > 3.54 , classical correla-
tions are also larger than quantum correlations (see Fig. 9). This behavior is similar 
to the two-particle case in Fig. 2.

Figure  10 shows the effect of the Δ parameter on the system for J = 1 and 
D = 0 at low temperature. We observe that a critical point is found at Δ = −0.5 . 
For large positive and negative values of Δ , all the studied functions tend to con-
stant but different values. Unlike the case of a two-particle system (Fig. 3), here, 
quantum correlations are larger than classical correlations for each value of Δ 
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Fig. 7   (Color figure online) Total correlation (solid), classical correlation (dotted) and quantum correla-
tion (dashed) versus T for D = 1 (a) and D = −1 (b) with J = 1 and N = 2
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larger than the critical point. On the other hand, for each value of Δ smaller than 
the critical point, the system behaves similar to the two-particle case.

Now, we discuss the case D = 1 as the results are depicted in Fig.  11. If we 
compare Figs.  10 and 11, we see that the properties of the physical system are 
similar for both of D values except for the D = 1 case that we have two quantum 
critical points Δ = −0.8 and Δ = −0.2 . Figure 12 shows the results corresponding 
to pairwise correlations, entanglement measures and particle number for J = −1 
and D = 0 at low temperature. A comparison between Figs.  10 and 12 reveals 
that due to the critical point at Δ = 1 , two figures are not completely symmetric 
to each other. Although as Δ → ±∞ , the behavior of the system with J = −1 is 
similar to the results we obtained for the system with J = 1 as Δ → ∓∞ , but the 
critical points are not symmetrical.

Fig. 8   (Color figure online) Generalized concurrence (solid), negativity (dotted) (a), total correlation 
(solid), classical correlation (dotted) and quantum correlation (dashed) (b) and particle number (c) versus 
D for J = 1 , Δ = 2 and N = 3 at T = 0.02
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Similar results are obtained for J = −1 and D = 1 cases, except for two critical 
points, Δ = 0.7 and Δ = 1 appearing when D = 1 , as depicted in Fig.  13. Now, we 
investigate how the system is affected by temperature when J = 1 and N = 3 . From 
Fig.  14a, for D = 1 and T < 0.38 , the quantum correlations are larger than the classi-
cal correlations and for T > 0.38 , the classical correlations are larger than the quantum 
correlations. For D = −1 (Fig. 14b), when T < 1 , the quantum correlations are larger 
than the classical correlations. On the other hand, for T > 1 , the classical correlations 
are larger than the quantum correlations for both values of D.

Fig. 9   (Color figure online) Generalized concurrence (solid), negativity (dotted) (a), total correlation 
(solid), classical correlation (dotted) and quantum correlation (dashed) (b) and particle number (c) versus 
D for J = −1 , Δ = 2 and N = 3 at T = 0.02



304	 Journal of Low Temperature Physics (2021) 202:290–309

1 3

6 � Conclusion

In summary, we have discussed thermal pairwise correlations, quantified by classi-
cal, quantum and total amount of correlations as well as the entanglement measures, 
that is, the generalized concurrence and the negativity, and also the particle number 
and the particle susceptibility functions. It is found out that the generalized con-
currence, the negativity and pairwise correlations can be used to determine QPTs. 
We have shown that for only finite, but low temperatures, the system undergoes a 
QPT. By increasing the temperature, QPTs no longer occur. At low temperatures, 
depending on the parameters of the Hamiltonian, the quantum correlations are larger 
or smaller than the classical correlations. Yet at high temperatures, the classical 

Fig. 10   (Color figure online) Generalized concurrence (solid), negativity (dotted) (a), total correlation 
(solid), classical correlation (dotted) and quantum correlation (dashed) (b) and particle number (c) versus 
Δ for J = 1 , D = 0 and N = 3 at T = 0.02
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correlations are generally larger than the quantum correlations. Unlike to the two-
particle case, in three-particle system, for J = 1 and in the parameter space D, the 
amount of the negativity measure is larger than the concurrence measure. Also, 
depending on the D parameter, quantum correlations are larger or smaller than clas-
sical correlations. For the two-particle system, there is a symmetry with respect to J 
with the same D value while for the three-particle case, the system has no symmetry 
with respect to J with the same D. For the D = 0 case, we have one quantum critical 
point whereas for the D = 1 case, the system undergoes two QPTs for both the two- 
and the three-particle cases.

Fig. 11   (Color figure online) Generalized concurrence (solid), negativity (dotted) (a), total correlation 
(solid), classical correlation (dotted) and quantum correlation (dashed) (b) and particle number (c) versus 
Δ for J = 1 , D = 1 and N = 3 at T = 0.02
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Fig. 12   (Color figure online) Generalized concurrence (solid), negativity (dotted) (a), total correlation 
(solid), classical correlation (dotted) and quantum correlation (dashed) (b) and particle number (c) versus 
Δ for J = −1 , D = 0 and N = 3 at T = 0.02
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Fig. 13   (Color figure online) Generalized concurrence (solid), negativity (dotted) (a), total correlation 
(solid), classical correlation (dotted) and quantum correlation (dashed) (b) and particle number (c) versus 
Δ for J = −1 , D = 1 and N = 3 at T = 0.02
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