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Abstract
We have studied the spatial distribution of charges trapped at the surface of super‑
fluid helium in the inhomogeneous electric field of a metallic tip close to the liquid 
surface. The electrostatic pressure of the charges generates a deformation of the liq‑
uid surface, leading to a “hillock” (called “Taylor cone”) or “dimple”, depending on 
whether the tip is placed above or below the surface. We use finite element simula‑
tions for calculating the surface profile and the corresponding charge density in the 
vicinity of the tip. Typical electric fields E are in the range of a few kV/cm, the max‑
imum equilibrium surface deformations have a height on the order of (but somewhat 
smaller than) the capillary length of liquid 4He (0.5 mm), and the maximum number 
density of elementary charges in a hillock or dimple, limited by an electrohydro‑
dynamic instability, is some 1013 m−2. These results can be used to determine the 
charge density at a liquid helium surface from the measured surface profile. They 
also imply that inhomogeneous electric fields at a bulk helium surface do not allow 
one to increase the electron density substantially beyond the limit for a homogene‑
ous field, and are therefore not feasible for reaching a density regime where surface 
state electrons are expected to show deviations from the classical behavior. Some 
alternative solutions are discussed.
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1  Introduction

Electrons and ions at the surface of liquid helium are examples of particularly 
well-defined two-dimensional (2D) Coulomb systems [1], which have been 
widely used as a model for studying fundamental phenomena like Wigner crystal‑
lization [2], magneto-transport [3] or transport in confined geometry [4]. Further‑
more, they have served as probes for investigating the properties of helium, e.g., 
the superfluidity of liquid 3He [5–7] and the crystal growth of solid 4He [8]. Bare 
electrons can be trapped above the liquid helium surface, in a potential well pro‑
vided by the (attractive) image potential due to the finite polarizability of helium, 
and the potential barrier of about 1 eV that the electrons encounter when penetrat‑
ing into the liquid [9, 10]. Single-electron bubbles, on the other hand, which con‑
sist of an electron confined in liquid helium in a bubble of ~ 3 nm diameter [11], 
can be trapped below the liquid surface, in a potential well formed by the (in this 
case repulsive) image potential and an externally applied electric field of appro‑
priate sign. The same is true for He+ ions, which form “snowballs” inside liquid 
helium [12, 13]. For other ions, in particular metals, which have been thoroughly 
studied in bulk liquid helium, mainly by spectroscopic means [14] this trapping at 
the liquid helium surface should also be possible; however, such investigations of 
ions other than He+ do not yet exist to the best of our knowledge.

In a homogeneous electric field, the charge density of an electron or ion pool at 
the liquid surface is limited to enc = (gργ/4π2)1/4 [15, 16], where e is the elemen‑
tary charge, nc is the critical number density of the charges, γ is the surface ten‑
sion, g the acceleration due to gravity, and ρ the density of the liquid (the vapor 
density can be neglected for the temperature range T < 2 K, which we consider in 
this investigation). For 4He at temperatures below the lambda point, this gives a 
maximum electron or ion density nc ~ 2.4 × 1013  m−2. Above this critical value, 
an electro-hydrodynamic (EHD) instability develops, connected with a soft mode 
in the dispersion relation of surface waves [17, 18]. The homogeneous distribu‑
tion of charges then breaks up into a lattice of separated multi-electron dimples 
or multi-ion hillocks, with a lattice constant equal to the wavelength of the soft 
mode, λc = 2πa ~ 2 mm, where a = (γ/gρ)1/2 is the capillary length of helium. Upon 
further increasing the electric field, the charges undergo a collective breakthrough 
and form multi-electron bubbles in the liquid, or multi-ion droplets in the gas 
[19–22], each holding up to 106 elementary charges.

In this work, we describe our investigations of the critical charge behavior at 
liquid helium surfaces in inhomogeneous electric fields. For this purpose, we con‑
sider a metallic pin, placed slightly below or above the surface (for electrons or 
ions, respectively), to which a high voltage is applied, such that the charges accu‑
mulate near the pin and due to the electrostatic pressure deform the surface. The 
motivation for these studies was twofold:

•	 Searching for Majorana quasi-particles at the surface of superfluid 3He [23], 
we planned to accumulate Ba+ ions below the liquid surface as a sensitive 
spectroscopic probe. Preliminary measurements with 4He, however, did not 
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reveal any optical spectroscopic signal related to Ba+ trapped at the surface, 
although in bulk He spectra of these ions could be detected. We therefore 
intended to aggregate the ions in the inhomogeneous E field below the pin, 
thus increasing their density, and in addition learn about the total amount and 
the density of positive charges by an analysis of the surface deformation near 
the pin. It could indeed be shown—on the basis of the simulations described 
here in comparison with the observed charge-induced surface deformation—
that pools containing up to 108 positive elementary charges could be accu‑
mulated under the liquid surface below the pin (see Fig. 1). As it turned out, 
however, the deformation was mostly due to charged Ba nanoparticles rather 
than Ba+ ions. These investigations are described in more detail in Ref [24].

•	 A second motivation is that up to now experiments with surface state electrons 
(SSE) on bulk helium have been restricted by the EHD instability to the “low-
density” non-degenerate regime where the electrons behave purely classically, 
because the Fermi energy h2n/4πm is much lower than the Boltzmann energy kBT. 
(Here h is the Planck constant, m the electron mass, kB the Boltzmann constant 
and T the temperature.) On the other hand, complementary 2D electron systems 
in solids, e.g., at semiconductor heterostructure interfaces, so far have always 
been in the “high-density” degenerate Fermi regime even at the lowest achieved 
densities [25, 26]. It appears tempting to close the gap between these two regimes 
and study the phase diagram of 2D electrons [27] over a wider parameter range, 
in particular into a region where quantum effects due to the Fermi nature of the 
electrons start coming into play. One promising route in this direction is to make 
use of the above-mentioned multi-electron bubbles (MEBs), which are stabilized 
by the counteracting forces resulting from surface tension and Coulomb repul‑
sion. It is expected that electron densities well in excess of what can be achieved 
on a plane helium surface can be reached in MEBs. Although experiments on the 
properties of the surface state electrons in MEBs are missing so far, because the 
trapping and manipulation of such bubbles is not trivial, remarkable progress has 
been made recently [21, 28]. Another approach toward electron densities beyond 
the limit imposed by the EHD instability is based on the additional stabilizing 

Fig. 1   The center of this image shows the static deformation of the free surface of superfluid 4He (Taylor 
cone) resulting from the trapped charge below the surface in the static electric field of a charged pin. The 
pin diameter is 1.6 mm, the temperature T = 2.1 K
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van der Waals forces in thin He films on suitable substrates. Electron densities up 
to 1016 m−2 have been reported [29, 30]. So far, however, these experiments are 
hampered by the fact that the ideal character of the helium surface is partly lost 
due to imperfections of the solid substrates.

Hence, there is persistent interest in alternative routes toward high electron densi‑
ties, and a goal of our simulations was to determine the maximum achievable densi‑
ties on bulk liquid helium in locally confined electric fields. In the following, we 
give a brief account of the simulation conditions and then present results for various 
combinations of physical parameters of the system.

2 � Simulations

As mentioned above, the accumulation of charges under the He surface below the 
pin gives rise to a surface deformation u(r) due to the electrostatic pressure, given by 
the electron density n and the z-component of the electric field E, which is counter‑
acted by surface tension and gravity:

Equation (1) is based on the approximation that the radius of curvature of the sur‑
face deformation is much larger than u, i.e., the treatment given here does not cover 
the region very close to the EHD instability, where the surface profile develops a 
sharp tip and a liquid jet starts to form [24].

In our calculations, the surface displacement u(r) and the corresponding charge 
density n(r) were determined self-consistently, using finite element simulations and 
the commercial software package COMSOL Multiphysics. Figure  2 gives a sche‑
matic of the simulated domain, with dimensions similar to the experimental cell 
used for the measurements in Ref. [24]. Sketched is here the case when the pin to 
which the high voltage is applied is above the surface, and the charges are below. 
The calculations also apply, however, to the inverted situation, with electrons above 
the surface and the pin below, just the deformation will have the opposite sign. 
The cell is cylindrical with a diameter of 54 mm and a height of 70 mm; its walls 

(1)−�∇2(u) + g�u = enEz

Fig. 2   Schematic of the sample 
cell with top (pin) and bottom 
(plate) electrodes and the helium 
surface, red marking the charged 
and blue the uncharged region 
(Color figure online)
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are on ground potential. The (bottom) plate electrode and the (top) pin electrode 
are at potentials Ubottom and Upin, respectively; the distance between pin and plate 
is 19 mm. The pin is a cylinder with a diameter of d, terminated with a spherical 
cap, and the pin apex is assumed to be at a height h above the (unperturbed) He 
level. The electrostatic potential in the charge pool which forms below the pin is not 
fixed, but is assumed to be constant throughout the charge distribution. This condi‑
tion is fulfilled because the charges are free to move along the surface. Therefore, 
the component of the electric field parallel to the surface has to vanish in the pool 
in the static case. The distribution of the electrostatic potential U in the sample cell 
was calculated using E =  − grad (U) and div D = e n(r), where D is the electric dis‑
placement. The material parameters of liquid helium used in the calculations are 
γ = 3 × 10–4 N/m, ρ = 145 kg/m3 and εr = 1.059 for the relative dielectric constant of 
the liquid.

3 � Results

In the following, we present results from these calculations for the electrostatic 
potential in the sample cell, the charge-induced surface deformation of the liquid 
and the inhomogeneous charge density underneath the tip. Two geometries are stud‑
ied: One is similar to the experiments reported in Ref. [24], where the height of the 
pin above the liquid surface and the pin diameter were of the order of 1 mm (geom‑
etry A); in the second part (geometry B), these typical values are reduced by one 
order of magnitude in order to see the influence of the length scales.

3.1 � Geometry A

The diameter of the pin d and its height above the helium level h are chosen as 
d = 1.0  mm and h = 1.3  mm. For the sake of simplicity and in order to keep the 
number of variables small, we fix the potential of the bottom plate to zero in what 
follows.

We start with the potential distribution. Figure  3 shows an example where the 
potential at the pin is 700 V. In addition to the color-coded potential values, some 
field lines (white) are plotted, which indicate the local direction of the electric field. 
Also shown is the profile of the liquid surface. The total number of elementary 
charges in this simulation was N = 2.28 × 108.

An important quantity which can directly be derived from Fig. 3 is the size of 
the ion pool. It follows from the shape of the electric field lines at the He surface: In 
the region of surface charge, the field lines have to be perpendicular to the surface, 
because any field component parallel to the surface would lead to a redistribution 
of the charges, until the field parallel to the surface vanishes. Outside of the charge 
pool, however, this condition does no longer hold, and the field lines in general are 
inclined to the surface. In addition, they exhibit a slight kink at the surface, arising 
from the discontinuity in the dielectric constant.
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The surface deformation of the liquid below the pin, generated by the electrostatic 
pressure of the ion pool, is hardly discernible on the scale of Fig. 3. We therefore 
show representative examples for the surface profile on a vertically expanded scale 
in Fig. 4 for two cases: Fig. 4a is for a relatively small total number of elementary 
charges N = 1.23 × 107, Fig.  4b for N = 2.28 × 108. First of all, the hillock is much 
higher for the larger charge, as expected. As the graphs further indicate, the full 
width at half maximum (FWHM) of the hillock profile in Fig. 4b is larger than in 4a, 
implying that the hillocks also grow in width as more charges are added to the pool.

It is revealing to compare the surface deformation in Fig. 4 with the charge dis‑
tribution in the ion pool, as it is plotted in Fig. 5 for the same parameters. A first 
glance already shows that the FWHM of the charge profiles is similar to the FWHM 
of the surface profiles, but a closer inspection discloses a distinct difference between 
the two profile types: While the surface deformation varies smoothly as a function 
of radial position, the charge distribution displays a kink at the edge of the charge 

Fig. 3   Electrostatic potential distribution in the sample cell in the vicinity of the tip, for d = 1.0  mm, 
h = 1.3 mm, Ubottom = 0, Upin = 700 V, and total number of elementary charges N = 2.28 × 108. The thick 
red and light blue lines mark the charged and uncharged part of the helium surface, respectively (Color 
figure online)

Fig. 4   Calculated surface profile of an inhomogeneously charged He surface. The applied voltage is 
ΔU = 700 V; a N = 1.23 × 107 and b N = 2.28 × 108 elementary charges. Note the different vertical scales 
(Color figure online)
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pool, rather prominent in Fig. 5a, with a nearly vertical tangent. For the larger pool 
in Fig. 5b, the difference between charge and surface profile is less pronounced, but 
the finite slope of the charge profile at the edge of the charge pool persists. This 
implies a well-defined, sharp boundary of the charge pool.

For a given geometry, the height of the Taylor cone depends on the applied poten‑
tial difference ΔU = Ubottom − Upin between tip and plate, and on the number of ele‑
mentary charges in the ion pool. As ΔU is raised, the deformation increases nonlin‑
early, shown in Fig. 6a for several constant pool charges between 107 and 5 × 108 e. 
It is to be noted that there are no hillock heights above about 300 µm; the curves end 
because the self-consistent calculations do no longer converge. This is an indication 
that the Taylor cone becomes unstable, in principle similar to the already mentioned 
EHD instability of a plane liquid surface. The numerical value of this critical hillock 
height should not be taken too literally, because, as pointed out earlier, the approx‑
imations entering the simulations do not hold for large deformations with a rela‑
tively sharp apex. Qualitatively, however, such an instability is expected and is also 
observed experimentally, as described in Ref. [24]: Above some critical deforma‑
tion, the surface becomes unstable, a liquid jet develops, and charges are lost from 
the surface. This EHD phenomenon is called a Taylor jet in the literature [24].

In Fig. 6b and c, we have plotted the hillock width and the inverse radius of cur‑
vature of the hillock apex for the same set of parameters as in Fig. 6a. As the voltage 
is increased at constant hillock charge, the FWHM decreases, and the cone profile 
is getting sharper. Again, the terminations of the curves at high voltage mark the 
points where the calculations do not converge any more. There is no big change 
in the values of the width, just a reduction by about a factor of 2. The inverse radii 
of curvature in Fig. 6c, however, exhibit pronounced divergences close to the end 
points of the curves, a clear signal for approaching the instability.

It has already been pointed out that one of the aims of this study is to determine 
the maximum charge density that can be achieved in the apex, as compared to the 
maximum charge density on a flat surface. Results for this quantity are plotted in 
Fig. 7, as a function of total hillock charge and for a set of voltages ΔU. A similar 

Fig. 5   Profile of the charge density in a Taylor cone for two different hillock charges; the parameters are 
the same as in Fig. 4a and b. The blue dashed lines represent the surface profiles from Fig. 4. Note again 
the different vertical scales in a) and b) (Color figure online)
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behavior as for the hillock height in the previous graphs is observed: As the volt‑
age ΔU or the charge Q is increased, also the charge density n rises, until at some 
critical values the curves terminate, because the simulations do no longer converge. 

Fig. 6   Hillock height (a), width 
(b), and apex curvature (c) as a 
function of the applied voltage 
ΔU for different fixed hillock 
charges between 107 and 5 × 108 
e. Slight kinks and fluctuations 
in the length of the various 
curves are numerical artifacts 
due to the finite resolution of the 
grid on which the calculations 
are done (Color figure online)

Fig. 7   Maximum charge density 
n at the hillock apex as a func‑
tion of the pool charge and for a 
set of voltages applied between 
pin and bottom plate. The pin-
surface distance is 1.3 mm, the 
pin diameter 1.6 mm (Color 
figure online)
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The bending upward in the curves for U > 500 V indicates that the system starts to 
develop into a positive feedback runaway situation: The charged surface is attracted 
by the tip, which brings the electrons closer to the tip, which attracts more electrons, 
thereby increasing the charge density in the center, which moves the surface closer 
to the tip, and so on. As long as the fields are small, this feedback is significantly less 
than unity and gravity alone is enough to stabilize the system. The bend upwards is 
the regime where gravity is no longer sufficient to prevent the jet instability; instead, 
the surface tension contributes the main part for stabilizing the small area under the 
tip. If the field or charge is increased further, even the surface tension is not enough, 
and the instability develops.

The maximum charge densities found in the calculations are on the order of 
2.5 × 1013 e m−2. This is close to the critical value obtained for a plane, homogene‑
ously charged He surface [31], which means that using the combined action of sur‑
face tension and gravity in an inhomogeneous electric field on bulk helium does not 
allow a noticeable increase in n beyond what is accessible in a homogeneous field, at 
least not for the geometry investigated so far.

3.2 � Geometry B

For charge pool dimensions smaller than the capillary length a, the forces due to 
surface tension will dominate over gravity. One might expect that under such a con‑
dition higher electron densities will be stable at the liquid surface. We have therefore 
repeated the simulations for a reduced distance h = 130 µm between pin and (unper‑
turbed) helium surface, i.e., a factor of ten smaller than in the previous chapter, and 
also the pin diameter was reduced by about an order of magnitude (to 160 µm). This 
should allow one to confine the charge pool to a radius well below a.

Results for the calculations of the height and charge profiles on this restricted 
length scale are shown in Figs. 8 and 9. In contrast to Fig. 5, the charge profile is 
now indeed distinctly narrower than the surface profile, its radius being a factor of 
5 below the capillary length. Data for the hillock height, width and curvature as a 
function of the applied voltage are plotted in Fig. 10, again for a set of pool charges. 

Fig. 8   Calculated surface profile of an inhomogeneously charged He surface for a pin-surface distance 
h = 130 µm. The applied voltage is ΔU = 70 V; a N = 2.23 × 106 and b N = 9.54 × 106 elementary charges. 
Note the different vertical scales (Color figure online)
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Fig. 9   Profile of the charge density in a Taylor cone for two different hillock charges, the parameters are 
the same as in Fig. 8a and b. The blue dashed lines represent the surface profiles from Fig. 8. Note again 
the different vertical scales in a) and b) (Color figure online)

Fig. 10   Hillock height (a), 
width (b), and inverse radius of 
apex curvature (c) as a function 
of the applied voltage ΔU for 
different fixed hillock charges 
between 105 and 8 × 106 e 
(Color figure online)
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Qualitatively, the behavior is similar to the results in the previous chapter, in par‑
ticular the nonlinear growth of the height and the inverse radius of curvature with 
increasing voltage, terminating at end points given by the non-convergence of the 
simulation. Due to the smaller length scales, the absolute values of the applied volt‑
age and the profile height are clearly reduced compared to Fig. 6.

The influence of the smaller geometry on the maximum charge density in the 
apex, however, is quite small, as is illustrated by a comparison of Fig. 11 with Fig. 7. 
A slight increase from about 2.5 × 1013 m−2 to 3 × 1013 m−2 is discernible, but this is 
not a big step toward a more complete investigation of the phase diagram of surface 
state electrons. In order to achieve bigger effects, one obviously would have to go to 
still smaller distances between tip and helium surface, which, however, would imply 
serious experimental challenges for the configuration “pin—bulk He surface” which 
is considered here. Even slight vibrations will lead to liquid surface waves with 
amplitudes larger than a tip-surface distance in the few micrometer range, and if 
both come into contact the charges will be lost. A way out could be fixing the helium 
surface as a thick “suspended film” by means of capillary forces in a narrow meso‑
scopic channel [4, 16]. In fact, first experiments in such a channel geometry have 
demonstrated that electron densities up to 1014 m−2 can be reached [32]. This should 
allow one to study signatures of quantum corrections in the SSE system. Efforts to 
increase the density to even higher values, which would be desirable for investigat‑
ing the full phase diagram of SSE, have so far led to sudden irreversible losses of 
charge, probably at some irregularities of the conductive channel walls. Therefore, 
better nanoscale control of the He films will be required in order to achieve higher 
electron densities up to the degenerate Fermi regime.

4 � Conclusions

The results presented here provide a method for determining the total number of elec‑
trons or ions trapped at the surface in an inhomogeneous electric field, by analyzing 
the observed surface profile of the Taylor hillock or dimple, respectively. This has been 
used successfully in Ref. [24] to obtain information about the charge density of barium 
ions/nanoparticles trapped at the liquid helium surface. Our simulations also show that 
in equilibrium the maximum density of surface state electrons in a dimple is limited to 

Fig. 11   Maximum charge 
density n at the hillock apex as 
a function of the pool charge 
and for a set of voltages applied 
between pin and bottom plate. 
The pin-surface distance is here 
130 µm, the pin diameter 160 
µm (Color figure online)
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values comparable to the flat He surface, at least for experimentally feasible pin-surface 
distances h > 100 µm. This means that also for SSE trapped in dimples, like for SSE on 
a flat He surface, one is restricted to the regime where the electrons behave as a classi‑
cal particle system. However, this only holds for the static case. Distinctly higher densi‑
ties might be achievable in such a dimple for times shorter than the response time of 
the liquid and the formation of the EHD instability (i.e., << ms) [24]. For this purpose, 
one could use an additional pulsed electric field applied to the pin, superimposed on the 
static one considered in this work: The electrons because of their high mobility will fol‑
low the transient field on a time scale much faster than the surface deformation, and the 
degenerate regime of SSE might be accessible, albeit only for a limited time interval. 
Future experiments will have to show whether this strategy enables one to study so far 
inaccessible regions of the phase diagram of 2D electron systems.
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