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Abstract
The dynamic structure function S(k, ω) informs about the dispersion and damp-
ing of excitations. We have recently (Beauvois et al. in Phys Rev B 97:184520,
2018) compared experimental results for S(k, ω) from high-precision neutron scat-
tering experiments and theoretical results using the “dynamic many-body theory”
(DMBT), showing excellent agreement over thewhole experimentally accessible pres-
sure regime. This paper focuses on the specific aspect of the propagation of low-energy
phonons. We report calculations of the phonon mean-free path and phonon lifetime
in liquid 4He as a function of wavelength and pressure. Historically, the question was
of interest for experiments of quantum evaporation. More recently, there is interest in
the potential use of 4He as a detector for low-energy dark matter (Schulz and Zurek
in Phys Rev Lett 117:121302/1, 2016). While the mean-free path of long wavelength
phonons is large, phonons of intermediate energy can have a short mean-free path of
the order of µm. Comparison of different levels of theory indicates that reliable pre-
dictions of the phonon mean-free path can be made only by using the most advanced
many-body method available, namely DMBT.

Keywords He-II · Neutron scattering · Phonon dispersion · Theory

1 Introduction

It has been known for a long time [1–4] that low-energy phonons in liquid 4He display
an anomalous dispersion relation which allows these phonons to decay. Precise neu-
tron scattering measurements of the phonon dispersion in liquid 4He [5] provide the
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phonon dispersion relation for all experimentally accessible densities with unprece-
dented accuracy. They confirm the finding of earlier work that the phonon dispersion
relation is anomalous up to densities of about ρ = 0.0245Å−3. These data agree
very well with our recent theoretical results for the dynamics of 4He based on time-
dependent multiparticle correlations [6]; our methods should therefore also be capable
of quantitative microscopic predictions for the phonon lifetime. We apply our many-
body theory of inelastic scattering, previously applied to scattering off 4He droplets
[7] and the surface of 4He [8]. In the following sections, we briefly review both the
theoretical methods used to calculate the relevant ground-state properties (Section 2)
and the dynamic features (Section 3) of the 4He liquid, and the data analysis to obtain
accurate values of the phonon dispersion coefficient.

The investigations are, among others, of interest because multiple scattering in
superfluid 4He has been proposed as a detection mechanism for low-mass dark matter
[9–12], among other proposed detectors [13]. Such a detector design requires accurate
knowledge of the propagation of low-energy phononswithin themedium. In particular,
when the phonon dispersion relation is anomalous, phonons are damped and have a
finite mean-free path.

2 Ground-State Structure of 4He

Microscopic calculation of properties of many-body systems begins with an accurate
calculation of ground-state properties. For 4He, it is adequate to begin with a non-
relativistic Hamiltonian

H = − �
2

2m

∑

i

∇2
i +

∑

i< j

v(|ri − r j |), (1)

where the pair-wise interaction v(r) is taken from Aziz et al. [14].
The most efficient evaluation of ground-state properties is done by the variational

Jastrow–Feenberg ansatz for the ground state:

Ψ0(r1, . . . , rN ) = exp
1

2

⎡

⎣
∑

i< j

u2(ri , r j ) +
∑

i< j<k

u3(ri , r j , rk)

⎤

⎦ . (2)

The correlation functions ui (r1, . . . , ri ) are obtained by minimizing the ground-state
energy E0

δ

δui (r1, . . . , ri )

〈
Ψ0

∣∣H
∣∣Ψ0

〉
〈
Ψ0

∣∣Ψ0
〉 = 0. (3)

Themethod is known as Jastrow–Feenberg–Euler–Lagrange (JF-EL)method. The key
quantity obtained from such a ground-state calculation and used for the calculation of
the dynamics is the static structure function S(k). We show in Fig. 1 a comparison of
different calculations and experiments.
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Fig. 1 Static structure function S(k) for 4He at equilibrium density. We compare JF-EL, Monte Carlo [15],
and experiments [16–19]. The figure is from Ref. [6] (Color figure online)

3 Many-Body Dynamics

Dynamics is treated at the same level as the ground state: We write the dynamic wave
function as containing a small, time-dependent component

|Ψ (t)〉 = e−iE0t/�
e
1
2 δU (t) |Ψ0〉

[〈Ψ0|e 1
2 δU†(t)e

1
2 δU (t)|Ψ0〉]1/2

, (4)

where
∣∣Ψ0

〉
is the ground state and δU (t) is an excitation operator that is written, for

the case of bosons, in exactly the same manner as the ground-state wave function:

δU (t) =
∑

i

δu1(ri ; t) +
∑

i< j

δu2(ri , r j ; t) + · · · (5)

The amplitudes δui (r1, . . . ri ; t) are determined by the time-dependent generaliza-
tion of the Ritz’ variational principle:

δ

δui (r1, . . . ri ; t)
∫
dt 〈Ψ (t)|H − i�∂t |Ψ (t)〉 = 0. (6)

Assuming that δU (t) is a small perturbation of the ground-state correlations, we
can linearize the equations of motion for δui (ri , . . . ; t), leading to the density–density
response function χ(k, ω) from which we obtain the dynamic structure function
S(k, ω) = �m χ(k, ω):

χ(q, ω) = S(q)

�ω − εF(q) − 	(q, �ω)
+ S(q)

−�ω − εF(q) − 	(q,−�ω)
, (7)
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where εF(k) = �
2k2/2mS(k) is the Feynman excitation spectrum, and the self-energy

is given by an integral equation

	(q, �ω) = 1

2

∫
d3k1d3k2
(2π)3ρ

×
δ(q − k1 − k2)

∣∣∣Ṽ3(q;k1,k2)
∣∣∣
2

�ω − εF(k1) − 	(k1, �ω − εF(k2)) − εF(k2) − 	(k2, �ω − εF(k1))
.

(8)

Ṽ3(k;p,q) is the three-phonon vertex

Ṽ3(q;k1,k2) = �
2

2m

√
S(k1)S(k2)

S(q)

[
q · k1 X̃(k1) + q · k2 X̃(k2) − q2 X̃3(q,k1,k2)

]
,

(9)
where X̃(k) = 1 − 1/S(k). X̃3(q,k1,k2) is the fully irreducible three-phonon cou-
pling matrix element. In the simplest approximation, X̃3(q,k1,k2) is replaced by the
three-body correlation ũ3(q,k1,k2); this approximation ensures that long-wavelength
properties of the excitation spectrum are preserved [20]. Improved calculations [21]
sum a 3-point integral equation to ensure that exact properties of X̃3(q,k1,k2) as
q → 0 and of the Fourier transform X3(r1, r2, r3) for |r1−r2| → 0 and |r1−r3| → 0
are satisfied [21]. We include these corrections routinely; they have a visible effect
only for wave vectors between the maxon and the roton. The CBF-Brillouin-Wigner
(CBF-BW) approximation [22] is obtained by omitting the self-energy corrections in
the energy denominator of Eq. (8).

The implementation of the method outlined only briefly here has led to an unprece-
dented agreement between theoretical predictions [6] and experimental results [23]
which are still being explored [5].

In Fig. 2, we compare the experimental dynamic structure function S(k, ω) (top
panel) [23] with results from DMBT calculations (middle panel) and CBF-BW cal-
culation [22] (bottom panel). In the CBF-BW calculation, we have, of course, used
the best-available values for S(k) in the three-phonon vertex (9) and included the
irreducible part X̃3(q;k1,k2) as described in Ref. [21]. Thus, the numerical values
are different from those of Ref. [22] but the physics described is basically the same.
The theoretical values are shown at a density of ρ = 0.0215Å−1, where the pressure
derived from the theoretical equation of state vanishes [6].

The most significant difference between the CBF-BW approximation and the full
solution of the integral equation (8) is the void regime above the phonon–maxon–roton
dispersion relation. This is caused by the fact that, in the CBF-BW approximation,
excitations decay into Feynman phonons εF(k) and not into the physical phonons.
Furthermore, CBF-BW overestimates the excitation energies in the maxon region,
while DMBT agrees with the experiment.
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Fig. 2 A comparison of theoretical and experimental data for the dynamic structure function S(k, ω) from
experiments [5,23] and two versions of our theory: The middle figure is based on the solution of the integral
equation (8), the lowest figure shows the CBF-BW approximation; the only difference to previous work
[22] are more accurate input functions S(k) and X3(r1, r2, r3) (Color figure online)

4 Phonon Dispersion

The theoretical phonon dispersion relation is obtained by solving the implicit equation

ε0(k) = εF(k) + 	(k, ε0(k)). (10)
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At long wavelengths, the phonon dispersion relation is

ε0(k) ≈ �ck(1 − γ k2), (11)

where c is the speed of sound and γ is the phonon dispersion coefficient. If γ < 0, we
speak of anomalous dispersion, long-wavelength phonons are damped.

To obtain the dispersion coefficient γ , we have fitted both experimental and theo-
retical data by a polynomial of the form

ε0(k) = �ck
(
1 − γ k2 + α3k

3 + α4k
4
)

, (12)

from which the phonon dispersion coefficient was extracted. The polynomial form
turned out to be more flexible than the Padé approximation [1,2]

ε0(k) = �ck

(
1 − γ k2

1 − k2/Q2
a

1 + k2/Q2
b

)
. (13)

In particular, the Padé approximation (13) does not contain the term proportional to
k3 which can be calculated analytically from the asymptotic form of the microscopic
two-body interaction. Assuming the typical asymptotic form V (r) = C6r−6, one
arrives at [24–26]

α3 = π2

24

ρ

mc2
C6. (14)

We should note that fitting procedure should not be understood as a rigorous low-k
expansion in the sense of a Taylor expansion of the dispersion relation ε0(k) around
k = 0, but rather as a fit to the data in the theoretically and experimentally relevant
regime. The fit works well for k < 0.6Å−1.

To explain the fact that the above fitting procedure should not be considered to be a
rigorous Taylor expansion, we must review a little more of the theoretical background.
The Feynman spectrum εF(k) is derived from a Bogoliubov formula

εF(k) =
√
t2(k) + 2t(k)Ṽp−h(k), (15)

where t(k) = �
2k2/2m is the kinetic energy, and

Ṽp−h(k) ≡ ρ

∫
d3rVp−h(r)e

ik·r (16)

is the “particle-hole” interaction or, in the language of Aldrich and Pines [27] the
“pseudopotential.” For what follows, we only need the property that, for large dis-
tances, Vp−h(r) falls off like the bare interaction, i.e., Vp−h(r) ∼ C6r−6 for r → ∞.
Then, Ṽp−h(k) has the expansion

Ṽp−h(k) = Ṽp−h(0+) + V2k
2 + π2

12
ρC6k

3, (17)
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Fig. 3 The figure shows the full particle–hole interaction Ṽp−h(k) (solid red line, left scale) and the low-

momentum expansion (17) (solid blue line) at a density ρ = 0.0215Å−3. Also shown are the Feynman
dispersion relations obtained from the Bogoliubov relation (15) for these two cases (red and blue dashed
lines, right scale) (Color figure online)

where Ṽp−h(0+) = ρ
∫
d3rV (r) = mc2 is related to the speed of sound, and V2 is

the second moment V2 = −ρ
6

∫
d3rVp−h(r)r2. Higher moments do not exist due to

the van der Waals tail.
Figure 3 shows the full Ṽp−h(k) the way it is used in the Bogoliubov formula (15)

and the expansion (17) as calculated from the potentialmoments (left scale). Evidently,
the agreement is very good only in the regime 0 ≤ k ≤ 0.1Å−1 which is inaccessible
to neutron scattering measurements. The figure also shows the Feynman spectrum
εF(k) as obtained from the full Ṽp−h(k) and from the moment expansion (right scale).

As shown below, both the DMBT and the CBF-BW results for γ agree quite well
with the experimental data, whereas the Feynman approximation predicts anomalous
dispersion at all densities.

The calculated phase velocities c = ε0(k)/�k are given in Fig. 4 for densities
covering the full range between the saturated vapor pressure and solidification. Also
shown are experimental data [5,23] at four pressures corresponding to the same density
range. Clearly the agreement is excellent. Only a very small shift in density is observed
between the theoretical calculations and the experimental results, already discussed
in previous publications [5,23].

The polynomial expression (12) provides an excellent fit of the theoretical curves
in the small wave vector range. In practice, fits of the experimental curves were done
in the range 0.18 < k < 0.6Å−1, the lower bound being determined by the neutron
detectors smallest angle. The highest bound was determined as the maximum wave
vectorwhere stable fits could be obtained using the form (12). Thiswas also verified for
the theoretical curves; for the latter, the fit range could be extended to k = 0, without
affecting significantly the results of the fits, as seen in Fig. 5. Figure 5 shows, for
completeness, DMBT results obtained by fitting the dispersion relation in the ranges
0.0–0.6Å−1 (dash-dotted red line) and 0.2–0.6Å−1 (solid red line).
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curves for densities close to the experimental values given above. The black dots at k = 0 indicate the
sound velocities determined by ultrasonic techniques [28] (Color figure online)
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the dispersion coefficient coming from the Feynman spectrum (15) (light blue line) (Color figure online)

The experimental results have been analyzed using the polynomial expression (12)
to determine the dispersion coefficient γ for several 4He densities. The speed of sound
c determined by the fit agrees well with the well-known values measured by ultrasonic
or thermodynamic techniques [28,29], as can be seen in the extrapolations to k = 0 in
Fig. 4. The agreement is not perfect, however, and this affects the value of the next term
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Table 1 This table shows in columns 2–6 the calculated values �c, the speed of sound c, the Grüneisen
constant u = (ρ/c)(dc/dρ) and the phonon dispersion coefficient γF in Feynman approximation, and as
obtained by fitting the dispersion relation by the form (12). Columns 7–9 give the corresponding quantities
obtained, as far as possible, from experiments or from Monte Carlo simulations

ρ (Å−3) �c (meVÅ) c (m/s) u γF γ c u γ

JF-EL DMBT expt./DMC

0.0210 1.466 222.7 2.738 −2.221 − 1.804 211.5 3.080 −1.85

0.0215 1.561 237.2 2.628 −1.946 − 1.495 227.0 2.944 −1.56

0.0220 1.657 251.7 2.534 −1.710 − 1.223 242.6 2.832 −1.29

0.0225 1.752 266.2 2.453 −1.510 − 0.906 258.2 2.738 −1.04

0.0230 1.848 280.7 2.384 −1.333 − 0.760 274.0 2.657 −0.81

0.0235 1.944 295.3 2.323 −1.182 − 0.541 289.9 2.588 −0.60

0.0240 2.040 309.9 2.269 −1.046 − 0.330 305.9 2.529

0.0245 2.136 324.6 2.222 −0.925 − 0.127 322.1 2.476

0.0250 2.234 339.4 2.179 −0.815 0.087 338.5 2.430

0.0255 2.331 354.2 2.141 −0.713 0.311 355.0 2.388

0.0260 2.429 369.1 2.107 −0.619 0.571 371.7 2.532

The experimental results for the dispersion coefficient γ have been obtained by interpolating the data of
Ref. [3] at the densities in col. 1 by a quadratic polynomial

in the expansion, the dispersion coefficient γ . We thus show in Fig. 5 the curves for γ

determined using either the fitted values of c, or the ultrasonic ones. In the first case,
we find a very good agreement with the data of Rugar and Forster [3]. In the second
case, the values are shifted (as expected from the systematic shift between the sound
velocities determined by neutrons and those from ultrasonic data), but the density
dependence is in excellent agreement with that predicted by theory. The systematic
shifts between neutron and ultrasound measurements are within error bars.

For completeness, we have also extracted other data from both the calculations and
the experiments. Table 1 gives the calculated coefficients �c, the speed of sound c, the
Grüneisen constant u and the dispersion coefficient γ . Static quantities such as c and
u can also be obtained from Monte Carlo simulations.

Evidently, the agreement between the DMBT results and the experiment is excel-
lent at all densities. The dispersion coefficient γ turns positive above ρ ≈ 0.0245Å−3,
meaning that long-wavelength phonons can propagate freely only at high pressures.
The Feynman approximation predicts, on the other hand, a negative dispersion coef-
ficient at all densities.

5 PhononMean-Free Path

If γ < 0, a phonon of energy/momentum (�ω, k) can decay into two phonons of lower
energy and longer wavelength. As a consequence, the self-energy becomes complex
on the phonon dispersion relation. The onset of the imaginary part of an excitation
of energy and momentum (�ω, k) is at the critical energy �ωcrit = 2ε0(k/2), where
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ε0(k) is the dispersion relation calculatedwithDMBT, see Eq. (10). At a corresponding
critical wave number kcrit determined by solving 2ε0(k/2) = ε0(k) for k, a phonon
can decay into two phonons, parallel to the original phonon but with half the wave
number. At this point, the imaginary part of the self-energy is [6,30]

	(k, �ω) = −|Ṽ3(k;−k/2,−k/2)|2k
16πρε′

0(k/2)

√
2ε0(k/2) − �ω

ε′′
0(k/2)

. (18)

Phononswith lowerwave numbers, k < kcrit , havemore decay channels because the
wave vectors of the produced phonons need not be parallel to the original phonon; this
angular spread is discussed further below. Phonons with wave numbers k > kcrit do
not decay into pairs of phonons and have infinite lifetime in the DMBT approximation.
However, higher-order processes, i.e., decay into three and more phonons, lead to a
long, but finite lifetime also for k > kcrit.

The lifetime of phonons with k < kcrit can be readily calculated from the imaginary
part of the self-energy,

τ(k) = � �m[	(k, �ε0(k), k)]−1 (19)

The mean-free path of a phonon, important for the suggested application of superfluid
4He for dark matter detection mentioned above, can be obtained from

d(k) = vg(k) τ (k), (20)

where vg = dω(k)
dk is the group velocity.

Evidently, two things are needed for a reliable theoretical prediction of the phonon
lifetime τ(k) and of the mean-free path d(k). (1) An accurate dispersion coefficient is
required for the low-momentum kinematics,

k = q + p (21)

ε0(k) = ε0(q) + ε0(p) (22)

which in particular determines the range of momenta where phonon damping occurs.
(2) The three-phonon vertex V3 is required for an accurate damping strength. The
comparison of the dynamic structure function between experiment and the DMBT
result in Fig. 2 shows that DMBT is accurate enough that Eqs. (19) and (20) indeed
provide a reliable theoretical prediction of phonon lifetime and mean-free path.

Figure 6 shows our results for the phonon mean-free path d(k) in both CBF-BW
approximation (left panel) and in DMBT (right panel) for several helium densities ρ.
The density range is smaller in the latter case, because the dispersion relation is not
anomalous anymore for ρ � 0.0245Å−3, see the dispersion coefficient γ shown in
Fig. 5. In the CBF-BW calculation, phonons decay by producing Feynman phonons,
which overestimates the anomalous dispersion and which have a negative γ for all
densities considered here (see Fig. 5). Therefore, CBF-BW yields a finite mean-free
path even for ρ = 0.0260Å−3. In fact d(k) is almost independent of ρ and thus of
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(Color figure online)

the pressure in the CBF-BW approximation, while the much improved DMBT result
shows that the range of momenta where phonons can decay strongly depends on ρ,
hence on the pressure. While CBF-BW predicts a minimal decay length of about
0.1µm for all densities, the DMBT results show that the minimal decay length is
1–10µm around the equilibrium density, and increases significantly with density and
pressure, because γ crosses zero and becomes positive at high density, Fig. 5, until
the phonons do not decay anymore for densities higher than 0.0240Å−3,

While the DMBT calculation predicts a much smaller range of wave numbers at
which phonons are dampened, the values for mean-free path d(k) at different densities
are almost identical for a given k, if there is damping at all. In fact, the d(k) values
predicted by CBF-BW and DMBT are essentially the same. The reason is that the
lifetime and thus the mean-free path are mostly determined by the vertex V3, which
is the same for CBF-BW and DMBT. The strength of damping does depend on the
first derivative of the dispersion which, however, for the small k range relevant here
is very similar in all approximations (Feynman, CBF-BW, and DMBT)—only the
higher-order derivatives, essential for the correct decay kinematics, are sensitive to
the approximation.

6 Inelastic Currents

Anomalous dispersion is a prerequisite for phonon decay, but the deviation of the
dispersion relation from a linear dispersion is, in the wave number regime under
consideration here, hardly visible, see Fig. 4. Therefore, a phonon decays into a pair
of more or less collinear phonons. The angular distribution of these decay phonons can
be obtained from the transport current, which is the second-order expectation value
of the current operator in the fluctuations δU (r1, . . . , rN , t)
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j(2)(r, t) ≡ 1

4

〈
Ψ0

∣∣∣δU∗ ĵ(r) δU
∣∣∣Ψ0

〉

= �N

8mi

∫
d3r2 . . . d3rNΨ 2

0

[
δU∗(t)∇1δU (t) − c.c.

]
(23)

The derivation ofworkable formulas is somewhat tedious, and some essential stepswill
be presented in “Appendix.” A detailed derivation for the case of impurity scattering
off the 4He surface may be found in Ref. [8], and for the case of impurity and 4He
scattering in Ref. [7].

The decay of a phonon with wave vector k produces two phonons according to
the kinematics (21) and (22). We are interested in a measure for the probability that a
decay product is ejected in direction e (e is a unit vector with Euler angles θ and ϕ).
For this purpose, we calculate the rate of inelastic phonon current in direction e, for
which we obtain

d

dt
j (2)(e) = 1

mS(k)

∫
d3q

(2π)3ρ
q δ

(
e − q

q

)
�m σ(k,q, ω) (24)

The δ(e − q/q) obviously selects only phonons with wave vector q parallel to the
direction of interest. Here, σ(k,q, ω) is

σ(k,q, ω) = 1

2

∣∣∣Ṽ (k,k − q,q)

∣∣∣
2

�ω − ε0(|k − q|) − ε0(q) + iη
(25)

The integration over q yields the self-energy
∫ d3q

(2π)3ρ
σ (q;k, ω) = 	(k, ω), see

Eq. (8). For the calculation of σ(k,q, ω), we have replaced the non-local self-energy
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Fig. 7 The angular dependence of the decay rate of phonons produced by the decay of an initial phonon
with wave number k. θ is the angle of the decay phonons with respect to the direction of the initial phonon.
The density is ρ = 0.0215Å−3 (Color figure online)
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appearing in Eq. (8) by the dispersion relation (10); this is legitimate in the low-
momentum regime under consideration.

Figure 7 shows, at the density ρ = 0.0215Å−3, the DMBT prediction for the rate
with which a phonon with wave number k decays into phonons with direction θ with
respect to k (obviously, the rate does not depend on ϕ). The figure summarizes both
the kinematics and the strength of phonon damping by decay into lower-momentum
phonons. In agreement with the decay length in the right panel of Fig. 6, the decay rate
is highest for phonons with momentum k close to 0.5Å−1. Figure 7 shows that these
higher-energy phonons decay into lower-energy phonons which lie in a narrow cone
(small θ ). Phonons with k = 0.2−0.3Å−1 decay at a smaller rate (have a larger decay
length, see Fig. 6), but generate phonons in a larger cone up to angles of θ = 20◦.

7 Conclusion

The dispersion and damping of low-momentum phonons in superfluid helium-4 is of
practical interest for cosmological applications in weakly interacting particle detectors
to test hypotheses for dark matter. We presented a comparison of the low-momentum
dispersion in 4He between experimental data and the results from dynamicmany-body
theory (DMBT) and find excellent agreement. The dispersion obtained with DMBT is
a significant improvement over the CBF prediction in the full momentum and energy
range of interest. This allows us to make quantitative predictions for the decay of
phonons due to the anomalous dispersion without phenomenological or experimental
input parameters. The phonon mean-free path is similar to CBF-BW results, but the
CBF-BW approximation fails to predict the pressure dependence, leading to decay
lengths as short as 0.1µm. This shortcoming is remedied by the DMBT which shows
that the minimal decay length is strongly pressure dependent.
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Appendix: Transport Current

We present in this appendix the essential steps of the derivation of the transport cur-
rents; the details of the derivation are rather similar to the ones for the impurity currents
derived in Refs. [7] and [8]. We derive the inelastic current at the level of pair fluctu-
ations, i.e., we truncate the expansion (5) at the two-body level. To derive the integral
equation (8), one needs to include fluctuations to all orders [6]; our result will be
plausible enough such that we can avoid these complications.
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As in the derivation of the linearized equations ofmotion for the correlation operator
(5), leading to the density–density response function χ(k, ω), Eq. (7), it is convenient
to apply a weak harmonic perturbation (e.g., induced by a neutron beam)

Uext(r; t) =
[
Uext(r)e−iωt +U∗

ext(r)e
iωt

]
eηt (26)

As usual, the perturbation is switched on adiabatically with an infinitesimal rate η > 0.
After linearization, the positive and negative frequency terms lead to a corresponding
response of the correlation operator δU (t) split into (complex) positive and negative
frequency terms; similarly for the response of one-body, two-body densities, δρn .

Inserting the correlation operator (5) at the two-body level in the transport currents
(23) gives (we omit the time dependence for clarity)

j(2)(r) = �

4mi

[
δρ∗

1 (r1)∇1δu1(r1) +
∫

d3r2δρ
∗
2 (r1, r2)∇1δu2(r1, r2)

]
, (27)

where we have used that we are only interested in the time-averaged currents, since
only those are observable by a detector.

While looking very simple, the expression (27) for the current contains both the
fluctuations of the correlation and of the densities. In accordance with the derivation
of the self-energy 	(k, �ω), summarized in the text, we express δu1 and δρ2 in terms
of δρ1 and δu2. It turns out advantageous to introduce δv1(r; t) such that

δρ1(r1) = ρ [S ∗ δv1] (r1), (28)

where we define the convolution product with the static structure function

[S ∗ f ] (r1) = f (r1) + ρ

∫
d3r2h(r1, r2) f (r2) (29)

where h(r1, r2) = g(r1, r2) − 1 and g(r1, r2) is the pair distribution function.
In linear order, we can then write

δv1(r) = δu1(r) + δw1(r)

δw1(r) = ρ

∫
d3r2h(r1, r2)δu2(r1, r2)

+ρ2

2

∫
d3r2d

3r3Y (r1; r2, r3)δu2(r2, r3), (30)

where the Y (r1; r2, r3) is the set of those contributions to the three-body distribution
function that is non-nodal in the point r1; details can be found in Ref. [6].

In all further manipulations, we use the “convolution approximation” which is the
simplest approximation for high-order distribution functions that maintains the exact
long-wavelength properties. In convolution approximation, Y (r1; r2, r3) is simply

Y (r1; r2, r3) = h(r1, r2)h(r1, r3). (31)
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Using Eqs. (30) and (31) and expressing δρ2(r1, r2) in terms of δρ1(r) and the
fluctuation of the pair distribution function δg(r1, r2),

δρ2(r1, r2) = ρ [δρ1(r1) + ρ1(r2] g(r1, r2) + ρ2g(r1, r2)

we obtain

j(2)(r; t) = �

4mi

{
δρ∗

1 (r1)
[
∇1δv1(r1) − ρ

∫
d3r2δu2(r1, r2)∇1h(r1, r2)

−ρ2

2
∇1

∫
d3r2d

3r3h(r1, r2)h(r1, r3)δu2(r2, r3)
]

+ρ

∫
d3r2h(r1, r2)∇1δu2(r1, r2)δρ∗

1 (r2)

+ρ2
∫

d3r2δg
∗(r1, r2)∇1δu2(r1, r2)

}
. (32)

Finally, we eliminate δg(r1, r2) using the convolution approximation:

δg(r1, r2) =
∫

d3r3h(r1, r3)h(r2, r3)δρ1(r3) + [S ∗ δu2 ∗ S] (r1, r2). (33)

which yields the lengthy expression for the current

j(2)(r1) = �

4mi
δρ∗

1 (r1)∇1δv1(r1) (34)

+ �ρ

4mi

∫
d3r2∇1 [δu2 ∗ S] (r1, r2)h(r1, r2)δρ∗

1 (r2) (35)

+ �ρ

4mi
δρ∗

1 (r1)
∫

d3r2 [S ∗ δu2] (r1, r2)∇1h(r1, r2) (36)

+ �

4mi

∫
d3r2

[
S ∗ δu∗

2 ∗ S
]
(r1, r2)∇1δu2(r1, r2) (37)

The first term (34) is the current in Feynman approximation which is the elastic
channel. The second and third terms, (35) and (36), are correlations between the
density fluctuation δρ1 and the pair correlation fluctuation δu2. We will show below
that only the fourth term (37) contains the decay rate of an elementary excitation (in
the above derivation given in Feynman approximation).

We now need explicit expressions for the one- and two-body fluctuations. These
come from solving the equations of motion, formally given by Eq. (6), in detail given
in Refs. [6,8]. We can assume that the perturbation Uext(r) is a plane wave with wave
vector q which induces a plane wave density fluctuation, propagating with a phase
velocity given by the dispersion relation, ω0(q) = ε0(q)/�:

δρ(r; t) = λρei(q·r−ω0(q)t)eηt , (38)
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where λ � 1 is an arbitrary strength factor.
The two-body correlation fluctuations are then coupled to the density fluctuation

according to the equations of motion. Their spatial Fourier transform is given by

ũ2(k1,k2) = λ(2π)3δ(q + k1 + k2)
ε0(q) − ε0(k1) − ε0(k1) + i�η

Ṽ (q;k1,k2)√
S(q)S(k1)S(k2)

e−iω0(q)t)+ηt

(39)

We finally use Eq. (38) for δρ1(r) and Eq. (39) for δu2(r1, r2) in the current j(2)(r)
above. The fourth term (37) which becomes

λ2
�

4m

∫
d3k1d3k2
(2π)3ρ

δ(q + k1 + k2)k1
1

S(q)

∣∣∣Ṽ (q;k1,k2)
∣∣∣
2

(ε0(q) − ε0(k1) − ε0(k2))2 + �2η2
e2ηt

In the limit of adiabatically switching on the perturbation, η → 0, we need to calculate
the rate with which the inelastic current is generated, i.e., the time derivative. Using

d

dt

e2ηt

(ε0(q) − ε0(k1) − ε0(k2))2 + �2η2
→ 2π

�
δ(ε0(q) − ε0(k1) − ε0(k2)) (40)

we obtain the rate of the total inelastic current d
dt j

(2) apart from the arbitrary strength
factor λ2. Selecting only the inelastic phonon current (the decay products) in a specific
direction e relative to the incoming phonon with wave vector q, we obtain the rate
Eq. (24). Note that the two mixed term contributions to j(2)(r), Eqs. (35) and (36), do
not have a finite contribution to the rate in the adiabatic limit.

References

1. H.J. Maris, Rev. Mod. Phys. 49, 341 (1977)
2. H.J. Maris, Phys. Rev. A 8, 1980 (1973). https://doi.org/10.1103/PhysRevA.8.1980
3. D. Rugar, J.S. Foster, Phys. Rev. B 30(5), 2959 (1984)
4. R. Sridhar, Phys. Rep. 146(5), 259 (1987)
5. K. Beauvois, J. Dawidowski, B. Fåk, H. Godfrin, E. Krotscheck, H.J. Lauter, J. Ollivier, A. Sultan,

Phys. Rev. B 97, 184520 (2018)
6. C.E. Campbell, E. Krotscheck, T. Lichtenegger, Phys. Rev. B 91, 184510/1 (2015)
7. E. Krotscheck, R. Zillich, J. Chem. Phys. 115(22), 10161 (2001)
8. E. Krotscheck, R.E. Zillich, Phys. Rev. B 77(16), 094507 (2008)
9. K. Schutz, K.M. Zurek, Phys. Rev. Lett. 117, 121302/1 (2016)

10. S. Knapen, T. Lin, K.M. Zurek, Phys. Rev. D 95, 056019 (2017)
11. H.J. Maris, G.M. Seidel, D. Stein, Phys. Rev. Lett. 119, 181303 (2017)
12. R.K. Romani, D.McKinsey, S. Hertel, A. Biekert, J. Lin, D. Pickney, A. Serafin, V. Velan. Probing sub-

GeV dark matter with superfluid helium at HeRALD (2019). https://absuploads.aps.org/presentation.
cfm?pid=15217

13. J. Tiffenberg, M. Sofo-Haro, A. Drlica-Wagner, R. Essig, Y. Guardincerri, S. Holland, T. Volansky,
T.T. Yu, Phys. Rev. Lett. 119, 131802 (2017). https://doi.org/10.1103/PhysRevLett.119.131802

14. R.A. Aziz, F.R.W. McCourt, C.C.K. Wong, Mol. Phys. 61, 1487 (1987)
15. J. Boronat,Microscopic approaches to quantum liquids, inConfinedGeometries, eds. byE.Krotscheck,

J. Navarro (World Scientific, Singapore, 2002), pp. 21–90

123

https://doi.org/10.1103/PhysRevA.8.1980
https://absuploads.aps.org/presentation.cfm?pid=15217
https://absuploads.aps.org/presentation.cfm?pid=15217
https://doi.org/10.1103/PhysRevLett.119.131802


Journal of Low Temperature Physics (2019) 197:113–129 129

16. R.A. Cowley, A.D.B. Woods, Can. J. Phys. 49, 177 (1971)
17. E.C. Svensson, V.F. Sears, A.D.B. Woods, P. Martel, Phys. Rev. B 21, 3638 (1980)
18. H.N. Robkoff, R.B. Hallock, Phys. Rev. B 24, 159 (1981)
19. M.R. Gibbs, K.H. Andersen, W.G. Stirling, H. Schober, J. Phys. Condens. Matter 11, 603 (1999)
20. C.C. Chang, C.E. Campbell, Phys. Rev. B 13(9), 3779 (1976)
21. C.E. Campbell, E. Krotscheck, Phys. Rev. B 80, 174501/1 (2009)
22. H.W. Jackson, Phys. Rev. A 8, 1529 (1973)
23. K. Beauvois, C.E. Campbell, B. Fåk, H. Godfrin, E. Krotscheck, H.J. Lauter, T. Lichtenegger, J.

Ollivier, A. Sultan, Phys. Rev. B 94, 024504 (2016)
24. M.P. Kemoklidze, L.P. Pitaevskii, Zh. Exsp. Teor. Fiz. 59, 2187 (1970)
25. M.P. Kemoklidze, L.P. Pitaevskii, Sov. Phys. JETP 32, 1183 (1971)
26. E. Feenberg, Phys. Rev. Lett. 26, 301 (1971)
27. C.H. Aldrich, D. Pines, J. Low Temp. Phys. 25, 677 (1976)
28. B.M. Abraham, Y. Eckstein, J.B. Ketterson, M. Kuchnir, P.R. Roach, Phys. Rev. A 1(2), 250 (1970).

https://doi.org/10.1103/PhysRevA.1.250
29. F. Caupin, J. Boronat, K.H. Andersen, J. Low Temp. Phys. 152, 108 (2008)
30. V. Apaja, J. Halinen, V. Halonen, E. Krotscheck, M. Saarela, Phys. Rev. B 55, 12925 (1997)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1103/PhysRevA.1.250

	Transport and Phonon Damping in 4He
	Abstract
	1 Introduction
	2 Ground-State Structure of 4He
	3 Many-Body Dynamics
	4 Phonon Dispersion
	5 Phonon Mean-Free Path
	6 Inelastic Currents
	7 Conclusion
	Acknowledgements
	Appendix: Transport Current
	References




