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Abstract
Starting from a historic perspective, we discuss the use of second sound in experi-
mental investigations of quantized vorticity and quantum turbulence in the two-fluid
temperature regime of superfluid 4He. Starting with the theoretical prediction of sec-
ond sound by Tisza and Landau and its experimental discovery by Peshkov, we briefly
review the pioneering experiments of Hall, Vinen and others that have contributed
in an essential way to our current understanding of quantum turbulence in superfluid
4He, with an emphasis on relevant research performed over the last two decades in our
laboratory in Prague. We then propose further dedicated experiments where second
sound can be used both as a generator and detector of quantum turbulence.

Keywords Superfluid 4He · Second sound · Quantum turbulence

1 Discovery of Second Sound and Its Basic Properties

The proposition that heat in liquid 4He below the λ-point propagates as a wave can
be attributed to Tisza [1], who also calculated the velocity of such a heat wave (for
comprehensive historical context, see [2]). The existence of such a heat, or entropy,
wave is based on the phenomenological two-fluid description of superfluid 4He, which
for historical reasons is called He II. The two-fluid model, introduced by Tisza [3] and
further developed on a more rigorous basis by Landau [4–6], states that He II can
be thought of as consisting of two fluids—a normal fluid and a superfluid—each
possessing an independent density and velocity field (ρn , vn and ρs , vs, respectively)
with total density and mass flow given by the sum of the components. The normal
component has finite entropy and viscosity, both of which vanish for the superfluid
component. Landau predicted that there should exist two different types of waves
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in superfluid helium: ordinary sound and heat waves which he called second sound,
similar in nature to the heat waves proposed by Tisza.

The usual longitudinal sound mode in fluids, representing a propagating density
wave, also exists in He II and is termed first sound. Here the normal and superfluid
components oscillate in phase, so that the temperature, corresponding to the ratio of
their densities, remains approximately constant. In the second sound mode, however,
the normal and superfluid components oscillate in anti-phase with each other so that
the total density ρ = ρn +ρs and pressure remain constant. Because the entire entropy
content is carried by the normal fluid, second sound can be considered to be an entropy
or temperature wave. The existence of the theoretically predicted second sound was
subsequently confirmed experimentally by Peshkov [7], who also confirmed [8] the
validity of Landau’s calculation of the speed of second sound at very low temperature.
Second sound in He II can be generated and detected by various means and will be
discussed in more detail below, but perhaps the simplest method is to generate it by
applying an ac voltage of frequency f across a resistive heater and to detect it by a
sensitive thermometer at frequency 2 f .

Since its discovery, second sound in He II has been extensively investigated. Its
observed velocity at low amplitude u20 at the saturated vapor pressure, based on exper-
iments of several low temperature research groups, is accurately known and has been
conveniently tabulated by Donnelly and Barenghi [9]. By lowering the temperature
below Tλ, u20 quickly rises from zero to about 20 m/s and displays two extrema—a
very shallow maximum at 1.65 K and a minimum at around 1.1 K—and then, it rises
toward its theoretical zero-temperature limit of u10/

√
3, where u10 ≈ 240 m/s [9] is

the first sound velocity.
The velocity of a second sound traveling wave depends on its amplitude and, to a

first approximation, can be written as

u2 = u20(1 + βΔT ); β = ∂

∂T
ln

(
u320

C

T

)
. (1)

Here, ΔT is the wave amplitude, u20 is the velocity of a wave of infinitesimal ampli-
tude, and C denotes the heat capacity per unit mass of liquid helium at constant
pressure. The sign of the nonlinearity coefficient β [10] depends on the temperature
T and pressure p [10,11]. Under saturated vapor pressure, where most experiments
are performed, β is positive at T < Tinv = 1.88 K, passes through zero and becomes
negative for Tinv < T < Tλ. It follows that the wave energy can flow both toward
higher and lower frequencies, leading in particular to the formation of the acoustic
analog of giant oceanic (rogue) waves which can endanger shipping. While realis-
tic controlled experiments on rogue waves are not feasible, second sound provides an
excellent, laboratory-accessible,model systemof nonlinearwave interactions believed
to be involved in their generation. It is indeed easy to experimentally adjust β simply
by changing the temperature, which makes second sound an ideal candidate for testing
nonlinear wave interactions, in particular wave turbulence. These interesting applica-
tions of second sound are, however, beyond the scope of this review—for details, see
[12,13] and references therein.
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Dispersion of second sound, significant only very slightly (of order 1 µK) below
the superfluid transition, is extremely weak [14] and in connection with investigations
of quantum turbulence, can be neglected.

We note that Lu and Kojima observed second sound at low frequencies of order 1
Hz in superfluid 3He-B [15]. By using a cylindrical cavity, they measured the speed
of second sound, of order 1 cm/s, at various pressures. Second sound in superfluid
3He-B is, however, strongly attenuated and to the best of our knowledge was not yet
attempted to use in experimental investigation of quantum turbulence in this quantum
fluid.

2 Quantized Vortices, Quantum Turbulence and Their Interaction
with Second Sound

The idea of quantized circulation belongs to Onsager [16]. It was further developed
by Feynman [17] and experimentally confirmed by Vinen [18]. Quantized vortex lines
exist in the superfluid component of He II and can be viewed as hollow Angström-
sized tubes with fixed circulation κ = h/m4 ≈ 0.997 × 10−7 m2s−1, where h is the
Planck constant and m4 denotes the mass of a 4He atom. Unlike a classical vortex,
which decays due to viscous forces, the superflow around an isolated vortex line is
persistent: By the quantization of circulation, the vortex is topologically protected.

According to classical fluid mechanics, a container filled with an ordinary viscous
fluid rotates as a solid body at constant angular velocity � about the vertical axis.
In rotating He II, the superfluid component becomes threaded by a hexagonal lattice
of rectilinear singly quantized vortex lines with areal density nv = 2�/κ and on
length scales larger that the mean inter-vortex distance 	 = 1/

√
L mimics solid body

rotation. Here L is the vortex line density, i.e., the total length of quantized vortex
lines in a unit volume of He II.

An isothermal He II sample with no quantized vortices would support two inde-
pendent velocity fields. In practice, quantized vortex lines are always present in the
superfluid component of a macroscopic sample of He II [19,20], and interact with the
phonons and rotons that make up the normal fluid. These quasiparticles are scattered
off the vortex cores, giving rise to a mutual friction force acting on the vortex lines as
they move with respect to the normal fluid. As a result, the normal and the superfluid
velocity fields are no longer independent.

Mutual friction can be described via its action on second sound which is attenuated
byvortex lines.Hall andVinen [21,22] studied second sound in rotatingHe II and found
that the second sound is unaltered (in the first approximation) if the wave propagates
in the direction parallel to the vortex lines; however, if the wave propagates in the
direction perpendicular to the vortex lines, the amplitude of the wave is attenuated.

These experimental results are consistent with a mutual friction force (per unit
volume) of the form [21,22]

Fns = B
ρsρn

ρ
�̂ × [� × (vs − vn)] + B ′ ρsρn

ρ
� × (vs − vn) (2)
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where vs and vn are velocity fields averaged over fluid volumes containing many
vortex lines, � is the angular velocity of the container and �̂ is the unit vector in the
direction of�. The experimentally observed quantities B and B ′ are weakly frequency
dependent, but their values are well known and tabulated [9].

Measurements of second sound signals in rotating containers showed a depen-
dence of the attenuation on the angle θ between the vortex lattice and the direction
of propagation of the second sound [23,24]. Assuming that all vortices point in the
same direction, we can write � = 1

2κL�̂ (i.e., the macroscopic superfluid vorticity
ω = 2� and |ω| = κL). Neglecting the non-dissipative terms in the mutual friction,
Eq. (2) reduces to

Fns = −Bκ
ρsρn

2ρ
L (vn − vs) sin2 θ, (3)

which is usually referred to as the “sine squared law”.
Quantum turbulence can be loosely defined as the most general form of motion

of quantum fluids displaying superfluidity [25]. In this review, we consider quantum
turbulence in He II at finite temperatures above 1 K, where it can be studied (and
generated) by second sound. Quantized vortices in the superfluid component usually
take the form of a dynamic tangle that coexists with classical-like turbulent flow of
the normal component, making up what is usually called quantum turbulence (i.e.,
turbulent flow of a quantum fluid). In this sense, quantized vortices are not a necessary
ingredient of quantum turbulence, as one can imagine a two-fluid flow of He II con-
sisting of turbulent normal flow and potential superflow. Indeed, in the hypothetical
case of a macroscopic sample of He II free of quantized vortices [19] (i.e., without
mutual friction coupling the two velocity fields), in an isothermal flow the normal
and superfluid components move independently. This kind of flow cannot be probed
by second sound. In practice, however, remnant vortices always exist in macroscopic
samples of He II and extrinsic nucleation of quantized vorticity is easily triggered even
by low flow velocities of order 1 cm/s [19,26,27].

3 Experimental Determination of Vortex Line Density Using Second
Sound

The intensity of quantum turbulence is usually quantified by the vortex line density
L , i.e., by the total length of a vortex line in a unit volume. This quantity is, however,
not directly detected by the second sound attenuation in the experiment. In view of
the “sine squared law”, Eq. (3), one has to assume how the vortices in the tangle
are arranged as the detected attenuation, i.e., the vortex line density, is scaled by〈
sin2 θ

〉
[28]. As was already discussed, two limiting cases regarding the vortex lattice

correspond to
〈
sin2 θ

〉 = 1 or 0 for second sound wave propagating perpendicularly
or along the vortex lattice, respectively. Experimentally, more relevant edge cases are
a fully isotropic tangle, for which

〈
sin2 θ

〉 = 2/3 and the case of planar vortex loops
lying in planes parallel with the second sound propagation direction (a case important
for thermal counterflow, see Sect. 4) for which

〈
sin2 θ

〉 = 1/2.
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Experimentally, one can measure the damping of a high-frequency second sound
beam propagating through a region of turbulence [29]. However, a more common
experimental arrangement is based on the measurement of the damping constant of
a resonator where a second sound standing wave is created, with the turbulence to
be studied created inside the resonator. The use of a second sound standing wave
greatly improves the signal-to-noise ratio; however, it introduces another poten-
tial complication. The energy dissipation due to the mutual friction is given by
Fns · (vn − vs), which is a spatially dependent quantity for a standing wave inside
the resonator. Second sound attenuation therefore samples the vortex tangle inside the
resonator unevenly, and in fact can be used to detect inhomogeneous distributions of
vortex lines [30]. The effective vortex line density Ln (obtained using Eq. (5) below)
seen by the nth second sound mode is given by (for a one-dimensional resonator and
assuming symmetry around the center of the resonator)

Ln = 〈L(x)〉x − 1

D

∫ D

0
L(x) cos(2πnx) d x, (4)

where L(x) is the “true” distribution and the integration is over the entire one-
dimensional resonator of length D; 〈·〉x denotes spatial averaging. The mode
dependence of Ln is given by the appropriate Fourier component of L(x). For suffi-
ciently high n, the Fourier component can be neglected (due to the convergence of the
Fourier series) and Ln is simply the mean vortex line density in the resonator. Note
that knowing Ln , the inverse problem can be solved and the variation of L(x) could,
in principle, be probed by measuring Ln for different modes of the resonator. How-
ever, this technique is experimentally challenging as it requires multiple high-quality
low-lying modes of the second sound resonator.

Inmost of the Prague experiments [26,28,31,32], earlier experiments byDonnelly’s
group in Eugene [33–35] and recent experiments in Tallahassee [36–39], the second
sound transducers and receivers of identical construction are mounted flush in the
opposing walls of the channel. They consist of a porous (pores of roughly 100 nm)
membrane with one gold-plated side in contact with the channel body. A circular
brass electrode is spring loaded against the other side of the membrane, thus forming
a capacitor with one vibrating plate. The membranes and the channel are held at
a bias voltage, typically Vbias ≈ 100 V, while the backing electrodes are held near
ground. The porous membrane of typically 10 mm in diameter induces a second sound
wave by oscillating and displacing only the viscous normal component of helium,
thereby causing higher local concentration of normal component and hence higher
temperature.To create a second soundwave, themembraneof the transducer is actuated
by sine-wave voltage, created by a function generator, connected to the backing brass
electrode. The channel walls constitute a resonator for such wave, which is detected
using the receiver placed across the resonator, as an oscillating current measured
using a lock-in amplifier between the backing electrode and the ground, induced by
the oscillating biased membrane.

It can be shown [26], that the vortex line density of a homogeneous and isotropic
tangle inside a one-dimensional resonator of the length D (if second sound propagates
across the channel then D is its width) is
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L ∼= 3u2
BκD

ln

(
1 + p2P + √

2p2P + p4P2

1 + P + √
2P + P2

)
� 6πΔ0

Bκ

(a0
a

− 1
)

. (5)

Here, p = a0/a, a0 is the amplitude when there is no flow in the channel and a is
the amplitude with the flow; P = 1 − cos(2πDΔ0/u2); Δ0 is the full width at the
half-maximum height of the second sound resonance peak measured in quiescent He
II. DΔ0/u2 is assumed to be small. For inhomogeneous tangles, Eq. (5) gives Ln

in Eq. (4) for a particular resonance mode used. The simplified version of Eq. (5)
becomes an overestimate of L (by less than 10% at the typical highest experimentally
achievable L ≈ 107 cm−2), however, in view of other uncertainties associated with
second sound attenuation, this over-estimation can typically be neglected. First, the
usual assumption of an isotropic tangle can cause, in view of Eq. (3), an error of
the order of 10%. Second, this method of obtaining L is necessarily relative, as it
compares two levels of attenuation: the calculated value L is relative to the remnant
vorticity present in the quiescent state, which is not directly accessible with second
sound attenuation. Inferences about the remnant vortex line density [40] LR can be
made by comparing the attenuation before turbulence is created and after it decays
[32] with typical values of LR of order 102 cm−2.

Tomeasure L using Eq. (5), one requires only the resonance amplitude a and not the
entire resonance peak. Typically, the amplitude is measured by a lock-in amplifier with
the resonator tuned to one of its resonance frequencies. However, physical processes
of creation and decay of quantum turbulence typically cause sufficiently large and
abrupt changes in the temperature that can overwhelm its control in the cryostat.
Moreover, a longitudinal thermal gradient of up to a few mK is naturally associated
with quantum turbulence created in the particular He II channel flow under scrutiny,
which causes a frequency shift of the second sound resonance, as shown in Fig. 1 for
the case of thermal counterflow. This invalidates the time-resolved measurements of
the second sound amplitude at fixed frequency.We are aware of two ways to overcome
this difficulty.

One may consider the shape of the resonance peak in the plane of the complex
amplitude ã. By plotting the amplitude of the second sound signal in the complex
plane in the vicinity of the resonance for different attenuation levels, see Fig. 2, one
obtains a set of (distorted) circles. For a fixed attenuation, these curves do not depend on
the slight temperature shift. The complex amplitude of the second sound signal at fixed
attenuation level (i.e., constant vortex line density) subject to changes in temperature
or frequency (sufficiently small not to affect mutual friction parameters significantly),
will move only along the “circle” corresponding to the particular level of attenuation.
By measuring the resonances beforehand, one can calibrate, by suitable interpolation,
a patch of the complex plane to obtain the correct real amplitude a from the off-
resonant complex amplitude ã. For more information regarding the implementation
of this method, see Refs. [41,42].

Therefore, it is clear that deviating too far from the central frequency decreases the
resolution. Another difficulty arises when the resonance peaks are disturbed (e.g., by
neighboring spurious resonances)—the circles of the complex amplitude can cross,
and thus, it is not possible to uniquely assign a real resonant amplitude to the complex
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Fig. 1 Increased attenuation of a second sound resonance (the upper and lower families of curves represent
the in-phase and quadrature responses of the lock-in amplifier) with increasing flow velocity (and thus
increasing vortex line density). The shift in the central frequency is caused by the temperature increase.
The data shown were measured in a 7 × 7 mm2 channel at the temperature 1.95 K in thermal counterflow
with heat flux as indicated in the figure (Color figure online)

Fig. 2 Real amplitude from the off-resonant complex amplitude. (left) The second sound resonance in the
plane of the complex amplitude (the color corresponds to the real resonant amplitude) with superimposed
typical trajectory (i.e., a time-dependent signal) measured with fixed excitation frequency. (right) Close-
up of the fixed-frequency measurement. The background color field indicates the real resonant amplitude
corresponding to the complex off-resonant amplitude. The color mapping in the left and right panels is the
same. The arrows in the right panel indicate the time evolution of the signal (Color figure online)

amplitude. These difficulties limit the applicability of the compensation method only
to a neighborhood of the central frequency of the resonance (typically about the width
of the resonance) that depends on the particular shape of the resonance peak.
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Fig. 3 Illustration of three types of quantum two-fluid flows of He II. Thermal counterflow is most easily
generated by placing a heat source at the closed end of a channel which is open to the helium bath at the other
end. Coflow is any flow generated by classical means, for example pressure-driven steady flows or flows
generated by towed grids, i.e., flows where the two components are not forced differently. The last type of
flow, pure superflow, is analogous to thermal counterflow but only the superfluid component flows through
the channel, on average. The flow occurs upon forcing He II by pressure through a superleak—a porous
filter which is impenetrable to the viscous normal component but allows a through-flow of the inviscid
superfluid component (Color figure online)

The Gainesville group recently developed a tracking system to overcome the diffi-
culty of temperature changes occurring during the experiment. Their tracking method
uses a feedback loop to adjust the frequency of the driving ac voltage to minimize the
detected quadrature component and hence track the resonance. When the resonance
frequency is shifted while measuring L , the tracking system ensures that oscillation
takes place at the resonance frequency. For details, we direct the reader to Ref. [43].

4 Second Sound Investigations of Channel Flows of He II

Using mechanical and/or thermal drives, a variety of two-fluid channel flows can be
generated, as illustrated in Fig. 3. Classical-like mechanical forcing (e.g., the action of
compressing bellows or towing a grid through stationary helium) results in a coflow,
the closest analog to classical viscous channel flows, in which the normal fluid and
superfluid move, on average, with the same mean velocity in the same direction. Quite
generally, the two components of He II can also be made to flow, on average, relative
to each other, a situation called counterflow. In the special case of counterflow, termed
thermal counterflow, when one side of the channel is heated and the opposite one
is open to the helium bath and there is no net mass flow, both components move
relative to the channel walls in opposite directions. In another special case called pure
superflow, only a net flow of the superfluid component occurs in the channel, while the
normal component remains (on average) stationary. Pure superflows can be generated
both mechanically (e.g., by compressing bellows, as for coflow) and thermally (as for
counterflow), in both cases using superleaks. All these types of quantum turbulent
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channel flows have been investigated by second sound attenuation. Here we review
only the basic experimental findings.

For thermal counterflow, themass transport by the flowvanishes, i.e.,ρsvs+ρnvn =
0. The entropy deposited into He II by the heat flux per unit area q̇ is carried away by
the normal fluid with velocity vn = q̇/(STρ), where S is the specific entropy of He
II. From the last two equations it follows that the counterflow velocity vns = |vn − vs |
is vns = q̇/(ρs ST ). For coflow and pure superflow, the channel flow velocity is given
by the experimental boundary conditions, e.g., by the rate of volumetric compression
of a bellows used to drive the flow.

Second sound is uniquely suited for the study of quantum turbulence in channel
flows as the channel itself is typically used as the second sound resonator. Second
sound attenuation allows a simple and non-intrusive way of measuring vortex line
density in steady flows and also turbulent dynamics in non-stationary flows, the most
important example of which being the free decay. In addition, by utilizing multiple
resonance modes the spatial distribution of the vortex line density inside the channel
can be studied, although this technique has so far received little attention.

4.1 QuantumTurbulence in Steady Flows

When the quantum turbulence is allowed to remain in a steady state for a sufficiently
long time, the most straightforward and reliable way to measure the vortex line density
is by measuring the full resonance curve, as sketched in Fig. 1. Having access to the
entire resonance curve eliminates problems with the central frequency moving due to
possible temperature shifts.

In channel flows, this technique has been extensively used to characterize the rela-
tionship between the suitably definedflowvelocity for the particular flow (i.e., themass
flow velocity or the counterflow velocity) and the steady-state vortex line density.

Historically, the first quantum turbulent flow to be extensively studied was the
thermal counterflow investigated by Vinen [44–47]. He used a Eureka wire heater for
generating the second sound and a phosphor bronze wire resistance thermometer to
detect it. He found that in its steady state the second sound suffers a fairly severe total
attenuation of the form ζ = ζ0 + ζ ′(W ), where ζ0 is the residual attenuation in the
absence of the longitudinal heat current through the channel, which was translated to
vortex line density through Eq. (5). In particular, it was found that in the steady state,
L scales with vns as

L = γ 2(vns − vc)
2, (6)

where γ is a temperature dependent parameter and vc is small (typically of the order
of 1 mm/s) critical velocity below which no turbulence is observed.

For an unbounded system, any twoflowswith the samemean vns can be transformed
into each other by a Galilean transformation. Thus it is not surprising that the steady-
state relationship (6) can be immediately generalized to any flow with forced nonzero
mean vns, such as the pure superflow, and this has indeed been observed [26]. Real
systems, however, are finite and the velocity of individual components with respect
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to the system walls could, in principle, be important. It is thus remarkable that the
parameter γ was found to be very similar for pure superflow and thermal counterflow
in strongly turbulent flows (i.e., the TII state of thermal counterflow [48]). Contrary to
the weak geometrical dependence of γ , there is evidence that the scaling of the critical
velocity vc with system size is different for pure superflow and thermal counterflow
[26], but further detailed measurements of second sound attenuation for very low
drives in thermal counterflow and pure superflow in channels of different dimensions
are clearly needed.

The situation drastically changes when the components’ mean velocities are not
forced to differ, such as the case of bellows-driven coflow [27]. For this quasi-classical
flow, it was found that

L ∝ v3/2, (7)

where v is now the mass flow velocity. Introducing the quantum length scale—inter-
vortex distance 	 = L−1/2, Eq. (7) can be rewritten as 	 ∝ v−3/4, which resembles
the well-known scaling of the classical Kolmogorov dissipation length scale η with
the Reynolds number Re, i.e., η ∝ Re−3/4. Indeed, it holds quite generally that quasi-
classical quantum turbulence can be consistently described by connecting the rate of
energy dissipation of the flow ε with the vortex line density by the use of the effective
kinematic viscosity νeff [49,50]

ε = −d E

d t
= νeff(κL)2, (8)

i.e., the classical vorticity is identified with the quantity κL in full analogy with
the rotating bucket. As will be shown later, the quasi-classical relationship (8) is
particularly important for the decay of quantum turbulence (where, in fact, it was
historically introduced [49]).

One aspect of steady-state second sound measurements that has so far received
insufficient attention is the use of multiple modes of the resonator to map out inho-
mogeneous distribution of vortex line density. For a simple rectangular channel-like
resonator (i.e., with a cosine-shaped standing second sound wave), the effective vortex
line density seen by the nth resonance mode is given by Eq. (4). So far, this method
has been used [30] only with the two lowest modes for the case of pressure-driven
coflow, where evidence was found of increased vortex line density near the walls
and a homogenizing effect of an upstream grid was observed. This technique, how-
ever, clearly holds greater promise than has so far been experimentally realized and is
currently being thoroughly tested in ongoing experiments in Prague.

4.2 QuantumTurbulence in Non-steady Flows

Second sound attenuation has been fruitfully utilized to study the dynamical behavior
of vortex line density in non-steady quantum flows, in particular the free decay. The
temporal decay of vortex line density has been extensively studied in all three types
of channel flow (Fig. 3). The experimental methodology is identical for all flows: The
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amplitude of the second sound standing wave is measured at resonance for a chosen
resonance mode (usually at a fixed frequency), which is then used to calculate time-
dependent vortex line density via Eq. (5). For time-resolvedmeasurements, it is crucial
that the observed changes in the second sound signal are due to changes in vortex line
density and not due to shifts of the resonance frequency caused by changing temper-
ature. Thus a good temperature stability in the cryostat is important for successful
measurement (usually the stability of the order of 0.1 mK) and, especially for ther-
mally driven counterflow, some compensation procedure, such as the one described
in Sect. 2, is often necessary.

For time-dependent measurements, the changing attenuation of second sound is
accurately reflected only at timescales larger than the natural second sound response
time t sschar, given by the time-dependent inverse of the second sound resonance width
(i.e., product of the quality factor and the time it takes for second sound to propagate
across the resonator). This sets the smallest resolvable timescale. Typically, t sschar ≤
100 ms.

The understanding of the dynamical behavior of vortex line density in coflows and
counterflows has been historically developed along somewhat different lines and we
will briefly discuss them in turn.

4.2.1 Quasi-classical and Coflow Decay

A particularly important class of experiments concerns decaying quantum turbulence
in He II generated by a towed grid in channels of square cross section. The experiments
were performed during the 1990s in Donnelly’s group in Oregon [35,51,52], followed
by Ihas’ group in Gainesville [43] and recently by Guo’s group in Tallahassee [53].
These experiments revealed that the decaying vortex line density is complementary to
a classical fluid dynamical problem of great interest—indeed, the temporal decay of
turbulent energy (and vorticity) in the absence of sustained production is the topic of
many textbooks and reviews. Over a wide range of times, the observed decay follows
L ∝ (t − t0)−3/2, where t0 is the virtual origin time and t = 0 marks the beginning
of the decay. This relation is fully consistent with the quasi-classical picture given by
Eq. (8).

We shall not discuss the complex temporal decay of L displaying several subse-
quent decay regimes; we direct the reader to a review by Skrbek and Sreenivasan
[54]. Recently, decaying grid turbulence has been probed simultaneously by second
sound attenuation and by the visualization of the normal fluid flow by using neutral
excimer He* molecules [38], which allowed for the experimental confirmation [53]
of the theoretically predicted [55] temperature dependent intermittency enhancement
in quantum turbulence.

Quasi-classical decay was observed also in pressure-driven coflow [56] and as a
late decay regime in both pure superflow and thermal counterflow [32]. The second
sound data from the late quasi-classical decay and steady-state scaling of coflow allows
one to determine the effective kinematic viscosity νeff of turbulent He II [27,50,57].
The recent visualization study [38] of the quasi-classical decay of thermal counter-
flow combined with vortex line density measurements provided an independent check
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of Eq. (8). The data from different experiments display general agreement, despite
significant scatter, indicating that the effective viscosity is a well defined parameter.

4.2.2 Dynamical Behavior of Counterflows

In his pioneering experiments, Vinen [44] investigated both steady state and, by pho-
tographing the oscilloscope screen, also the transient behavior of counterflow quantum
turbulence. He also introduced a phenomenological model of counterflow turbulence
based on the concept of a random vortex tangle characterized by a single variable,
the (approximately homogeneous and isotropic) vortex line density L [44]. He argued
that L obeys the following equation (now called the Vinen equation):

d L

d t
= ρn B

2ρ
χ1vnsL

3/2 − κ

2π
χ2L

2 + g(vns), (9)

where χ1 and χ1 are undetermined dimensionless constants and B is the (dimen-
sionless) mutual friction parameter, tabulated by Donnelly and Barenghi [9]. The
arguments leading to Eq. (9) are dimensional; however, the equation was later derived
on a number of assumptions from the laws of vortex dynamics in the local induction
approximation by Schwarz [58]. The first two terms on the right-hand side describe
the production and the decay of turbulence, while the unspecified function g = g(vns)
was included to account for the observation of a small critical velocity vc of the order
of 1 mm/s (see Eq. (6)). Vinen’s approach accounts fairly well for most of the phe-
nomena observed in steady-state counterflow turbulence in relatively wide channels
of order 1 cm.

While the Vinen equation quantitatively describes the steady-state of counter-
flow turbulence (i.e., L ∝ v2ns), the temporal decay of L in counterflow turbulence
was a long-standing puzzle. Indeed, this equation predicts inverse time dependence
L(t) ∝ 1/t which was rarely observed, for example, in the case when spatially inho-
mogeneous turbulence was created by a pair of ultrasonic transducers and detected by
a pulsed ion technique [59] or for low starting L [39]. Most experiments displayed the
predicted t−1 decay for very short time, often followed by a well-pronounced tempo-
rary increase in vortex line density (the so-called bump) and a classical-like t−3/2 decay
at later times. Various explanations of the bump have not been convincing [28,60,61],
and the satisfactory understanding was achieved only recently. In short, following Gao
et al. [39], there are two length scales at which the energy is injected. At small scales,
the energy is taken from the mean flow by the ballooning of favorably oriented vortex
loops and Kelvin waves via the action of mutual friction [58]; this small-scale energy
injection induces a “quantum peak” [62] in the turbulent energy spectrum located
near the quantum scale 	. Additionally, there is a largescale injecting mechanism act-
ing on the scale of the size of the system, i.e., the channel width D. This energy
would normally be distributed along a classical Richardson cascade following a clas-
sical K41 spectrum, however, in the case with an imposed difference between the
normal and superfluid mean velocities, which pulls eddies in the two components
apart, there is additional dissipation across all scales and the spectrum is steeper
than the classical K41; the exact roll-off exponent depends on the temperature and
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heat flux [36,63]. When the counterflow is switched off and the decay starts, the
quasi-classical spectrum is established (it takes roughly the turnover time of the large
eddies) and energy flow to the inter-vortex scale resumes. The quasi-classical spectrum
is established only in finite time, during which the quantum peak in the energy spec-
trum decays to be subsequently partially replenished by the restored energy flux, thus
resulting in temporary increase in L , experimentally seen as a bump in its temporal
decay.

For completeness, let us note here that in thermal counterflow the tangle is found
to be slightly anisotropic [33] and depolarizes during the decay [28].

In pure superflow, the normal fluid is not directly forced but can be entrained by the
turbulent superflow at large scales, although its mean through-flow is blocked by the
superleaks. It is thus plausible that the pure superflow energy spectrum is closer to a
quasi-classical one and the energy flux to small scales is suppressed to a lesser degree,
which would translate to a less pronounced bump, in accordance with experimental
observation [32].

It is now clear that a simple dynamical equation of the type of Eq. (9) cannot
fully account for the wealth of experimentally observed phenomena; however, finding
a simple closure that connects vortex line density and flow velocity would be useful
(e.g., for numerical calculations based on continuousmodels such as theHVBK [25] or
for engineering calculations of heat transfer, where the vortex line density is the source
of the impedance to the heat flow). Recently, there has been progress on theoretical
and numerical grounds [64–66] with several new proposals for the dynamical equation
for the vortex line density.

It follows from very recent second sound experiments in square-wave modulated
thermal counterflow [31] that a dynamical equation of the form of Eq. (9) is suitable for
the description of the growth of turbulence for relatively low densities of the tangle. For
the higher densities, no currently available dynamical equation accurately accounts
for the experimental time dependence of vortex line density.

At the same time, our recent experiments [31] revealed that the region of validity
of Eq. (9), as derived by Schwarz [58], is greater than perhaps expected. In particular,
in the regions of L � 105 cm−2, Eq. (9) accurately describes the growth of turbulence
even though the “bump” observed during the decay invalidates any first-order differ-
ential equation for L without explicit time dependence. Moreover, the agreement with
experiments (including early decay) can be significantly improved if the ratio of the
RMS curvature of vortex lines to the inter-vortex distance, as introduced and termed
c2 by Schwarz [58], is allowed to vary. In fact, Ref. [31] provides an experimental
estimation of the curvature parameter c2, which is found to be in very good agree-
ment with numerical results in both absolute value and temperature dependence. This
is remarkable, as the local induction approximation introduced by Schwarz neglects
non-local interactions between vortex lines and, moreover, turbulence in the normal
fluid is not taken into account.

We close the discussion of non-steady counterflow by estimating the time scales
of two parasitic effects that may obscure the intrinsic dynamics of L(t). Indeed, to
study strongly non-stationary flows, one needs to thoroughly understand all underlying
physical processes triggered in the channel by switching on and off the applied heat
flux. It is useful to describe these processes by their characteristic times.
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Fig. 4 Kinetic (solid lines) and thermal (dashed lines) characteristic timescales given by Eqs. (10) and
(11), respectively, for Lc = 21 cm and a channel of 7 × 7 mm cross section. Dependencies for the three
experimental temperatures 1.45, 1.65 and 1.95 K are shown (lines from top to bottom). The thermal time
constant has been calculated assuming heat input was changed from zero to the value indicated (i.e., the
worst-case scenario) (Color figure online)

1. Kinetic characteristic time. In steady-state counterflow in a channel of length Lc,
both the normal and superfluid components of He II move, carrying kinetic energy.
Neglecting the flow generated in the bath outside the channel and the turbulent velocity
inside the channel, it takes time tkinchar to gain this kinetic energy from the heater, which
can be estimated from the energy balance as [31]

tkinchar = ρn

2ρsρS2T 2 Lcq̇. (10)

2. Thermal characteristic time. Following [67], let us consider a switch of the
applied heat input to the channel heater from q̇1 to q̇2. As shown already by Vinen
[44], for high enough L a steady-state counterflow is accompanied by a temperature
gradient, i.e., q̇ = ζ(T )∇T 1/3, where for any temperature ζ � const. Assuming
a linear temperature profile and the open end of the channel at constant (i.e., bath)
temperature, the excess heat contained in the channel is Q = CρALc|ΔT2 − ΔT1|
where ΔT = Lc∇T and Lc is the length of the channel. The specific heat, C , is
assumed to be constant for the small (order of few mK) temperature changes. It can be
shown [31,67] that the time required to either conduct the excess heat away or supply
it by the heater is given by

t thchar = 3Cρ|ΔT2 − ΔT1|
4ζ

L4/3
c . (11)

For illustration purposes, Fig. 4 shows the calculated characteristic times tkinchar and
t thchar for a particular case of one experimental channel used in Prague, 21 cm long and
of square 0.7 cm cross section, for various applied heat fluxes at different temperatures.
Estimated times tkinchar, t

th
char and t

ss
char are generally rather short, of order 10 ms, the typ-

ical time constant of the lock-in amplifier. This, in turn, must be chosen based on the
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Fig. 5 Vortex line density (triangles, right axis) inferred from the second sound attenuation and the corre-
sponding drag coefficient (circles, left axis) versus tuning fork velocity. Note that when the drag coefficient
starts deviating from the laminar dependence CD ∝ v−1 (dashed line), the vortex line density detected by
the second sound sensors starts to increase (Color figure online)

frequency and quality factor of the second sound resonance used for direct measure-
ment of L in the channel. The processes described above ought to work simultaneously
and in parallel. The actual limitation to the experiment is therefore given roughly by
the longest time constant (i.e., the slowest process) for a given experimental config-
uration, typically 50 ms. It should be noted, however, that the thermal time constant
can become significant for the cases of thermal counterflow with a “hot chamber” at
the closed end of the channel [44].

5 Second Sound Investigations of Oscillatory Flows of He II

5.1 QuantumTurbulence Generated by Oscillating Objects

In a series of ongoing experiments, a quartz tuning fork is placed inside a cylindrical
second sound resonator cavity [68]. In these experiments, the velocity of the tuning
fork, v, is gradually increased and its damping is inferred, while the second sound
resonance is simultaneously monitored.

Figure 5 shows the dependence of the inferred vortex line density and drag
coefficient against the velocity of a 31kHz tuning fork at 1.6K. The vortex line den-
sity was inferred using Eq. (5), by setting A0 = 0.4402mV, Δ f0 = 5.3658Hz and
B(1.6K) = 1.194. The drag coefficient is defined asCD = 2F/Aρv2, where A = WL
is the cross-sectional area of the fork perpendicular to the direction of motion.

The response exhibits the onset of extra damping when the velocity of the fork’s
prongs exceeds 0.5 ms−1, marking the formation of some flow instability due to its
motion. Attenuation of the simultaneously monitored 5th resonant mode of second
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sound increases at about the same velocity, indicating the production of quantized
vortex lines and the development of quantum turbulence.

Although an exact determination of L in this case is complicated due to the presum-
ably non-homogeneous structure of the produced vortex tangle, this kind of experiment
is important in understanding the formation of quantum turbulence since it allows one
to determine in which component of He II any instabilities first occurs. Indeed, very
recent systematic measurements of high-Stokes-number flows of He II due to the
oscillatory motion of various oscillators: a vibrating wire resonator, quartz tuning
forks, double paddle and a torsionally oscillating disk, show that, depending on the
temperature and geometry of the flow, either type of instability (i.e., classical-like
instabilities in the normal flow or Donnelly–Glaberson instability in the superflow)
may occur first, and moreover, a crossover caused by the temperature dependence of
the viscosity of the normal fluid component may occur [69]. Measurements of second
sound attenuation due to flows generated by various oscillating objects are ongoing,
and ought to shed light on the complex processes leading to the transition to quantum
turbulence in oscillatory flows of He II.

5.2 QuantumTurbulence Generated and Detected by Second Sound

In this last section, we show that second sound can be used not only as a tool to probe
quantum turbulence in He II, but that an intense enough second sound wave can also
generate it. Indeed, Kotsubo and Swift [70,71] used second sound resonators driven by
a Peshkov transducer [72], in which superfluid is pumped through a stationary super-
leakmade of compressedAl2O3 powder. The pumpwas bellows-driven by a stationary
superconducting magnet exerting pressure against a superconducting plate attached
to the moving end of the bellows. This method allows for the high-amplitude second
sound needed to create quantum turbulence to be generated inside the resonator and,
moreover, does not add any dc counterflow field within the resonator. The amplitude
of the second sound was measured by a carbon composition resistor sanded down to
a thickness of less than 50 µm, calibrated by driving the resonator on resonance with
a known power output of an additional heater.

Measurements were taken on some of the second sound resonance frequencies in
the resonator by stepping the drive level in small increments, while measuring the
carbon resistor response using a lock-in amplifier. Quantum turbulence was clearly
indicated as the region where the measured response no longer increased linearly
with the drive amplitude. One remarkable feature was the independence of the second
sound amplitude on drive level in the turbulent state. The authors suggested that once
the critical velocity is exceeded, almost all of the additional energy delivered by the
transducer goes into the vortex tangle, however, in the light of today’s understanding of
quantum turbulence it is likely that the normal fluid inside the resonatorwas also driven
into the turbulent state. The authors also measured the critical velocity for several low
lying modes and found its square root frequency dependence, in accordance with the
frequency dependence of the critical velocity for the transition to quantum turbulence
in various oscillatory flows, as well as hysteretic behavior of this transition.
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Quantum turbulence in a similar resonator can also be generated when resonant
second sound is thermally driven by a resistive heater, and the temperature amplitude
in the second sound resonance measured by a sensitive thermometer on the opposite
side of the resonator, as it was done by Chagovets [73]. Again, a typical flat top
Lorentzian response was observed.

Recently, miniaturization of second sound probes has led Roche and coworkers in
Grenoble to the design and construction of a novel micromachined device, based on
a Cr heater and Al transition edge thermometer. This noninvasive (0.1 mm) device
has opened new possibilities of exploring the properties of superfluid turbulence and
has been used to perform measurements of the vorticity spectrum in superfluid helium
[74,75]. Such devices are promising, especially for studies of vortex line density
fluctuations or non-homogeneous distributions of vorticity.

6 Future Prospects and Conclusions

Wehave seen that second sound can be used not only as a probe to investigate quantized
vorticity, quantum flows and turbulence in He II but also to generate these flows. We
believe that the full potential of second sound as an investigative tool has yet to be fully
realized and it should be exploited. For example, the vortex dynamics—generation and
decay—ofquantum turbulencegeneratedbyhigh-amplitude second sound clearly calls
for further investigation, as such quantum turbulence is free of mean flows of both
normal and superfluid components. Of particular interest are both the temporal growth
and decay of such quantum turbulence. In the Prague Laboratory, such an experiment
is now underway, with the resonator equippedwith an additional pair of low-amplitude
second sound transducers placed in the middle of its long axis, perpendicular to the
longitudinally generated second sound resonance, which is excited by an ac heater. As
quantum turbulence forms in the vicinity of the antinodes of the second sound wave,
various low-lying longitudinal modes ought to generate different turbulent regions.
Results of this experiment will be published and discussed in detail, elsewhere.

Other examples include spherical or cylindrical counterflow, where very recent
preliminary computer simulations seem to predict the existence of a peculiar flow
phase diagram,with the temperature dependent region of quantum turbulence bounded
both from below and from above by critical velocities [41,76]. In amore general sense,
the list of future experiments includes second sound studies of unbounded quantum
turbulence in He II.

We conclude that second sound—theoretically predicted and experimentally con-
firmed soon after the discovery of superfluidity as a peculiar temperature or entropy
wavelike motion supported in the two-fluid superfluid 4He—thanks to its ability to
detect quantized vortices, has been utilized for more than half a century since the
pioneering experiments of Vinen as an efficient tool to investigate quantum flows
and turbulence in He II. The aim of this article is not to review all of the important
contributions by many investigators, and due to limited space, we have only outlined
and discussed selected experiments, with an emphasis on nearly two decades’ worth
of second sound attenuation experiments in our Prague Laboratory. Despite the long
history of various second sound experiments, this experimental tool still brings new
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and unexpected results, especially if combined with other complementary experimen-
tal techniques such as the various methods of flow visualization, various theoretical
approaches and ever more powerful numerical simulations in the framework of com-
plex models.
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