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Abstract
We theoretically investigate strong-coupling effects on specific heat at constant
volume CV in a superfluid Fermi gas with a tunable interaction associated with Fes-
hbach resonance. Including fluctuations of the superfluid order parameter within the
strong-coupling theory developed by Nozières and Schmitt-Rink, we calculate the
temperature dependence of CV at the unitarity limit in the superfluid phase. We show
that, in the low-temperature region, T 3-behavior is shown in the temperature depen-
dence of CV. This result indicates that the low-lying excitations are dominated by
the gapless Goldstone mode, associated with the phase fluctuations of the superfluid
order parameter. Since the Goldstone mode is one of the most fundamental phenom-
ena in the Fermionic superfluidity, our results are useful for further understanding how
the pairing fluctuations affect physical properties in the BCS–BEC crossover physics
below the superfluid transition temperature.

Keywords Specific heat · BCS–BEC crossover · Ultracold Fermi gas · Goldstone
mode

1 Introduction

Since the BCS–BEC crossover, where the superfluid properties continuously change
from the weak-coupling BCS (Bardeen–Cooper–Schrieffer) type to the BEC (Bose–
Einstein condensation) of tightly binding molecular Bose gas as increasing the
interaction strength, has been realized in 40K [1] and 6Li [2–4] Fermi gases, strong-
coupling effects on various physical quantities in this system, such as single-particle
properties [5,6], spin susceptibility [7], and thermodynamic properties [8–10], have
been extensively investigated. Recently, in ultracold Fermi gas, the great progress
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of experimental technique enables us to measure various thermodynamic quantities
[11–15].

In the BCS–BEC crossover phenomena below the superfluid transition tempera-
ture, the low-energy excitations give us a useful information for further understanding
this phenomenon. While in the weak-coupling BCS regime there are two kinds of
fundamental excitations, i.e., the Fermionic single-particle excitations associated with
pair breaking and the gapless Goldstone mode associated with the phase fluctuations
of the superfluid order parameter Δ, in the strong-coupling BEC regime the former
is strongly suppressed due to the large binding energy of the pairs. Although in the
low-temperature region where T � Δ the low-lying excitations are always dominated
by the Goldstone mode in the entire interaction regime, since the sound velocity of
this mode strongly depends on the interaction strength [16], a characteristic tempera-
ture where the system starts to be dominated by the Goldstone mode can be used to
determine the region where the phase fluctuations become remarkable.

For this purpose, we focus on the specific heat at constant volume CV, which
has been known to be sensitive to pairing fluctuations above the superfluid transition
temperature Tc [10]. As is well known, while within the weak-coupling mean field
theory in which the gapless Goldstone mode is ignored, CV is dominated by the pair
breaking leading e−Δ/T -behavior in the low-temperature region, in the ideal Bose
gas, CV shows T 3/2-behavior. On the other hand, when the thermodynamic properties
are dominated by the gapless Goldstone mode, CV should be proportional to T 3 [8].
Thus, the temperature dependence of CV is sensitive to what kind of excitations is
remarkable. In this sense, from the detailed temperature dependence of CV, we might
determine the region where the gapless Goldstone mode associated with the phase
fluctuations dominates the thermodynamic properties.

In this paper, we theoretically calculateCV at the unitarity limit below the superfluid
transition temperature Tc within a strong-coupling NSR theory developed by Nozières
and Schmitt-Rink [9,16–19], in which the contributions from the gapless Goldstone
mode are taken into account. We find that in the low-temperature region where the
thermal transfer from the gapless Goldstone mode to the single-particle excitations
is sufficiently suppressed, CV shows T 3-behavior. Throughout this paper, we take
� = kB = 1, and the system volume V is taken to be unity, for simplicity.

2 Formulation

We consider a two-component Fermi gas with a contact-type attractive interaction
associated with Feshbach resonance, described by the Hamiltonian

H =
∑

p,σ

ξ pc
†
p,σ c p,σ −U

∑

p, p′,q
c†p+q/2,↑c

†
− p+q/2,↓c− p′+q/2,↓c p′+q/2,↑. (1)

Here, c p,σ denotes an annihilation operator of a Fermi atom with the momentum p
and the pseudospin σ =↑,↓, and ξ p = p2/(2m) − μ is the kinetic energy measured
from the chemical potential μ (where m is the atomic mass). The second term in the
Hamiltonian Eq. (1) describes the contact-type attractive interaction with a tunable
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coupling constant U > 0, which is conveniently measured in terms of the observable
s-wave scattering length as

4πas
m

= −U

1 −U
∑pc

p
1

2ε p

. (2)

Here, pc is a cutoffmomentum.Using this scale, theweak- and strong-coupling regions
are characterized by the region where (kFas)−1 < −1 and (kFas)−1 > 1, respectively.
The region between them (−1 < (kFas)−1 < 1) is usually referred as the crossover
region, in which pairing fluctuations might be remarkable.

To investigate the superfluid properties of this system, as usual, it is convenient to
write the Hamiltonian Eq. (1) in the Nambu representation [16] by introducing the
superfluid order parameter Δ = −U

∑
p

〈
c− p,↓c p,↑

〉
, as

H =
∑

p

ψ†
p
(
ξ pτ3 − Δτ1

)
ψ p −U

∑

q

ρ+ (q) ρ− (−q) . (3)

Here, ψ p =
(
c p,↑c†− p,↓

)T
is the two-component Nambu spinor operator, τi (i =

1, 2, 3) is Pauli matrices acting on the particle–hole space, and

ρ± (q) =
∑

p

ψ
†
p+ q

2
τ±ψ p− q

2
(4)

is the generalized density operator describing fluctuations of Δ, where τ± =
1
2 (τ1 ± iτ2). In Eq. (3), Δ is taken to be real without loss of generality.

The strong-coupling corrections from the second term in Eq. (3) to the thermody-
namic properties are taken into account within NSR theory [9,16–19], in which the
thermodynamic potential is given as the sum Ω = ΩMF + δΩ of the mean field part
ΩMF and the strong-coupling corrections δΩ . The mean field part is given by

ΩMF = −mΔ2

4πas
+

∑

p

(
ξ p − E p + Δ2

2ε p

)
− 2T

∑

p

ln

(
1 + e− E p

T

)
, (5)

where E p =
√

ξ2p + |Δ|2 is the Bogoliubov single-particle excitation spectrum. The

strong-coupling corrections to the thermodynamic potential δΩ are described by the
Feynman diagrams shown in Fig. 1, which give

δΩ = − 1

2β

∑

q,iνn

Tr
[
ln Γ̂ (q, iνn)

]
. (6)

Here, Γ̂ (q, iνn) = −U/[1 + UΠ̂(q, iνn)] is the 2 × 2 particle–particle scattering
matrix, where
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Fig. 1 Strong-coupling corrections to the thermodynamic potential withinNSR theory. The solid and dashed
lines represent the mean field single-particle Green’s function G0 and the contact-type attractive interaction
−U , respectively. τs=± = (τ1 + iτ2)/2

Π̂(q, iνn) =
(

Π−+(q, iνn) Π−−(q, iνn)
Π++(q, iνn) Π+−(q, iνn)

)
, (7)

Πss′(q, iνn) = 1

β

∑

p

Tr
[
τsG0

(
p + q

2
, iωn

)
τs′G0

(
p − q

2
, iωn − iνn

)]
(8)

is the lowest-order 2× 2 matrix pair correlation function describing the fluctuation of
the superfluid order parameter, and

G0 ( p, iωn) = 1

iωn − ξ pτ3 + Δτ1
(9)

is the 2 × 2 matrix single-particle Green’s function in the mean field level.
The specific heat at constant volumeCV is obtained froma thermodynamic relation:

CV =
(

∂E

∂T

)

N
. (10)

Here, E is the internal energy, which is given by the Legendre transformation from Ω

as

E = Ω + T S + μN = Ω − T

(
∂Ω

∂T

)

μ

− μ

(
∂Ω

∂μ

)

T
. (11)

In this paper, by numerically carrying out the derivative of E with respect to the
temperature T in Eq. (10), CV is calculated. In this procedure, we first determine the
chemical potential μ and the superfluid order parameter Δ as a function of T by self-
consistently solving the gap equation, which is obtained from the Thouless criterion
det

[
Γ (q = 0, iνn = 0)−1

] = 0 as

1 = 4πas
m

∑

p

(
1

2Ep
tanh

2Ep

2T
− 1

2εp

)
, (12)

together with the particle number equation

N = −
(

∂Ω

∂μ

)

T
= −

(
∂Ω

∂μ

)

T ,Δ

−
(

∂Ω

∂Δ

)

T ,μ

(
∂Δ

∂μ

)

T
. (13)
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We note that the Thouless criterion guarantees the existence of the gapless Gold-
stone mode, of which the dispersion relation is obtained by solving the equation
det

[
Γ (q, iνn → ω + iδ)−1] = 0. In the low-temperature limit (T � ‖μ‖ ,Δ),

indeed, we obtain the well-known Goldstone mode ωq = vφq in the low-energy
region [16], with the sound velocity

vφ = Δ2

2m

⎛

⎝
∑

p

1

E3
p

⎞

⎠
∑

p
ξp

E3
p

+ 2Δ2 ∑
p

εp

E5
p

Δ2

(∑
p

1
E3
p

)2

+
(∑

p
ξp

E3
p

)2 , (14)

which is expected to give a T 3 contribution to the specific heat.We also brieflymention
that the superfluid transition temperature Tc is obtained by solving Eqs. (12) and (13)
with Δ = 0, and μ above Tc is simply given by solving only Eq. (13) with Δ = 0.
In the next section, in addition to the results in the superfluid phase, we also show the
results in the normal phase [10], for comparison.

3 Result

Figure 2 shows the temperature dependence of the chemical potential μ, as well as
the superfluid order parameter Δ in the unitarity limit, determined from Eqs. (12) and
(13). Here, we note that Δ in Fig. 2 has a finite value even at T = Tc. However,
it is known that this behavior indicating a first-order phase transition is an artifact
in our approximation. The same problem has been reported in other diagrammatic
strong-coupling theories, such as non-self-consistent T -matrix theory [20], as well
as self-consistent T -matrix theory [21]. Since this unphysical behavior of Δ might
affect our results just below Tc, we will focus on the low-temperature behavior of CV,
and we leave this problem as a future work. We also note that the obtained Δ(T ) is
always larger than T below Tc. Thus, in the superfluid phase at the unitarity limit, the
single-particle excitations associated with the pair breaking, which is characterized by
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Fig. 2 Calculated a chemical potential μ and b superfluid order parameter Δ of two-component Fermi gas
with an attractive interaction as a function of temperature at the unitarity limit (kFas )−1 = 0. Within NSR
theory, the superfluid transition temperature Tc = 0.222TF (Color figure online)
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Fig. 3 a Calculated specific heat at constant volume CV of two-component Fermi gas with an attractive
interaction at the unitarity limit. b Results below the superfluid transition temperature Tc = 0.222TF in log
scale. In panel (b), a dashed line parallel to T 3 is also shown (Color figure online)

an energy scale 2Δ, are thermally suppressed, and the thermodynamics of this system
is expected to be dominated by the gapless Goldstone mode, as well as the thermal
transfer from the collective mode to the single-particle excitations.

Figure 3 shows the calculated temperature dependence of CV at the unitarity limit.
Starting from the high-temperature region, in normal phase CV is found to increase
as approaching Tc, that is, in contrast to one of the ideal Fermi gas where CV mono-
tonically decreases as decreasing T . As discussed in our previous paper [10], this
enhancement of CV near Tc originates from the appearance of the preformed Cooper
pairs associated with a strong attractive interaction. We also find that a jump of CV
across Tc = 0.22TF, as shown in the ordinary BCS superconductors. However, as
mentioned above, since our results just below Tc are not reliable due to the artificial
first-order phase transition, we do not further discuss this point.

In the superfluid phase below Tc,CV monotonically decreases as decreasing T , and
eventually vanishes at T = 0, as expected. As shown in Fig 3b, in the low-temperature
region (T � 0.03TF), we find that CV is proportional to T 3, that indicates that CV is
dominated by the gapless Goldstone mode. To more clearly see this, we conveniently
write the particle number Eq. (13) as the sum N = N0 + NG of the contribution from
the Goldstone mode

NG = −
(

∂Ω

∂μ

)

T ,Δ

(15)

and the others N0. Here, we mention that, although NG includes the contribution from
both the phase and the amplitudefluctuations of the superfluid order parameter, because
the amplitude fluctuations are rapidly suppressed as developingΔ, at least, in the low-
temperature region T � Δ, NG can be regarded as the contribution from theGoldstone
mode. Noting that the single-particle excitations associated with pair breaking can
also be ignored in this low-temperature region, the low-temperature behavior of CV
originates from the gapless Goldstone mode, as well as the thermal transfer from the
Goldstone mode to the single-particle contributions. As shown in Fig. 4, as decreasing
T , the latter effects are gradually suppressed, and when T � 0.05TF, NG becomes
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Fig. 4 Temperature dependence
of the number of unpaired atoms
and condensed pairs N0 and the
contribution to the particle
number from the gapless
Goldstone mode NG (Color
figure online)
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almost constant. Then, T 3-dependence coming from the Goldstone mode becomes
dominant in CV.

4 Conclusion

In this paper, we have theoretically investigated the effects of fluctuations of the super-
fluid order parameter on the specific heat at constant volume CV at the unitarity
limit within a strong-coupling NSR theory. We found that in the low-temperature
region, where the thermal transfer from the gapless Goldstone mode to the single-
particle excitations is sufficiently suppressed,CV exhibits a T 3-dependence. Since the
T 3-dependence comes from the gapless Goldstone mode associated with the phase
fluctuations of the superfluid order parameter, our results indicate that the temperature
dependence ofCV might be useful to determine the regionwhere the phase fluctuations
dominate the thermodynamic properties. Furthermore, since the gapless Goldstone
mode always exists in the superfluid phase, but its properties remarkably depend on
the interaction strength, it is our future problem how the temperature dependence of
CV changes as varying the interaction strength.
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