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Abstract
Thermal counterflow in superfluid 4He (He II)was studied numerically using the vortex
filament model in a spherically symmetric geometry (as resulting from a point heat
source). It is found that for the range of temperatures and velocities studied, turbulent
tangle of the quantised vortices develops only for sufficiently low temperatures, hinting
at the existence of a critical temperature, and only for velocities bounded from above
(and presumably from below). A velocity–temperature phase diagram is presented. A
simple physical model is proposed that qualitatively explains both observations.
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1 Introduction

Unique properties of superfluid 4He (He II) allow for a construction of a spherically
symmetric flow simply using a point heat source. He II flows as if composed of two
interpenetrating fluids [1]—the normal and the superfluid component, each with its
own temperature-dependent density (ρn,s, with the total density of He II ρ = ρs +ρn)
and velocity field (vn, s). Normal fluid behaves approximately classically, possessing
viscosity and entropy. The superfluid component is inviscid and carries no entropy,
and additionally, its vorticity is quantised with quantum of circulation κ ≈ 9.997 ×
10−4 cm−2/s. The vortices in the superfluid component exist as singly quantised thin
topological defects (quantised vortices). The turbulence in He II, quantum turbulence
[2], takes the form of a dense tangle of quantised vortices in the superfluid component
coexisting with possible turbulence of more classical nature in the normal component.

The most studied form of quantum turbulence in He II, counterflow, involves oppo-
sitely oriented flows of the normal and superfluid component with relative counterflow
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velocity vns, typically in a rectilinear channel [3,4].Above (temperature- andgeometry-
dependent) critical counterflow velocity [5], a tangle of quantised vortices develops
[3]. The tangle can be created for all temperatures, and its density increases with tem-
perature for fixed counterflow velocity [6]. Note that the vortex tangle in rectilinear
counterflow is always slightly anisotropic [7]. A point heat source in an unbounded He
II bath, on the other hand, results in spherically symmetric counterflow. As in channel-
bound thermal counterflow, the heater generates entropy at rate Q̇/T which is carried
away by the normal fluid. This outflux is balanced by the influx of the superfluid com-
ponent. Assuming spherical symmetry of the flow fields and the heater placed at the
origin, the radial velocity vn of the normal fluid through a shell of radius r is

vn4πr
2ρS = Q̇

T
, (1)

where S is the entropy per unit mass. The superfluid velocity is given by the standard
counterflow condition ρsvs = ρnvn. In the following, the strength of the flow will be
identified by the radial counterflow velocity at 5 mm distance from the origin, denoted
v5mm
ns .
Such flow might be experimentally constructed using a miniature resistive heater

suspended on thin lead wires or using a magnetically levitated sphere of a suitable
material heated, e.g., by laser irradiation. Turbulence generated by such flowmay serve
as an ideal case of isotropic turbulence due to the absence of a globally preferred direc-
tion which is always present in channel flows. Localised turbulence thus generated
might also be a useful model case for the study of the effects of the inhomogeneous
distribution of vorticity in quantum turbulence and the associated large-scale tangle
dynamics [4].

The present work attempts to characterise the basic properties of the vortex tangle
in spherical counterflow. Behaviour of quantised vortices in such flow is studied using
numerical simulations of the vortex filament model [8]. A striking contrast with the
rectilinear case is found in two aspects: turbulence does not develop at temperatures
higher than roughly 1.45 K and the velocities, where the turbulence does occur, also
appear to be bounded from above.

2 Computational Setup

The simulations are implemented using the vortex filament model pioneered by
Schwarz [9] with the full non-local Biot–Savart interaction included [7]. The vortices
are represented as thin lines s(ξ) parameterised in terms of their arc length ξ . The
superfluid velocity at point r (not on any vortex) is given by the Biot–Savart integral

vs(r) = κ

4π

∫
d s × (r − s)

|s − r|3 , (2)

where integration runs through all vortices in the system. The equation of motion for
the vortex is

ṡ = v′
s(s) + αs′ × (vn − v′

s) − α′s′ × [s′ × (vn − v′
s)], (3)
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where s′ is the local tangent of the line (∂s(ξ)/∂ξ ) and v′
s denotes the standard de-

singularisation of the Biot–Savart integral (2) by splitting into local and non-local
contributions [9]. The differentials of s are calculated using fourth-order finite differ-
ences, and time stepping is accomplishedwith fourth- order Runge–Kutta scheme. The
distances between the discretisation points of the lines are maintained between 10−3

and 2×10−3 cm (for a subset of runs, the results were also checked with discretisation
distances between 2 and 4 ×10−3 cm). The time step used was approximately 6.4×
10−4, 10−5 or 10−6 s for v5mm

ns = 0.1, 1 or 10 mm/s, respectively (corresponding to
temperature-dependent dissipated power of approximately 4, 40 and 400 mW at the
maximum; the possibility of localised boiling is outside the scope of the present work).

The spherical flow (1) has a singularity at the origin which is removed using an
exponential cutoff as

vns = v0

4πr2
e−(rcutoff/r)2 , (4)

where v0 is the adjustable strength and rcutoff = 200 µm in all runs. Additional cutoff
is necessary to remove nearly parallel vortex loops that cluster in large quantities (such
that they render the calculation unfeasible) near the origin. These vortices are tightly
packed near the cutoff region around the origin. Thus, when a vortex loop is fully
enclosed by a shell of radius rO = 150 µm centred on the origin, it is removed from
the simulation. This removal can be thought of as analogous to annihilation of the
vortices on the solid surface that would be present in an experimental realisation.

3 Development and Sustainability of the Turbulent Tangle

As the initial condition (see an example in Fig. 1a), random loops of total length about
5 cm are placed near the origin. The loops are oriented isotropically and have radii
uniformly distributed between 50 µm and 1 mm, and their centres are placed in a
cube of 1 mm side centred on the origin with uniform distribution. The loops that are
not perfectly concentric with the origin are deformed such that part of them points
towards the flow source. A straight vortex parallel with the local counterflow velocity
is unstable [10], and Kelvin waves of large amplitude are quickly excited (see Fig. 1b),
whose initial wavelength in the simulation is most likely affected by the discretisation
length. The time evolution of total vortex length L = ∫

d ξ for a particular velocity
is shown in Fig. 2 for the case of v5mm

ns = 0.1 mm/s. As the evolution progresses,
the Kelvin waves from different vortices either interact and create a turbulent tangle
near the origin or the vortices are pulled towards the origin and annihilate (Fig. 1c, d,
respectively).

The time in Fig. 2 is normalised by the “fall time” tfall, the time a super-
fluid Lagrangian particle would take to fall to the origin from a given distance r .
The particle would move towards the origin with the local superfluid velocity, i.e.,
d r/ d t = −vns(r)ρn/ρ, where vns(r) is given by Eq. (4) (neglecting the exponential
cutoff). Integrating from a given initial position r to r = 0 yields

tfall(r , T ) = 4πr3

3v0

ρ

ρn
. (5)
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(a) (b) (c) (d)

Fig. 1 Example of the tangle evolution. a The initial condition; b large-amplitude Kelvin waves induced
by the spherical flow; c turbulent tangle at 1.3 K (evolved for t ≈ 0.29 s); d vortices at 2.1 K shortly before
complete annihilation (t ≈ 1.5 ms). All panels show a 1 × 1 × 1 mm region. The initial condition a is the
same for c and d. The velocity is v5mm

ns = 1 mm/s (Color figure online)
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Fig. 2 Time evolution of the total vortex line density at several different temperatures for the case of
v5mm
ns = 0.1 mm/s. Results obtained from four different (random) initial conditions are shown for every
temperature. The time is compensated by the “fall time” from r =1 mm given by Eq. (5) (Color figure
online)

For the normalisation fall time in Fig. 2, r0 = 1 mm is chosen, as this distance is
comparable to the initial distance of the vortices from the origin. From Fig. 2, it is clear
that when the tangle annihilates, the annihilation takes place at timescale comparable
to tfall. Similar behaviour is observed for other velocities.

The tangle evolution was calculated for a range of temperatures and three different
v5mm
ns —0.1, 1 and 10 mm/s. A “phase diagram” showing where the turbulence does
or does not develop is shown in Fig. 3. No stable turbulence is observed for temper-
atures higher than 1.45 K, and this temperature appears to decrease with increasing
velocity. No stable turbulence was observed for the 10 mm/s case. Note that for the
turbulent cases, the simulation did not reach a proper steady state. This is due to a
large number of vortices created which make calculating further evolution of the tan-
gle computationally very costly. The qualitative difference in behaviour, however, is
clear. The situation presented in Fig. 3 is reminiscent of the critical temperature for
the transition to turbulence observed in 3He–B by Finne et al. [11]. In 3He–B, the
critical temperature for turbulence is the consequence of temperature dependence of
the mutual friction, which acts to damp Kelvin waves propagating along the vortices.
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Fig. 3 Phase diagram of the development of sustained turbulence. The velocity on the y-axis shows v5mm
ns —

the counterflow velocity on the 5 mm shell around origin. The size of the points is proportional to the total
length of the vortices; the outer radius (red) is proportional to L̄ f + σL and the inner (blue) to L̄ f − σL
where L f is the total vortex length at the end of simulation run, L̄ f is the average of L f for different runs
and σL is the associated standard deviation. The existence of sustained turbulence appears to be bounded
by both velocity and temperature. For the 10 mm/s case at 1.3 K and 1.35 K, one simulation run in the
ensemble experienced a (presumably) transient tangle of high density (Color figure online)

In the present work, the apparent critical temperature is likely the consequence of the
compression of the vortex tangle by the inward-facing superflow, as will be shown
now.

In order for a stable tangle to develop, a sustainable mechanism (one that does
not depend on the existence of the large seed vortices) of increase of vortex length
must exist. One such mechanism might be the escape of vortex loops from the tangle,
which subsequently expand and slow down. The vortex loop expands until it is so
slow such that it is pulled back towards the tangle. Obviously, outward-propagating
and expanding loops are crucial for this mechanism; therefore, the sizes and positions
of such vortex rings in the field of the spherical counterflow are now determined.

Assuming the ring and flow source geometry as in Fig. 4, the motion of the vortex
ring is determined by ṡ = vRs + vOs + αs′ × (vn − vs), where vRs is the self-induced
velocity of the ring oriented along the x-direction, with magnitude given by [10]

vRs = κ

4πR

[
log

(
8R

a

)
− 0.5

]
, (6)

with a ≈ 10−10 m denoting the vortex core parameter. The second term is the inward-
facing spherical superflow of magnitude vOs = vnsρn/ρs. The last term is the mutual
friction, with vn and vs standing for the total normal and superfluid velocities. The
resulting configurations of d and Rwhere the ring is outward-propagating (ṡx > 0) and
expanding (ṡy > 0 for the special point in Fig. 4) are shown in Fig. 5. The number of
possible configurations clearly decreases as the temperature increases.With increasing
velocity, the favourable ring geometries shift to greater distances d which fit the initial
condition more poorly. The rings that are too large or too close to the origin are being
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Fig. 4 Sketch of the assumed ring geometry in Fig. 5. The self-induced ring velocity is parallel with the
line connecting the origin and the ring centre and faces outward. The velocity of the points on the vortex
is a combination of three effects: the self-induced velocity vR, the spherical flow field vO and the mutual
friction (Color figure online)
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Fig. 5 Possible configurations (indicated by the filled regions) of outward-propagating and expanding vortex
rings for different temperatures and counterflow velocities. The admissible regions shrink with increasing
temperature. For increasing velocities, the favourable configurations shift away from the configuration of
the initial condition (i.e., d ≤ 2 mm) (Color figure online)

pulled towards the origin and/or are shrinking. Rings that are too small, on the other
hand, have large enough self-induced velocity to escape the flow completely.

4 Conclusions

Spherically symmetric thermal counterflow in He II provides an interesting vantage
point for the study of the effect mutual friction has on the development and structure
of quantum turbulence. Evolution of a few seed vortex loops in the vicinity of a point
heat sourcewas studied using the vortex filamentmodel. It was found that the spherical
flow field is very effective at inducing large-amplitude Kelvin waves on the vortices
due to the instability present for vortices oriented parallel with the local counterflow
velocity. Moreover, it was found that for the velocities studied, sustained turbulent
tangle does not develop for sufficiently high temperatures and, counterintuitively,
for sufficiently high velocities. A simple physical model explaining these findings

123



34 Journal of Low Temperature Physics (2019) 196:28–34

is proposed, postulating that at least in the initial stages of the tangle development,
outward-propagating and expanding vortex loops are crucial for the development of
the tangle.
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