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Abstract We report first-principles calculations of the elastic properties, electronic
structure and magnetic behavior performed over the Ba2NiMoO6 double perovskite.
Calculations are carried out through the full-potential linear augmented plane-wave
method within the framework of the Density Functional Theory (DFT) with exchange
and correlation effects in the Generalized Gradient and Local Density Approxima-
tions, including spin polarization. The elastic properties calculated are bulk modulus
(B), the elastic constants (C11, C12 and C44), the Zener anisotropy factor (A), the
isotropic shear modulus (G), the Young modulus (Y ) and the Poisson ratio (υ). Struc-
tural parameters, total energies and cohesive properties of the perovskite are studied
by means of minimization of internal parameters with theMurnaghan equation, where
the structural parameters are in good agreement with experimental data. Furthermore,
we have explored different antiferromagnetic configurations in order to describe the
magnetic ground state of this compound. The pressure and temperature dependence
of specific heat, thermal expansion coefficient, Debye temperature and Grüneisen
parameter were calculated by DFT from the state equation using the quasi-harmonic
model of Debye. A specific heat behavior CV ≈CP was found at temperatures below
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T � 400 K, with Dulong–Petit limit values, which is higher than those, reported for
simple perovskites.

Keywords Perovskite material · Electronic structure · Magnetic feature · Elastic and
thermodynamic properties

1 Introduction

Perovskite-like ceramics are a family of natural and synthetic materials that are char-
acterized by having a crystalline arrangement very similar to the structure of CaTiO3.
The formula that ideally describes these materials is ABX3, wherein A and B atoms
are metal cations (positively charged ions), whereas X atoms are nonmetallic anions
(negatively charged ions, usually oxygen). An A cation (the one with the highest ionic
radius of the two kinds of metals) is usually located in the center of the ideally cubic
structure. The eight vertices are occupied by the cations B, in octahedral coordination
with the anions X, which are located in the middle points of the edges of the cubes
that make up the volumetric structure [1].

Perovskites evidence numerous physical properties, which are particularly sensible
to inhomogeneities like distortions from their ideal cubic structure, vacancies and
chemical substitutions [2]. One of these anomalies, which raise the complex perovskite
with A2BB′O6 formula, results from the ordering of B and B′ cations on the octahedral
site of the primitive perovskite unit cell. The importance of complex perovskites lies in
the possibility of creating newmagnetic materials A2BB′O6, with B and B′ constituted
by magnetic 3d cations.

These materials have been extensively studied due their exotic magnetic proper-
ties, which suggest the applications of these perovskite ceramics in the design and
technology of magnetic devices for applications in the spintronics area as read–write
heads of hard disks for storing high capacity of information in magnetic media [3],
spin valves for RAM memories [4], devices for polarization of electron currents [5],
permanent magnets [6], magnetic sensors [7] and systems of magnetic nanoparticles
[8], among others.

First-principles calculations based on Density Functional Theory (DFT) have been
demonstrated to provide a safe and very accurate method to predict some properties
of perovskite materials, such as the crystal structure, electrical transport type for the
spin polarization channels up and down to the valence electrons around the Fermi
level (conductor, semiconductor, insulator, half-metallic), contribution of different
electronic orbitals to magnetic and electrical transport properties and ferroelectric
character [9]. Recently, experimental results of the structural, electrical and magnetic
behavior of the Ba2NiMoO6 double perovskite were reported [10]. The authors claim
that this material crystallizes in one structure, belonging to the cubic Fm3̄m (#225)
space group. By neutron diffraction experiments, they determined the occurrence of a
magnetic behavior that can be described as a stacking of ferromagnetic layers of Mn
moments perpendicularly orientated to the [111] direction, which are antiferromag-
netically coupled between layers.

123



J Low Temp Phys (2018) 192:265–285 267

With the aim to theoretically study the structural characteristics and infer magnetic
and transport properties of the Ba2NiMoO6 complex perovskite, in this paper a study
of the crystallographic parameters, density of states and elastic properties is presented.
Thermodynamic properties are relevant in order to establish eventual technological
applications. In addition to the structural, elastic and calculations of electronic and
band structures calculations, in this report we present theoretical studies of the pres-
sure and temperature dependence of the specific heat, the thermal expansion, the
temperature of Debye and the Grüneisen coefficient. The calculations of the elastic
and thermodynamic properties were made by applying the quasi-harmonic Debye
model [11].

2 Theoretical Setup

2.1 Calculation Details

The structural optimization and the elastic properties calculations were performed
by using the self-consistent full-potential linearized augmented plane-wave (FP-
LAPW) method, implemented in the Wien2k code [12], in the framework of the
DFT [13]. The exchange–correlation function has been described using the Local
Density Approximation (LDA) and the Generalized Gradient Approximation with
the Perdew–Burke–Ernzerhof formalism (GGA-PBE) [14]. The muffin-tin radii used
were 2.4, 1.8, 1.7 and 1.6 bohr for the Ba, Ni, Mo and O atom, respectively. The
cutoff parameter for the plane wave was set to RMT ×Kmax � 7.0, where Kmax is the
maximum modulus for the reciprocal lattice vector, and Gmax � 12.0. The reciprocal
space was sampled with a mesh of 1500 k-points in the first Brillouin zone (equivalent
to 56 k-points in the irreducible Brillouin zone). The convergence criterion for the
self-consistent calculation was 10−5 Ry for the total energies and 1.0 mRy/u.a for
the internal forces. Spin polarization was included in the calculations. These kinds
of variables assure excellent convergence for total energy. The elastic constants here
reported for the Ba2NiMoO6 were calculated using theWien2k Cubic-elastic package
[15], considering the second-order derivative of a polynomial fit of the total energy [E
� E(δ)] versus strains (δ) at zero strain (δ � 0). On the other hand, in order to explore
different antiferromagnetic configurations between Ni atoms, we have used a 2×2×2
supercell of Ba2NiMoO6 (320 atoms), where antiferromagnetism along the planes
[001], [110] and [111] has been considered. All calculations were performed using
theQuantumEspresso code [16]where the self-consistent Kohn–Sham equationswere
solved using pseudopotentials and plane-wave method and the exchange–correlation
part was described by GGA-PBE scheme [14]. All atoms were described using Pro-
jector Augmented-Wave (PAW) pseudopotentials data set; a 50 Ry and 500 Ry cutoff
was used for the wave function and electron spin density, respectively. Furthermore,
for calculations of spin polarization, the Brillouin zone was sampled using a grid of
4×4×4 k-points with Marzari–Vanderbilt [17] occupational smearing width of 0.002
Ry. In summary, the processes ofminimization of the energywith respect to the volume
of the crystallographic cell and its respective adjustment with the equation of state, as
well as the calculations of the elastic properties of the material, were carried out by
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means of the use of the Wien2k code, while that the calculations of density of states
and the introduction of the exchange and correlation potential were made through
the application of the Quantum Espresso code. The Wien2k and Quantum Espresso
apply differentmethodologies. TheWien2kwas used because it contains the necessary
tools to study the elastic, thermodynamic and structural properties. It is a linearized
method in which the crystalline symmetries are used so that the calculations are not
computationally expensive as a result of the FP-LAPW method, which reconstructs
the potential throughout the space of the solid. However, when there are differences
between atoms, which are crystallographically similar but magnetically different, it
is necessary to use supercells and the method on which the Wien2k is based makes
the calculation computationally expensive. In those cases, other methods such as flat
waves and pseudopotentials (of the Quantum Espresso type) are used, which is faster
because the potential is parameterized in the pseudopotential. That is why in this work
the Quantum Espresso is used to explore different magnetic configurations like the
ones described below. This methodology is widely used because both codes describe
well the physical and chemical properties of the materials, as has been found in a
broad study on the efficiency and concordance between different methods based on
the Density Functional Theory [18].

2.2 Quasi-Harmonic Approximation of the Debye Model

The vibrational density of states g(w) of a crystal can be used to determine some of
its thermodynamic properties, because this function provides the number of normal
modes of vibration in an infinitesimal range of frequencies betweenw andw+dw. This
concept is applied in the Debye model, considering that the crystal can be modeled as
a continuous medium so with normal vibrations like elastic stationary waves. Thus,
through the density of states, the wave number can be calculated in that infinitesimal
frequency range. In the Debyemodel, a harmonic consideration of the potential energy
is made to evaluate the force constants, whereby the temperature of Debye (ΘD) is
constant and must be obtained from the elastic constants. Meanwhile, this harmonic
model lacks the thermal expansion, which is one of the most important experimental
properties that can bemeasured in the crystals. Since the temperature only has influence
on the Helmholtz’s function through the vibrational term, and this in turn depends on
the elastic constants, in principle there would be no relation between the temperature
and the geometry of the system. For this reason, it is necessary to introduce into
the model the interdependence between temperature and volume. This circumstance
suggests the application of the quasi-harmonic approximation, in which harmonic
vibrations are assumed in positions that are no equilibrium. In this way, the vibration
frequencies become dependent on the volume and can be evaluated from the second
derivatives of the potential energy surface at those off-balance positions.Wemust note
that under static conditions, the second derivatives produce vibration frequencies that
occur around a minimum. On the other hand, in the presence of generalized forces
such as pressure, the equilibrium geometry is displaced in such a way that the external
forces tend to override the gradient of the static potential energy surface. Thus, the
quasi-harmonic model of Debye has harmonic behavior, but introduces anharmonic
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effects through the dependence of the frequencies in the configuration. It is then
possible to predict the thermal expansion of the crystal by the dependence of volume
and temperature on equilibrium.

From the above, it can be established that a non-static equilibrium configuration
can be achieved through external links. Because the stringent treatment of these bonds
is quite complex, the way to simplify it is by resorting to thermodynamic equilibrium
conditions. Then, assuming that the system is at a given temperature and pressure, the
system can be thermodynamically described by the non-equilibrium Gibbs function,
which, in its general form, can be written as

G∗ (T, P, �a) � Ee (�a) + PV (�a) + Avib
[
T, w j (�a)

]
, (1)

which is a function of temperatureT , pressureP and the lattice parameters �a. In Eq. (1),
Ee is the total energy of the crystal and Avib represents the vibrational Helmholtz
free energy. The equilibrium situation of the system corresponds to the lowest Gibbs
energy at a given set of temperature and pressure. The dependence of the Ee on
the lattice parameters �a is explicit, while Avib depends implicitly on �a through the
vibration frequencies of the solid. The equilibrium configuration of the system will
be the minimum of this Gibbs function that depends on T and P. Since the volume
is also dependent on �a, this gives the desired interdependence between temperature
and volume. Once the system equilibrates, the external bonds are eliminated, because
their strength cancels terms associated with the first derivatives of Ee at each point
of the potential energy, as this is an equilibrium point. Under certain conditions of T
and P, the equilibrium configuration of the system corresponds to the lowest Gibbs
energy.Within this scheme, it is possible to consider the geometries of quasi-harmonic
crystalline equilibrium and all the thermodynamic properties of the crystal as functions
of temperature and pressure. The difference between this model and the Debye model
is that Avib depends on the geometry throughΘD, which in turn can be calculated from
the elastic constants of the crystal, and these are the second derivatives of energy with
respect to displacements of the lattice parameters.

A good simplification of the problem to obtain theΘD can be made by the isotropic
solid approximation, but it is necessary to further reduce the number of properties
required for the ΘD of the system in any configuration. One way to do this is by
assuming that the solid acts as a fluid, which does not exhibit resistance to shear
deformations (C44 � 0). For this reason, transverse elastic waves are no taken into
account. For the purposes of the approximation, the average speed for the longitudinal
velocity of the solid calculated as done in a fluid is considered. Thus, the expression
c̄ � cl � √

c11/ρ is obtained, which is associated with the static compression module

of the crystal through Bstatic � V
(

∂2Ee
∂V 2

)
� (λ + 2μ/3), which takes the λ value as in

a fluid, with μ the chemical potential. This gives the average speed c̄ ≈ √
Bstatic/ρ,

which in turn gives rise to the Debye temperature

ΘD � hc̄

kB

(
3nr
4πVr

) 1
3 ≈ h

kB

(
3nr
4πVr

) 1
3 √

Bstatic/ρ, (2)
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where ρ � Mr /Vr , with Mr the molecular mass and � � h
2π . Then, the Debye tem-

perature in the isotropic fluid model can be written as [17]

ΘD � �

kB

(

6π2nr V
1/2
r

) 1
3 √

Bstatic/Mr. (3)

A second approach to reduce the elastic constants is to consider the value of the
Poisson ratio, which is defined as the ratio between the transverse deformation and the
longitudinal deformation for an isotropic crystal under axial tension. This coefficient
that can be written as ν � λ/2 (λ + μ) usually has a value between 0.2 and 0.5, and
it is characteristic of each material [19]. Thus, it is possible to determine a parameter
that can be chosen between λ, γ and Bstatic. Through an appropriate choice of the
parameter Bstatic, the average velocity can be expressed in the form

c̄ �
√

Bstatic

ρ
f (ν), (4)

where

f (ν) �

⎧
⎪⎨

⎪⎩
3

⎡

⎣2

(
2 (1 + ν)

3 (1 − 2ν)

)3/2
+

(
1 + ν

3 (1 − ν)

)3/2
⎤

⎦

−1
⎫
⎪⎬

⎪⎭

1/3

. (5)

Then Eq. (3) changes and the temperature of Debye becomes

ΘD � 0.85995
�

kB

(

6π2nr V
1/2
r

) 1
3 √

Bstatic/Mr . (6)

This expression is analogous to the fluid model, except for the function f (ν), where
the bulk modulus and the Poisson coefficient are still present. We have considered
the ions in centrosymmetric positions, whereby the potential energy surface could be
described as a sum of the potential for central interaction. Thus, it is possible to apply
the Cauchy relation, for which ν � 1/4 [20], with function f (ν) � 0.85995.

With this approach, in the Gibbs function of Eq. (1), Avib
[
T, w j (�a)

] �
Avib

[
T,ΘD (V (�a))

]
.

So the dependencies of the internal parameters �a are contained in Ee and V , so
that in obtaining the internal parameters �a that minimize Ee in a certain V , the Gibbs
function will also be minimal in that volume. Therefore, assuming that the minimum
energies with respect to internal parameters at different volumes are known, i.e.,Ee(V )
is known, the Gibbs non-equilibrium function is then

G∗ (T, P, V ) � Ee (V ) + PV + Avib [T,ΘD (V )] . (7)
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As can be seen, internal parameters are a function of volume, but this is a function
of temperature and pressure, a[V (T , P)]. That is, the internal parameters change with
the temperature in an isotropic form, such that an increase in T equals a decrease in P.
This isotropic approximation is quite reasonable, although it has not been considered
that the vibrational frequencies depend on all coordinates. With the above approxi-
mations, Eq. (7) allows to obtain the Gibbs function of the crystal as a function of T ,
P and V . This function must be minimum with respect to any geometric parameter,
and in particular with respect to the volume. Thus, by minimizing this function for
values other than T and P, the system state equation is obtained and, from this, any
thermodynamic property can be determined.

The bulk module is related to the electronic energy by means Bstatic (Vr ) �
Vr

(
∂2Ee(Vr )

∂V 2
r

)
, which allows to rewrite the temperature of Debye as well

ΘD � 0.85995
�

kB

(
6π2nr V

1/2
r

) 1
3

√(
∂2Ee (Vr )

∂V 2
r

)/
Mr . (8)

Then, ΘD(Vr) can be obtained through the second derivative of the curve Ee(Vr).
In order to determine the vibration function of Helmholtz at different temperatures
and volumes, it can be inferred that [21]

(9)

Āvib (T, Vr ) � Ūvib − T Svib

� 9

8
nr kBΘD (Vr ) + 3nr kBTLn

(
1 − e−ΘD(Vr )/T

)

− nr kBT D [ΘD (Vr ) /T ] .

To determine the equilibrium situation of the system it is necessary to minimize the
Gibbs non-equilibrium function Ḡ∗ (T, P, Vr ) � Ee (Vr ) + PVr + Āvib (T, Vr ) with
respect to Vr . The asterisk symbolizes that the function is being evaluated in non-
equilibrium states, so that the function has three variables, not two as in equilibrium
thermodynamics.

Through the above-described model, it is clear that the thermodynamic proper-
ties can be obtained from the state equation. First, the Gibbs equilibrium function is
obtained by minimizing Eq. (19) for given values of P and T . Also, an evaluation
of the second derivative of the Gibbs function allows checking that it is positive for
all points and the stationary point is minimum. Thus, from the second derivative it is
possible to obtain the isothermal volume modulus of the system,

BT � −Vr

(
∂P

∂Vr

)

T
� −Vr

(
∂2G∗

∂V 2
r

)

T,P
. (10)

Deriving Eq. (10) with respect to the pressure, we obtain

B ′
T �

(
∂BT

∂P

)

T
�

(
∂BT

∂Vr

)

T

(
∂Vr
∂P

)

T
. (11)
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The heat capacity at constant volume can be obtained as

C̄v � 3nr R

(
4D [ΘD/T ] − 3ΘD/T

eΘD/T − 1

)
. (12)

The Grüneisen parameter, which depends explicitly on the volume and implicitly
on T and P, is defined as

γ � −d Ln [ΘD (Vr )]

d Ln (Vr )
. (13)

On the other hand, it is more accurate to evaluate the parameter of Grüneisen from
the equation of state of Mie-Grüneisen, because that is a more general equation than
the Debye model, since it ensures that all vibrational frequencies change in the same
way in the volume of the crystal.

P − Pstatic � γ
Ūvib

Vr
, (14)

where

P � −
(

∂ Ā

∂Vr

)

T
, (15)

and Pstatic � − dEe(Vr )
dVr

is the pressure that the crystal volume Vr would have on
the static model, and therefore represents the thermal vibrational contribution to the
pressure.

The coefficient of thermal expansion at constant pressure can be found through the
expression

α � 1

Vr

(
∂Vr
∂T

)

P
� 1

BT

(
∂P

∂T

)

Vr

(16)

α can be derived from State Equation-Vr(T , P), but it is preferable to get α from
γ because the quasi-harmonic Debye model necessarily satisfies the Mie-Grüneisen
equation. Thus, deriving both members of the Eq. (15) with respect to temperature at
constant volume, we obtain

(
∂P

∂T

)

Vr

� γ
C̄v

Vr
, (17)

thus

α � γ
C̄v

BT Vr
. (18)
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Table 1 Atomic positions for the Ba2NiMoO6 double perovskite in the Fm3̄m (#225) space group as
predicted by SPuDS [21]

Atom Wyckoff site x y Z

Ba 8c 0.2500 0.2500 0.2500

Ni 4a 0.0000 0.0000 0.0000

Mo 4b 0.5000 0.0000 0.0000

O 24e 0.2428 0.0000 0.0000

The isobaric heat capacity is given by

C̄ p � C̄v + T Vrα
2BT � C̄v (1 + αγ T ) , (19)

and, from the adiabatic bulk modulus

BS � BT
C̄p

C̄v

� BT (1 + αγ T ) , (20)

because BS � −Vr
(

∂P
∂Vr

)

S
.

3 Results and Discussion

3.1 Structural Properties

From the Structure Prediction Diagnostic Software SPuDs [22], specially designed
for perovskite-like materials, it is possible to predict the crystal parameters for the
Fm3̄m (#225) space group. The obtainedWyckoff positions in the structure are shown
in Table 1.

Then, by using the PowderCell (PCW) code [23], the respective diffraction pattern
can be theoretically generated as presented in Fig. 1.

This perovskite can be indexed in the A2BB′O6 cubic structure with the cell edge
a � 2ap, where ap represents the cell lattice of the cubic perovskite. The presence of
the superstructure reflection lines (311), (331), (511) and (531) in the XRD pattern
of the A2BB′O6 double perovskite is the signature of B, B′ cationic ordering. In a
substitutional solid solution BB′, there is a random arrangement of B and B′ on equiv-
alent lattice positions in the crystal structure. It upon stable heat treatment, the random
solid solution rearranges into a structure in which B and B′ occupy the same set of
positions, but in a regular way, such a structure is described as superstructure. Figure 2
shows the expected structure for the Ba2NiMoO6 double perovskite constructed from
the simulation data.

In the superstructure, the position occupied by B and B′ is no longer equivalent and
this feature is exhibited in the XRD pattern of the material by the presence of super-
structure reflection lines [24]. For a double cubic perovskite of the formula A2BB′O6,
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Fig. 1 XRD simulated pattern for the Ba2NiMoO6 complex perovskite obtained from the theoretical cell
parameters (Color figure online)

Fig. 2 Crystal structure of the Ba2NiMoO6 material for the Fm3̄m (#125) space group. In the figure, the
small red spheres identify the positions of the oxygens in the structure (Color figure online)
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Fig. 3 Total energy as a function of volume for Ba2NiMoO6 considering the Fm–3 m space group. Points
represent the minimization calculations, and the line corresponds to the adjustment with Murnaghan’s
equation of state (Color figure online)

the intensity of XRD reflections, in particular the (111) superstructure plane, is pro-
portional to the difference in the scattering power of the B and B′ atoms when all
the atoms are situated in the ideal position [25, 26]. A disordered arrangement of B
and B′ should result in zero intensity. In the Ba2NiMoO6, the Ni4+ and Mo4+ cation
ordering of the B and B′ positions must be clearly distinguished by the presence of the
significant intensity of (311), (331), (511) and (531) superstructural reflection lines.
The lattice constant of the Ba2NiMoO6, calculated from the simulation, is a � 7.9159
Å.

From the crystallographic information described above, a set of calculation of the
total energy versus volume were performed and fitted with the Murnaghan’s equation
state [27] in order to obtain the equilibrium lattice parameter (a0) from the ab initio
calculation, see Fig. 3.

The a0 obtained was 7.9488 Å, which is 0.4% offset from the value predicted by
the SPuDS and 0.8% overestimates the experimental value [10]. On the other hand,
when the LDA approximation is used the a0 value is 7.8965 Å, which turns out to be
0.3% different from the SPuDs prediction and underestimates the experimental value
in 1.5% [10]. In Table 2, we report the atomic positions optimized using different
theoretical procedures and the experimental values [10], where the values obtained
with GGA–PBE are in total agreement with experimental values. For the rest of the
present work, we will consider this value of the lattice parameter.

3.2 Elastic Properties

The elastic constants for this compound have not been previously reported in the
literature; knowledge of these properties is important since they might be correlated
with the equation of state (EOS) and thermo-physical properties such as the specific
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Table 2 Ba2NiMoO6 unit cell internal coordinates (Wyckoff positions) obtained from the ab initio calcu-
lations, SPuDs and experimental data, which are included for comparison [9]

Ba2NiMoO6 Site GGA LDA SPuDs Exp.

Ba 8c 0.25, 0.25, 0.25 0.25, 0.25, 0.25 0.25, 0.25, 0.25 0.25, 0.25, 0.25

Co 4a 0.0, 0.0, 0.0 0.0, 0.0, 0.0 0.0, 0.0, 0.0 0.0, 0.0, 0.0

Ni 4b 0.5, 0.5, 0.5 0.5, 0.5, 0.5 0.5, 0.5, 0.5 0.5, 0.5, 0.5

O 24e 0.2595, 0.0, 0.0 0.2592, 0.0, 0.0 0.2428, 0.0, 0.0 0.2605, 0.0, 0.0

Table 3 Calculated elastic
constants (in GPa) for the
polycrystalline elastic moduli in
the Ba2NiMoO6

Ni (Exp.) Ba2NiMoO6

C11 249.0 259.0

C12 155.0 105.2

C44 114.0 114.4

B 187.3a 156.5

A 2.4 1.5

Gv 87.2 99.4

GR 72.6 95.7

G 79.9 97.5

Yv 226.3 246.1

YR 192.8 255.6

Y 209.6 250.8

υV 0.3 0.24

υR 0.4 0.34

υ 0.4 0.29

The experimental data for the
elastic constants in pure Ni [27]
are also included for
comparison; the polycrystalline
elastic moduli are calculated
from these values
aBased on the elastic constants
reported in [26]

heat, thermal expansion, Debye temperature, melting point, etc. Also, from the elastic
constants, valuable information about the binding and mechanical stability of the solid
can be obtained.

By considering the generalized Hook’s law: σ ij � cij εj, we calculated the elastic
constants for the Ba2NiMoO6 compound in the cubic structure. There are three inde-
pendent elastic constants for the cubic structure, calledC11,C12,C44. The requirement
of mechanical stability of the crystalline systems for any homogeneous lattice defor-
mation places restrictions for the elastic constants [28]. The necessary conditions for
mechanical stability in the cubic crystal are: C11 >0 and C11−C12 >0. The calcu-
lated zero-temperature elastic constants are shown in Table 3. The values of Table 3
satisfy the criteria for mechanical stability of Ba2NiMoO6, suggesting that its bulk
form is experimentally accessible. There are no experimental values to compare with
the present calculations.

From the elastic constants of single crystals we calculate the elastic moduli, which
are of more interest for the development of technological materials [28]. The Reuss
(R), Voigt (V ), and Hill (H) polycrystalline average values of the Young modulus (E),
the shear modulus (G) and the Poisson ratio (ν) for the cubic Ba2NiMoO6 calculated
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by means of the expressions given in Ref. [16] are given in Table 3. As indicated in
Table 3, A is the Zener’s anisotropy factor A � 2C44/ (C11 −C12). Since a departure
from unity of this factor is a measure of anisotropy, the results in Table 3 indicate that
the Ba2NiMoO6 compound is less anisotropic than pure Ni. Materials with high B and
G are likely to be hard materials. The Young modulus on the other side determines the
stiffness of the material. From the results shown in Table 3, we note that the elastic
moduli of the Ba2NiMoO6 compound are close but lower than those of pure Ni. The
present results predict that the stiffness and hardness of the compound are big than
pure Ni. The brittle/ductile behavior can be predicted through the ratio of B/G as an
index of the plastic characteristic of materials [29–31].

The critical threshold value for differentiating the physical properties of materials is
about 1.75. If theB/G ratio is larger than that, the polycrystalline sample is predicted to
behave like a ductile material; otherwise, it would act as a brittle material. The present
value of B/G is 1.6 for the Ba2NiMoO6 compound, indicating that this compound
will behave as a brittle material. The Poisson’s ratio provides more information about
the characteristics of the bonding forces than any of the other elastic constants. The
calculated Poisson’s ratio for the studied Ba2NiMoO6 compound is~0.3, which falls
within the expected range for materials of double perovskite type [32].

3.3 Electronic Structure and Magnetic Properties

In order to find the magnetic ground state of the complex perovskite Ba2NiMoO6, we
have considered the ferromagnetic coupling (FM) between Ni atoms, and different
antiferromagnetic (AF) configurations coupling between the Ni atoms. For the AF
cases, we have used a 2×2×2 supercell of Ba2NiMoO6, with the purpose to explore
different AF configurations, such as [001], [110] and [111], as showed in Fig. 4.
In the ferromagnetic case of Fig. 4a, all the spins due to the magnetic moments of
the Ni are oriented in the direction of application of an external magnetic field (up).
In the antiferromagnetic case, there are three types of configuration: Fig. 4b, the
alignment of the spins is parallel to the applied field (up) in a plane with direction
[001] and antiparallel (down) in the next plane, interspersed successively; Fig. 4c
presents the same distribution as in Fig. 4b but in the direction [110]; finally, in Fig. 4d,
antiferromagnetism occurs in the direction [111]

In Table 4, we report the difference of energy (�E) respect to AF [111] case, the
total magnetic moment (MT) and the magnetic moment of the Ni atom (mNi), where
the magnetic ground state of the Ba2NiMoO6 is AF [111], i.e., the antiferromagnetic
coupling between Ni atoms is across the propagation vector (1/2, 1/2, 1/2). These
results are in agreement with experimental studies, where using X-Ray and neutron
powder diffraction patterns collected at 2 K [10].

Figure 5 shows the total density of state (DOS) and the projected density of state
per atom (PDOS) of the Ba2NiMoO6 for AF [111] case. In this figure, the positive
part in the vertical axis of the density of states represents the contributions due to the
electrons with spin-up orientation (up arrow) and the negative part is associated to the
contributions from the electrons with spin down (down arrow). In Fig. 5a, the total
DOS is presented, and partial contributions of Ni, Ba, Mo and O are exemplified in
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Fig. 4 Different magnetic configurations considered: a FM, b AF [001], c AF [110] and d AF [111]. The
colors of the spheres are previously defined in Fig. 2 (Color figure online)

Table 4 Value of the difference of energy (�E in meV) respect to AF [111] configuration, total magnetic
moment (MT in μB/f.u.) and magnetic moment of Ni atoms (mNi in μB)

FM AF [001] AF [110] AF [111]

�E 1680.89 1831.63 1831.63 0.00

MT 7.84 0.00 0.00 0.00

mNi (↑) 1.56 1.50 1.50 1.61

mNi (↓) – −1.50 −1.50 −1.61

Figs. 5b–e. The low- and high-spin configurations (e.g., and t2g orbitals) are denoted
in Fig. 5b as (↑) and (↓), respectively.

From the figure, it is possible to establish the occurrence of hybridization due to
the p-Ni orbitals and some d-Mo [d(z2) and d(x2 −y2)] in the range of energy −8.0
and −5.0 eV, whereas in the range −2.5 eV and Ef exist a hybridization between
the orbitals p-Ba, p-Mo and s–O, which are responsible by the conductor behavior in
this material. For energies higher than Ef , conduction band, we found a remarkable
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Fig. 5 a Total DOS and PDOS for the atoms, bNi, cBa, dMoand eOof the compoundBa2NiMoO6 belong
to the magnetic ground state configuration AF [111]. In (b), the arrows indicate high-spin configuration
(up) and low-spin configuration (down) (Color figure online)

hybridization between the orbital d-Ni and p-O, where both t2g and, e.g., orbitals of the
Ni atoms are occupied; this is characterized of an octahedral high-spin configuration.

The magnetic moment of the Ni atoms (mNi) come from, mainly, polarization
of the d-Ni orbital, where the absolute value of (|mNi|) is 1.61 μB, due to unequal
distribution in the PDOS-up and PDOS-down of the 3d-Ni orbitals. In Fig. 6, we
show the electron spin density for the crystallographic plane [200], where is possible
see the antiferromagnetic coupling between the Ni atoms for the AF [111] case. In
the figure, the positive electronic density represents the spin-up orientation and the
negative density corresponds to the spin-down polarization.

The value of |mNi| obtained from the ab initio calculations is lower than proposed
experimentally [10] based on the spin only moment of isolated Ni2+ ion, but is similar
that |mNi| found in the NiO compound, 1.7 μB [33], where Ni atoms are located in an
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Fig. 6 Electron spin density for the crystallographic plane [200] of the compound Ba2NiMoO6 for the
magnetic ground state AF [111] (Color figure online)

octahedral site surroundedbyoxygen atoms, similar to theNi atomsof theBa2NiMoO6
compound; furthermore, the magnetic ground state of the NiO is antiferromagnetic
with the same propagation vector found in the present work.

3.4 Thermodynamic Properties

The effects of temperature and pressure on the thermodynamic properties of the
Ba2NiMoO6 material from the state equation, under the considerations of the quasi-
harmonic approximation of the Debye model described in Sect. 3.2, were analyzed as
presented below. Figure 8 shows the results of specific heat at constant volume,CV (a),
and at constant pressures, CP (b), as functions of temperature. As can be seen in the
figures, the temperature was varied between 0 and 1500 K for eight applied pressure
values, from 0 to 25 GPa. It is observed in Fig. 7 that below T � 400 K, for all applied
pressure values, CV≈CP. This result occurs because α2BTVr is a very small number
in Eq. (19).

Figure 7a shows more clearly than in Fig. 7b the trend of specific heat toward the
Dulong–Petit limit, which is the specific heat value independent of temperature. From
this limit value of Dulong–Petit, as the temperature increases, each of the atoms in the
material absorbs the same amount of energy proportional to this temperature increase.
In the case of CV, this value corresponds to 233.09 J/mol K for all applied pressure
values, while for CP this limit is between 247,67 and 230.98 J/mol K for pressures
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Fig. 7 Specific heat Cv (a) and Cp (b) calculated through the quasi-harmonic Debye model for the
Ba2NiMoO6 material from the Murnaghan state equation (Color figure online)

between 10 and 25 GPa. These values of the Dulong–Petit specific heat limit are
high, since they practically duplicate other results reported for simple perovskites
[34]. At high temperatures (T>600 K), a specific heat divergence is observed, which
can be due to that for very high temperatures the model is not reliable. At very low
temperatures, it should be possible to determine a behavior dominated by the purely
electronic response, while at medium and high temperatures the predominance of the
phononic response should be expected. However, it is important to note that only
the p-Ba orbitals for both up and down spin polarizations in the density of states are
enough close to the Fermi level, giving rise to a reasonable electronic contribution
to specific heat. Then, when the material is heated, contributions to specific heat are
mostly due to the movement of the atoms and ions around their equilibrium positions
as a result of the absorption of heat. In the real Ba2NiMoO6, this result may vary
because this material is polycrystalline and the specific heat depends on the porosity,
since the thermal energy needed to increase the temperature of the material is lower
in the less porous materials and higher in the denser ones.

In Fig. 8, results of calculations of the Debye temperature (a), thermal expan-
sion (b) coefficient and Grüneisen coefficient (c) as functions of temperature are

123



282 J Low Temp Phys (2018) 192:265–285

Fig. 8 Debye temperature (a), thermal expansion coefficient (b) and Grüneisen coefficient (c) for the
Ba2NiMoO6 calculated by the application of the quasi-harmonic Debye model (Color figure online)

presented. We have calculated the dependence of ΘD(T ) (as a function of tem-
perature), plotting isobar curves as shown in Fig. 8a. These results show that
the Debye temperature is increased substantially with increasing pressure, from
520.42 K for P � 0 GPa to 672.45 K for P � 25 GPa (at T � 0 K).
This occurs because as the pressure increases, all the velocities of the elastic
waves increase gradually and their increase directly affects the temperature of
Debye. Likewise, a mild nonlinear decreasing behavior of ΘD(T ) can be observed
with increasing temperature for applied pressures. This decrease in temperature of
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Debye as a function of temperature is characteristic of perovskite-type materials [35].
Interpreting the Debye temperature as the highest temperature that can be achieved
as a result of a single normal vibration, it can be argued that the effect of pressure is
the increase of cation–anion vibration frequencies, while the effect of temperature is
the expansive distortion of the structure, increasing the wavelength of the vibrations,
decreasing the frequency and, consequently, the temperature of Debye.

Figure 8 shows the dependence of thermal expansion coefficient, α, with tempera-
ture and pressure. It can be established from the figure that α(T ) decreases drastically
with increasing pressure. On the other hand, it can be seen that at low temperatures
(between 0 and 300K) α(T ) grows rapidly with temperature, and above 300K it grows
smoothly, following an approximately linear behavior. In spite of considering that the
Ba2NiMoO6 has a cubic structure, its character of perovskite type confers an aniso-
metric structure to it, and, therefore, very great differences of the thermal expansion
must be presented along the different crystallographic directions.

This behavior can be associated to the structural distortions to which the perovskite-
type materials are sensitive, because both temperature and pressure can give rise to
inclinations and/or rotations of the Ni-O6 and Mo-O6 octahedrons, elongation of the
structure in certain crystallographic directions and eventual contractions in other direc-
tions. Thus, the type of response in α(T ) is associated with the type of distortion or
transition that is occurring because of the application of temperature and pressure to
the material. This circumstance could slightly divert any experimental results with
respect to the theoretical result of Fig. 8. On the other hand, the relatively low value
of α(T ) is characteristic of ceramic materials [36].

One aspect, which is not considered in the calculations that we have carried out,
is that as the temperature increases, structural phase transitions can occur and the
material could no longer have a cubic structure. Finally, the Grüneisen parameter,
shown in Fig. 8c, shows a gradual decrease with the increase in applied pressure (for
example, from 2.25 for P � 0 GPa to 1.97 for P � 25 GPa, at T � 0 K). This behavior
is observed for all the temperatures considered in the calculations. On the other hand,
the Grüneisen coefficient presents a smooth and nonlinear increase with the increase in
temperature. These characteristics observed in the Grüneisen parameter as a function
of pressure and temperature are related to the alteration in the vibration frequency
of a crystalline lattice, according to the discussion presented above in relation to the
coefficient of thermal expansion [37].

4 Conclusions

DFT calculations of structural parameters for the Ba2NiMoO6 perovskite were per-
formed by considering theFm3̄m (#225) space group. The theoretical lattice parameter
for the cubic perovskite structure, calculated both within the GGA and LDA approxi-
mations, differs around 0.4% from the value predicted by the SPuDs software and the
experimental value 0.8%. The calculated zero-temperature elastic constants satisfy the
criteria for mechanical stability, indicating that the bulk form of this phase is experi-
mentally accessible. From the calculated polycrystalline average values of the Young
modulus, shear modulus, the Poisson ratio and the Zener’s anisotropic factor for the
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cubic Ba2NiMoO6, it is predicted that the stiffness and hardness of the compound
are big than of pure Ni. Moreover, the compound is expected to be anisotropic and
brittle. Respect to the magnetic properties, we have found that the magnetic ground
state of the cubic Ba2NiMoO6 compound is antiferromagnetic across the propagation
vector (1/2, 1/2, 1/2) being in total agreement with experimental prediction previously
reported; furthermore, the magnetic moment of the Ni cations and the antiferromag-
netic configuration is similar to the cubic compound NiO. The calculations of the
thermodynamic properties from the state equation, by means of the quasi-harmonic
approximation of the Debye model, show that the effects of the interatomic vibrations
give rise to a specific heat that decreases with the applied pressure and evidences a
Dulong–Petit limit relatively high (233.09 J/molK), compared to other results reported
for simple perovskite-type materials. Likewise, we conclude that CV ≈CP, mainly
due to the low value of the coefficient of thermal expansion. The Debye temperature
shows an increasing dependence on the pressure and decreasing with the temperature.
By contrast, both the coefficient of thermal expansion and the Grüneisen parameter
decrease with the pressure and increase slightly as a function of temperature. In gen-
eral, except for the high specific heat value of Dulong–Petit, the behavior observed in
the thermodynamic properties is characteristic of the perovskite-like ceramic materi-
als. We emphasize that the thermodynamic properties depend fundamentally on the
value of the parameter Grüneisen. Since the γ is derived from a third derivative of
the Ee function, it is very sensitive both to the numerical errors in the derivation and
to the smoothness of the Ee(Vr) curves. For this reason, it would be highly advis-
able to obtain experimental results of the thermodynamic properties in order to more
objectively establish the microscopic mechanisms that originate them.
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