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Abstract We develop a theory based on the formalism of quasiclassical Green’s func-
tions to study the spin dynamics in superfluid 3He. First, we derive kinetic equations
for the spin-dependent distribution function in the bulk superfluid reproducing the
results obtained earlier without quasiclassical approximation. Then, we consider spin
dynamics near the surface of fully gapped 3He-B-phase taking into account spin relax-
ation due to the transitions in the spectrum of localized fermionic states. The lifetimes
of longitudinal and transverse spin waves are calculated taking into account the Fermi-
liquid corrections which lead to a crucial modification of fermionic spectrum and spin
responses.
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1 Introduction

The theory of spin dynamics in superfluid 3He has been developed for several decades
since the pioneering works of Leggett [1–3], where the phenomenological equations
were formulated explaining shifts of the transverse nuclear magnetic resonance mode
and predicting longitudinal resonance in the B phase [4–6]. To study spin relaxation,
that is the width of the NMR signal, Leggett and Takagi [7,8] introduced the two-fluid
model which yields qualitatively the same results as the kinetic theory [9–13].

Nowadays, the most common approach to study non-equilibrium states in different
condensedmatter systems including superconductors andFermi superfluids is basedon
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the quasiclassical Keldysh formalism. In this way, kinetic equations for spin-singlet
superconductors were derived [14,15] and applied to study various problems (see,
e.g., the book [16] for review). Recently, this theory has been extended to study non-
equilibrium spin states in spin-singlet superconducting materials [17–19].

Interestingly enough, although the general quasiclassical approach to superfluid
3He has been described [20], kinetic equations for spin dynamics in spin-triplet super-
conductors/superfluids have never been derived using this technique. An attempt to
apply quasiclassical methods to spin dynamics has been done in Ref. [21]. However,
this work does not reproduce kinetic equations obtained without the quasiclassical
approximation [9–13], essentially because several important terms have been omitted
during the derivation. The purpose of the present paper is partially to close this gap.

Being powerful tools to study spin dynamics in the bulk, previous kinetic theories
are not capable of describing the spin response of localized quasiparticle surface states
dubbed Andreev–Majorana fermions [22–25]. Recently, the frequency-dependent lin-
ear spin response of Andreev–Majorana states was found [23]. As noted in Ref. [26]
to obtain the total spin susceptibility, it is necessary to take into account the self-
consistent response of the spin-triplet order parameter. In the present paper, we apply
quasiclassical formalism to this problem, calculating the coupled dynamics of spin
waves and Andreev–Majorana surface states in the film of fully gapped superfluid
3He-B. This approach allows treating both the longitudinal and transverse magnetic
resonances and taking into account Fermi-liquid corrections which are quite impor-
tant in 3He [18,27,28]. We show that these corrections can drastically change the spin
response properties shifting the threshold absorption frequency of the surface states to
values several times larger than the basic Larmor frequency of magnetic precession.

2 Keldysh Formalism for Non-equilibrium Spin States

2.1 General Equations

In general, the spin density S can be written in terms of the Keldysh quasiclassical
Green’s function (GF) as

S(r, t) = h̄ν0

16

∫
dΩp

4π
Tr

[
τ̂3σ̂ ĝ

K (t, t)
]

+ S(n)
eq , (1)

where ν0 is the normal-state density of states, τi , σi are Pauli matrices in Nambu and
spin spaces, ĝK is the (2× 2 matrix) Keldysh component of the matrix quasiclassical
Green’s function

ǧ =
(
ĝR ĝK

0 ĝ A

)
, (2)

and ĝR(A) are the retarded (advanced) propagators. The additional term in (1) compen-
sates off-shell contributions S(n)

eq = χnHext, whereχn is the normal-state susceptibility
and Hext is an external field.

123



J Low Temp Phys (2018) 191:393–407 395

In clean superfluid, the matrix ǧ obeys the Keldysh–Eilenberger equation [29]

vF · ∇ǧ + {
τ̂3∂t , ǧ

}
t + i

[
Σ̌, ǧ

]
t + i

[
V̌Z , ǧ

]
t = St (ǧ), (3)

where vF is the Fermi velocity and the commutator/anti-commutator operators are
defined as

[X, g]t = X (t1)g(t1, t2) − g(t1, t2)X (t2) (4)

{X, g}t = X (t1)g(t1, t2) + g(t1, t2)X (t2). (5)

The l.h.s of Eq. (3) contains the spin-dependent Zeeman energy V̌Z = ÎK V̂Z where ÎK
is the unitmatrix inKeldysh space, V̂Z = − γ τ̂3(σ̂ ·Hext)/2, and γ is the gyromagnetic
ratio of 3He nuclei. Similarly, the Keldysh component of the Hartree–Fock self-energy
is absent and the spectral components are given by the superposition of three terms:
Σ̂ R(A) = Σ̂FL + Δ̂ + Σ̂D . The first one is the Fermi-liquid self-energy, which we
take in the form describing the correction to the Zeeman field Σ̂FL = τ̂3γ

2(Z0/8)(σ̂ ·
S)/χn0, where Z0 ≈ − 3 is the Landau parameter, describing the enhancement of spin
susceptibility, χn0 = γ 2h̄2ν0/4 is the normal-state susceptibility without corrections.
As a result, the effective magnetic field modified by Fermi-liquid corrections is given
by [8]

Heff = Hext − γ (Z0/4)S/χn0. (6)

The self-energy Σ̂ contains off-diagonal gap and dipolar interaction operators. The
gap is parametrized in terms of the spin vector d and is given by Δ̂ = iΔ0τ̂1(σ̂ ·d). The
general form of the dipolar interaction is not important for the present paper. Similarly,
we do not specify the particle–particle collision integral on the r.h.s. of Eq. (3).

Equation (3) is complemented by the normalization condition ǧ ◦ ǧ = 1 that allows
writing the Keldysh component

ĝK (t1, t2) = ĝR ◦ f̂ − f̂ ◦ ĝ A, (7)

where f̂ = f̂ (t1, t2) is the generalized distribution function and the convolution
product is defined as (A ◦ B)(t1, t2) = ∫

dt A(t1, t)B(t, t2).

2.2 Spin Conservation

The spin conservation law can be obtained from the general Keldysh–Eilenberger
equation (3) using the definition of spin density (1) and the self-consistency relation for
the order parameter which yields Trσ̂

[
Δ̂, ĝK

] = 0 . Moreover, the Fermi-liquid self-
energy contribution drops out as well Trσ̂

[
Σ̂FL , ĝK

] = 0. Therefore, multiplying
the Keldysh component of Eq. (3) with σ̂ and taking the trace we obtain the exact
equation:

∇kJk + Ṡ = γS × Hext + RD, (8)
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where the components of the spin current Jk and the dipole torque RD are defined as
follows

Jk = h̄ν0

16

∫
dΩp

4π
vFkTr

(
σ̂ ĝK

)
, (9)

RD = i h̄ν0

8

∫
dΩp

4π
Tr

(
σ

[
Σ̂D, ĝK

])
. (10)

2.3 Rotating Frame: General Case

There are two possible types of driving terms in the kinetic equation (3) which
generate non-equilibrium states. One of them is the time-dependent external field
Hext = Hext(t) generated by external sources. The other driving term is given by
the time-dependent rotating order parameter vector d(t) = R̂−1(t)d0(k), where the
rotation matrix R̂ is determined by its angle θ(t) and axis n(t):

Rik = δik + (nink − δik)(1 − cos θ) − εiklnl sin θ. (11)

In general, the rotation matrix can be split R̂(t) = R̂ac(t)R̂0 into the time-independent
part R̂0, describing the static order parameter configuration and the part R̂ac(t) cor-
responding to the time-dependent rotation (12). To simplify the kinetic equation Eq.
(3), it is convenient to introduce the rotating frame by removing the time dependence
of the order parameter with the help of the following SU(2) transformation

ˇ̃g(t1, t2) = Û †(t1)ǧ(t1, t2)Û (t2), (12)

where Û (t) = ei σ̂ ·θ(t)/2. This transformation rotates spin vectors Û †σ̂ Û = R̂−1
ac σ̂

so that the gap function becomes time-independent ˆ̃
Δ = iτ1(σ̂ · d0) and the Zeeman

energy in the rotating frame acquires a new term as follows

V̂Z = − γ

2
τ̂3

(
σ̂ · R̂acHeff

)
− i τ̂3Û

†∂t Û , (13)

where the effective field in the first term is given by Eq. (6). Here the spin-
dependent Fermi-liquid corrections are incorporated into the Zeeman term. For small
angles θ , one can expand the rotation matrix R̂acHeff ≈ Heff − Heff × θ , and put
Û †∂t Û ≈ i σ̂ · ∂tθ/2 which allows rewriting the kinetic equation (3) separating the
time-independent term Λ̌0 = ÎK Λ̂0 and the driving term V̌Z1 = ÎK V̂Z1 as follows

ivF · ∇ ˇ̃g + i
{
τ̂3∂t , ˇ̃g

}
t
−

[
Λ̌0, ˇ̃g

]
=

[
V̌Z1, ˇ̃g

]
t
+ St

( ˇ̃g
)

, (14)

where Λ̂0 = iΔ0τ̂1(σ̂ · d0) − γ τ̂3(σ̂ · H(0)
eff )/2 and V̌Z1(t) = − γ τ̂3(σ̂ · h)/2. The

driving field is given by

h(t) = H̃eff + θ × H(0)
eff − ∂tθ/γ, (15)
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where H(0)
eff and H̃eff are the constant and time-dependent parts of the effective field

(6) in the rotating frame. Below we will use Eq. (14) to find the first-order non-
equilibrium corrections to the Keldysh function in various situations. Namely at first
we will derive kinetic equations for the spin distribution function describing the bulk
NMR in superluid 3He. Second, we will calculate the spin response in the presence of
Majorana surface states in fully gapped B phase.

3 Spin Dynamics in the Bulk Superfluid 3He

In this section, we apply the general formalism described above to derive kinetic equa-
tions for the spin-dependent distribution function which were obtained before without
quasiclassical approximation [9–13]. The advantage of the quasiclassical approach is
that the derivation becomes much simpler and one can clearly understand the approx-
imations made.

3.1 Mixed Representation

We will use the mixed representation of Green’s functions ǧ(t1, t2) = eiε(t2−t1)ǧ(ε, t)

where t = (t1 + t2)/2. Then, with the help of the gradient expansion
[
X̌ , ǧ

]
t

=
[X̌ , ǧ] − i{∂t X̌ , ∂ε ǧ}/2 the Keldysh component of Eq. (3) can be written in the form

vF ·∇ĝK− iε
[
τ̂3, ĝ

K
]
+1

2

{
τ̂3, ∂t ĝ

K
}

+
[
Λ̂, ĝK

]
+1

2

{
∂tΛ̂, ∂ε ĝ

K
}

= St
(
ǧ
)
, (16)

where we denote Λ̂ = Σ̂ + V̂Z . To describe non-equilibrium spin states, we use the
parametrization (7) of theKeldysh function. Using the gradient expansion in themixed
representation the relation (7) can be written as follows

ĝK = ĝR f̂ − f̂ ĝ A − i

2

(
∂t ĝ

R∂ε f̂ + ∂ε f̂ ∂t ĝ
A
)

+ i

2

(
∂ε ĝ

R∂t f̂1 + ∂t f̂1∂ε ĝ
A
)

. (17)

We represent the distribution function in the form f̂ (ε, t) = f0(ε) + f̂1(ε, t), where
f0 = tanh(ε/2T ) is the equilibrium part and f̂1 = (σ̂ · f T) describes the spin non-
equilibrium. The last two terms in Eq. (17) containing the time derivative ∂t f̂1 can be
neglected provided that the frequencyω defined by the driving term is much smaller as
compared to the typical energy scale, which is of the order of the energy gapΔ. In this
case f̂1 ∝ ω and ∂t f̂1 ∝ ω2, so that the last two terms in Eq. (17) are of the higher order
in the small parameter ω/Δ. When we substitute the expansion ĝK = ĝR f̂ − f̂ ĝ A to
(16), some terms cancel due to the Eilenberger equation (3) for spectral components
ĝR,A. Thus, we are left with a kinetic equation for the spin-dependent distribution
function

vF · ∇
(
ĝR f̂1 − f̂1ĝ

A
)

+ 1

2

{
τ̂3,

(
ĝR∂t f̂1 − ∂t f̂1ĝ

A
)}
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+ iε
[
τ̂3,

(
ĝR f̂1 − f̂1ĝ

A
)]

− 1

2

[
Λ̂, ∂ε ĝ

R∂t f̂1 + ∂t f̂1∂ε ĝ
A
]

+ i
[
Λ̂,

(
ĝR f̂1 − f̂1ĝ

A
)]

+ 1

2
∂ε f0

{
∂tΛ̂, ĝR − ĝ A

}
= St{ f1}. (18)

Here, it is quite important to take into account modifications of spectral functions
due to the Zeeman energy shift. This modification has not been taken into account in
previous work on the quasiclassical theory of spin dynamics in superfluid 3He [21]. As
discussed in recent works, Zeeman spin splitting leads to the qualitative changes in the
quasiparticle spin transport properties even in spin-singlet superconductors [17–19].

Since the Zeeman shift is quite small as compared to the gap amplitude, it is enough
to use the first-order expansions in terms of the effective magnetic field

ĝR = ĝR
0 + (γ /2) (h · d0) ĝR

1 (19)

ĝR
0 = τ̂3G0 − i τ̂1

(
σ̂ · d0

)
F0 (20)

ĝR
1 = τ̂3

(
σ̂ · d0

)
∂εG0 − i τ̂1∂εF0, (21)

where G0 = ε/
√

ε2 − Δ2 and F0 = Δ/
√

ε2 − Δ2. The advanced function is given
by the usual relation ĝ A = − τ̂3ĝR†τ̂3. Then, after some algebra we transform the
kinetic equation to the following form

G0∂t f T − Δ∂εF0∂t f⊥
T + γG0(h × f T ) − γΔ∂εF0(d0 · h)(d0 × f T )

= γ

2
G0∂ε f0ḣ + St{f T }, (22)

where we separate the transverse component of the distribution functions with respect
to d0 such that f⊥

T = f T −d0(d0 · f T ). For the reasons discussed above, this quasiclas-
sical equation (22) is different from that obtained in Ref. [21]. However, it coincides
with the one derived without using the quasiclassical approximation. To demonstrate
that, let us introduce the distribution function

ν = d0 f
‖
T + G0f⊥

T (23)

Then, with the help of (22) one obtains the Boltzmann-like kinetic equation

∂tν − 2δE × ν = − ∂ε f0∂t (δE) + St{νT } (24)

where the effective shift of energy levels under the action of the Zeeman field is given
by

δE = −γ

2

(
h‖d0 + h⊥

G0

)
. (25)

Equation (24) is identical to previous results obtained without quasiclassical approx-
imation [9–13].
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4 Spin Relaxation Due to Surface Majorana States in Superfluid 3He-B

The main simplification used in the derivation of the bulk kinetic equation is based on
the truncation of the gradient expansion to the first term inEq. (17). This approximation
is not valid to describe resonant transitions between the energy levels corresponding to
the surface bound states. These transitions happen at the fixed momentum projection
to the surface plane, so that the spectrum consists of the discrete energy levels εn . In
this case, the spectral functions have isolated poles ĝR,A(ε) ∝ δ(ε − εn), so that, for
example, the last term in the expansion (17) is much larger than the first one. However,
the gradient expansion is still applicable in some cases with the discrete spectrum. For
example, it can be used for the description of localized fermionic states in the vortex
cores [16,30,31]. The interlevel distance corresponding to the localized vortex core
states is so small that the quasiclassical approximation yields continuous spectral
branches. In case of the surface Andreev–Majorana states [22,24], the situation is
different since their spectrum at fixed momentum projection is discrete even within
the quasiclassics. Thus, the gradient expansion is not applicable and it is not possible
to derive the Boltzmann-like kinetic equation. Below we will treat this problem by
finding the Keldysh function, which is a solution of the full Eilenberger equation (14),
using the exact form of the spectrum and wave functions near the surface.

4.1 Andreev–Majorana Bound States on the Surface of 3He-B

In this section we derive the spectrum of localized states at the surface of 3He-B
taking into account the Fermi-liquid corrections. We assume that the surface normal
is oriented along z, the equilibrium order parameter is defined by the rotation matrix
R̂0 and d0 = (qxΔ⊥, qyΔ⊥, qzΔ‖)/Δ where the components depend on the distance
to the surface Δ⊥,‖ = Δ⊥,‖(z).

Then, upon specular reflection from the surface the quasiparticle momentum pro-
jection qz and therefore the z-component of the order parameter vector d0 change the
signs which leads to the formation of surface bound states. Their spectrum is deter-
mined by the Andreev equation for the quasiparticle wave function ψ̂ = ψ̂(z), which
is a four-component vector in spin-Nambu space

Ĥ(z, ∂z)ψ̂ = εψ̂. (26)

To find the discrete spectrum of (26), we employ the usual procedure of splitting
the Hamiltonian in two parts Ĥ = Ĥ0 + Ĥ1, so that

Ĥ0 = − i τ̂3vFqz∂z + τ̂2Δ⊥σ̂ zqz (27)

Ĥ1 = Δ‖τ̂2
(
σ̂ · q⊥

) − γ

2

(
σ̂ · R̂0H

(0)
eff

)
, (28)

where q⊥ = (qx , qy, 0) and R̂0 is the equilibrium order parameter rotation matrix.
The Hamiltonian (27) has zero-energy eigenvalues corresponding to the degenerate
surface bound states. The correction from perturbation Ĥ1 results in the spectrum
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ε1,2 = ±
√
C2 p2⊥ + E2

g/4, (29)

where p⊥ = pFq⊥. The corresponding wave functions were found in Refs. [22,23].
The velocity and mass of the spectrum (29) are given by

C = 1

pF Lξ

∫ ∞

0
Δ‖ exp [−2K (z)] dz (30)

Eg = γ

Lξ

∫ ∞

0

(
ns · H(0)

eff

)
exp [− 2K (z)] dz (31)

where ns = R̂0ẑ is the spin quantization axis, K (z) = 1
h̄vF

∫ z
0 Δ⊥(z)dz, Lξ =

4
∫ ∞
0 e− 2K (z)dz is a normalization length which is of the order of the coherence

length ξ = h̄vF/Δ.
The minigap Eg is induced by the external magnetic field. Here, we point out that

Fermi-liquid corrections lead to a strong re-normalization of Eg as compared to its

’bare’ value given by E (0)
g = h̄ωL , where ωL = γ H (0)

ext is the Larmor frequency. The
effective field in (31) is given by (6) which can be written in terms of the local spin
susceptibility χ = χ(z) so that H(0)

eff (z) = Hext(1 − (Z0/4)χ/χn0). To calculate an
exact value of Eg , one has to determine χ(z) self-consistently [28]. For the estimation,
we can assume that χ ≈ χn , where χn = χn0/(1 + Z0/4) is the renormalized bulk
normal-state susceptibility. Then, for Z0 ≈ − 3 the spectral minigap is given by Eg ≈
4h̄ωL . As we will see below at smaller frequencies ω < Eg/h̄ surface bound states
give no absorption signal. In particular, this situation is realized for the experimentally
interesting domain of frequencies in the close vicinity of the main NMR peak located
at the Larmor frequency ω ≈ ωL < Eg/h̄.

The localized states of the Andreev equation (26) with discrete spectrum εn provide
singular contributions to the Green’s functions:

Ĝ R,A(z1, z2, q⊥, ε) =
∑
n

|ψ̂n(z1)〉〈ψ̂n(z2)|
εn − ε ∓ i0

. (32)

This expression will be used below to calculate the singular part of quasiclassical
propagators determined by the contribution of surface Andreev–Majorana states.

4.2 Quasiclassical Propagators

To proceed, we need to calculate spectral functions gR,A near the surface of 3He-B.
We will use a general relation [16] for the singular part of quasiclassical propagators
in terms of the Green’s functions (32) of Andreev equations

(
ĝR − ĝ A

)
(z) = − 2ivz τ̂3

(
Ĝ R − Ĝ A

)
(33)
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where vz = (vF · ẑ) and Ĝ R,A = Ĝ R,A(z1 = z2 = z, q⊥, ε) are the Green’s functions
of Andreev equations (26) which depend on the coordinate z perpendicular to the
surface, momentum projection on xy plane p̂⊥ and energy ε. We are interested in the
contribution of bound states and therefore can use the expression (Ĝ R − Ĝ A)(z1 =
z2) = 2π i

∑
n δ(ε − εn)|ψ̂n〉〈ψ̂n|, so that

ĝR − ĝ A = 4πvz
∑
n

δ(ε − εn)|τ̂3ψ̂n〉〈ψ̂n|. (34)

The equilibriumKeldysh function is givenby ĝK (ε) = f0(ε)(ĝR−ĝ A),where f0(ε) =
tanh(ε/2T ) is the equilibrium distribution function. Hence, in the time domain we get
ĝK (t, t ′) = ∫

ĝK (ε) exp(iε(t ′ − t))dε so that

ĝKeq(t, t
′) = 4πvz

∑
n

eiεn(t
′−t) f0(εn)|τ̂3ψ̂n〉〈ψ̂n|. (35)

4.3 Non-equilibrium Spin Surface States

Having in hand the equilibrium Keldysh function (35) we can proceed to study non-
equilibrium spin polarization of surface bound states given by the general kinetic
equation (14). We search for the first-order correction to the Keldysh function ĝK1 =
ĝK1 (t, t ′) substituting the equilibrium function in the form (35) to the r.h.s. of Eq. (14).
Assuming that the driving field is h(t) = hωeiωt and neglecting the collision integral
we can find the analytical solution of Eq. (14) in the following form

ĝK1 (t, t ′) = 2πγ vz
∑
n �=m

〈ψn|hω · σ̂ |ψm〉
ω + εn − εm

×
(
f0(εm)eiεmt

′+i(ω−εm )t − f0(εn)e
i(εn+ω)t ′−iεn t

)
|τ3ψn〉〈ψm |, (36)

where hω denotes the gauge-invariant effective field obtained from Eq. (15)

hω = H̃eff + θ × H(0)
eff − iωθ/γ. (37)

Calculating the Fourier component ĝK1 (ω) = ∫
e−iωt ĝK1 (t, t ′)dt , using the definition

(1) and the matrix element 〈ψ1|σ̂ |ψ2〉 = (Cp/ε1)ns we obtain the frequency-
dependent spin polarization of Andreev–Majorana bound states per unit surface area

Sbs(ω) = χbs(ω)

γ
(ns · h̄ω)ns, (38)

where ns is the spin quantization axis of surface states and

h̄ω = L−1
ξ

∫ ∞

0
hω(z) exp [− 2K (z)] dz (39)
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is the driving field (37) averaged over the surface bound state localization scale. In the
absence of Fermi-liquid corrections h̄ω = hω. The longitudinal susceptibility χbs(ω)

coincides with the expression found in Refs. [23,26]

χbs = γ 2C2

8π h̄2

∫ pF

0
p3dp

(ε2 − ε1) [ f0(ε1) − f0(ε2)]

ε21[(h̄ω)2 − (ε2 − ε1)2]
. (40)

The dissipation rate is determined by the imaginary part of χbs , which is nonzero at
the frequencies larger than the minigap ω > Eg/h̄

Imχbs = −
(

γ

4h̄C

)2 h̄ω

2
f0

(
h̄ω

4T

) (
1 − E2

g

h̄2ω2

)
. (41)

In contrast to the previous considerations [23,26] which neglected Fermi-liquid cor-
rections to the spectrum, the result (41) demonstrates that the absorption threshold is
given by Eg/h̄ which is significantly larger than the Larmor frequency as discussed
above.

4.4 Gauge-Invariant Theory of Surface Relaxation

Let us consider the influence of the transitions in the spectrum of surface states on
the dissipation rate of spin waves in the fully gapped superfluid 3He-B. In general,
the dynamics of the total spin in the laboratory frame is governed by Eq. (8). Let us
consider a monochromatic signal S ∝ eiωt to obtain from (8)

∇kJk + iωS = S × ωL + RD, (42)

where ωL = γHext and the dipole interaction RD is a function of the rotation vector
θ which parametrizes deviations of the order parameter from equilibrium determined
by the rotation matrix (11). In the bulk B-phase, the dipole torque is given by [32]

RD = χBΩ2
B

γ
n(n · θ), (43)

whereΩB is theB phase longitudinal resonance frequency [3,32] andχB is theB phase
bulk susceptibility. The total spin density S = S(ω, z) is given by the superposition
of the bulk contribution and that of the Andreev–Majorana bound states, localized at
the distance of the coherence length ξ near the surface. Since all length-scales which
determine the spin dynamics in the bulk are much larger than ξ , we can write S in the
rotating frame as follows

S(ω, z) = χB0

γ
hω + Sbs(ω)δ(z), (44)

where χB0 is the bulk susceptibility without Fermi-liquid corrections, while the ampli-
tude of the second term is given by Eq. (38).
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The main difficulty for the further analytical calculations is the influence of the
Fermi-liquid corrections on the spin of localized states in Eq. (38). To obtain qualitative
results, we neglect these corrections in the surface term and keep them for the bulk
contribution. In this case, the gauge-invariant driving field is given by its ‘bare’ form
h(b)

ω ≈ H̃ext + θ × H(0)
ext − iωθ/γ . Hence we will use the approximate expression for

the spin signal

S(ω, z) = χB

γ
h(b)

ω + Sbs(ω)δ(z), (45)

where χB is the total B-phase bulk susceptibility and the second term is given by Eq.
(38) with h(b)

ω instead of hω.

4.4.1 Longitudinal Resonance in Thin Film of 3He-B

First we consider the influence of Andreev–Majorana states on the decay of longi-
tudinal modes [32] when θ = θzz. For simplicity, we assume that the superfluid is
homogeneous without any underlying texture so that the rotation axis of the matrix R̂
is directed along the surface normal n ‖ z. In this case, the spin density can be written
as S(ω, z) = χ̃(z)h(b)

ω , where

χ̃(ω, z) = χB + χbs(ω)δ(z). (46)

Note that χ̃ is not the spin susceptibility, since the driving field h(b)
ω contains the

dynamical variable θ in addition to the external field. In order to find the true suscep-
tibility χ̂ which relates the total spin density and external magnetic field S = χ̂Hext
the angle θ has to be determined from the general equation for the total spin dynamics
(42). Then, writing for the spin current ∇zJz = c2z∇2

z θz , where cz is the spin wave
velocity, and combining Eqs. (42, 43, 44) we get

(
c2z∇2

z + Ω2
B − ω2 χ̃

χB

)
θz = iωγ H̃ext

χ̃

χB
. (47)

The mode with the smallest frequency ω0 ≈ ΩB is given by the space-homogeneous
state θz(z) = const. Its life time is given by the imaginary part of the frequency
which can be found by averaging over the coordinate z the homogeneous Eq. (47)
with H̃ext = 0

τ−1 = −ΩBImχbs

2L
, (48)

where L is the film thickness. In case if there are surface bound states on both surfaces
of the film, the relaxation rate (48) is doubled.

The longitudinal magnetic susceptibility χzz which relates the total spin density
and external magnetic field S = χzz Hext can be found using Eqs. (48) and (42):

χzz = χ̄
χBΩ2

B

χBΩ2
B − ω2χ̄

, (49)
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where χ̄ is the function (46) averaged over the film thickness. In the absence of
Fermi-liquid corrections, this result coincides with the one obtained before [26] from
the effective action approach. The most significant difference is, however, in the
behavior of the bound states spin susceptibility Imχbs given by (41) which becomes
finite at the frequencies larger than Eg ≈ 4h̄ωL rather than at the bare Larmor fre-
quency.

4.4.2 Transverse Resonance in a Texture

The basic measurement tools in superfluid 3He experiments are frequency shifts and
dissipation rates of the transversemagnetic precessionmodes in the presence of a large
static magnetic field component. Recently, the technique based on the relaxation of a
magnon condensate has been developed [33–38]. In principle, it can be used for the
identification of surface Andreev–Majorana states although this approach has several
difficulties discussed below.

Let us assume that the constant magnetic field is directed along the surface normal
H(0)

ext ‖ z and the non-equilibrium spin state is driven by the time-dependent perpendic-

ular component H̃ext ⊥ H(0)
ext . If the rotation axis is parallel to the constant field n ‖ z

and the spin quantization axis is ns ‖ z, then according to Eq. (38) the oscillating trans-
verse field component cannot induce transitions of the surface bound states. Therefore,
the presence of Andreev–Majorana states shows up in the transverse resonance only if
n is deflected with a finite angle βn from the z-axis so that the effective driving field h
has a component parallel to the spin quantization axis ns . Physically, the texture of n
can appear via the interplay between gradient and dipole energies. However, in typical
experimental setups [37] the angle βn is rather small near the surface which leads to
a strong suppression of the spin response from the surface states.

To quantify the effect of surface bound states on the transverse resonance, we can
use the general theory described in Sect. (4.4). Here, we need to take into account that
the expression for the non-equilibrium spin density Eq. (45) is obtained in the rotating
frame, while Eq. (42) is written in the laboratory frame. Hence, the non-equilibrium
spin density has to be rotated back to the laboratory frame R̂−1

ac S ≈ S+ S× θ so that
Eq. (45) changes as follows

S(ω, z) = χB

γ
(H̃ext − iωθ/γ ) + Sbs(ω)δ(z), (50)

where the surface contribution Sbs remains unchanged given by the Eq. (44) with the
driving field h(b)

ω . To describe the transverse resonance which occurs at frequencies
close to the Larmor frequency ω ≈ ωL , we project the above general expressions (42,
43, 50) on the spin state corresponding to the optical magnons [34,38,39] θ = Ψ sopt,
where Ψ is the complex amplitude which can be considered as a wave function and
the polarization vector is sopt = (1, i, 0)/

√
2.

To find the relaxation time of transverse optical magnons due to the excitation of
surface bound states, we collect Eqs. (42, 43, 50), put H̃ext = 0 to obtain the following
equation for the wave function
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ωΨ =
(
L̂ +U

)
Ψ + χbs(ω − ωL)2

2χBωL
sin2 βsΨ δ(z). (51)

Here sin βs = √
1 − (nsz)2 and L̂ denotes the gradient terms coming from the spin

current divergence, U is the effective potential energy

L̂ = − h̄∇2⊥
2m⊥

− h̄∇2
z

2mz
(52)

U = Ω2
B

2ωL
sin2 βn + ωL , (53)

where sin βn = √
1 − (nz)2. Effective masses mz = h̄ωL/2c2z and m⊥ = h̄ωL/2c2⊥

are related to the longitudinal cz and transverse c⊥ spin wave velocities. Apart from the
surface-related last term on the r.h.s., Eq. (51) coincides with the equations considered
before to describe spin waves on the optical branch modified by the n-vector texture
[34,39]. The surface term in (51) yields a finite lifetime of the spin waves at the
frequencies where Imχbs �= 0. To quantify the relaxation effect, we calculate the
inverse lifetime of the magnon with frequency ωn with the spatial distribution of spin
described by the wave function Ψn

τ−1 = Imχbs

χB

(ωn − ωL)2

ωL

∫
S d

2r sin2 βs |Ψn|2∫
V d3r |Ψn|2

(54)

where S and V denote the surface and the volume of 3He-B. Bearing in mind that
NMR occurs at frequencies that are rather close to the Larmor frequency ωn ≈ ωL ,
one can see that minigap re-normalization by Fermi-liquid corrections (31) makes it
impossible to excite Andreev–Majorana states by the transverse magnetic resonance.
Indeed in this case the absorption threshold is shifted to the frequencies Eg/h̄ ∼ 4ωL

much larger than the driving frequency of the magnetic precession ωn ≈ ωL .
However, Majorana states can be excited by transverse spin waves which have

frequencies higher that Eg and correspondingly wavelengths of the order of vF/Eg .
Provided that Eg � Δ the required wavelengths are much larger than the coherence
length ξ , which determines the localization scale of the surface bound states. Therefore,
to describe the interactions of Majorana states with these spin waves one can consider
the magnetization precession which is locally homogeneous in space and use the same
equations for the fermionic spin response as considered above.

5 Conclusions

Toconclude,wehavepresented the quasiclassical theory of spin dynamics in superfluid
3He. Starting from the most general quasiclassical Keldysh–Eilenberger equation, we
derived the kinetic equation for the spin-dependent distribution function in the bulk
phase. The result coincides with that obtained some time ago without quasiclassical
approximation. Applying this technique, we have obtained the frequency-dependent
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lifetimes of longitudinal and transverse spin waves due to their interaction with
Andreev–Majorana states localized at the surface of 3He-B phase. With the help of the
quasiclassical approach, the crucial role of Fermi-liquid corrections in the magnetic
response is demonstrated.

An important qualitative conclusion is that such relaxation mechanism can be
effective only for the longitudinal spin resonance.At the same time, the spatially homo-
geneous transverse NMRmode does not excite Andreev–Majorana surface because of
two reasons. First, due to the Fermi-liquid corrections the minigap in the surface state
spectrum is much larger than NMR frequency which is close to the Larmor frequency.
Second, the matrix element of transitions in the Andreev–Majorana spectrum is pro-
portional to the deflection angle βs of the spin quantization axis from the constant
magnetic field component. Usually, the texture of the vector n is flat near the surface
so that the deflection is rather small, |βs | � 1. The finite-momentum transverse spin
waves with frequencies larger than Eg can excite Majorana states. The interaction of
such spin waves with the surface states can be described within the same theoretical
framework as considered in this paper.
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