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Abstract A single-electron transistor (SET) can be used as an extremely sensitive
charge detector. Mechanical displacements can be converted into charge, and hence,
SETs can become sensitive detectors of mechanical oscillations. For studying small-
energy oscillations, an important approach to realize the mechanical resonators is to
use piezoelectricmaterials. Besides coupling to traditional electric circuitry, the strain-
generated piezoelectric charge allows for measuring ultrasmall oscillations via SET
detection. Here, we explore the usage of SETs to detect the shear-mode oscillations
of a 6-mm-diameter quartz disk resonator with a resonance frequency around 9 MHz.
We measure the mechanical oscillations using either a conventional DC SET, or use
the SET as a homodyne or heterodyne mixer, or finally, as a radio-frequency single-
electron transistor (RF-SET). The RF-SET readout is shown to be the most sensitive
method, allowing us to measure mechanical displacement amplitudes below 10−13 m.
We conclude that a detection based on a SET offers a potential to reach the sensitivity
at the quantum limit of the mechanical vibrations.

Keywords Single-electron transistor · Piezoelectric resonators · Displacement
detectors

1 Introduction

The measurement of atto-Newton forces, or sub-Ångstrom displacements, has a wide
range of existing or potential applications, frommagnetic resonance force microscopy
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[1] to the study of frontiers of physics such as gravitational waves or quantum effects
in the motion of mechanical resonators [2–5]. Magnetomotive [6–9], optical inter-
ferometric [10,11] as well as mixing [12,13] detection techniques have been widely
utilized in fundamental research. Moreover, we mention approaches that are based
on the concept of cavity optomechanics, where the mechanical oscillations affect the
electromagnetic fields inside either an optical [14–16] or an electrical [17] resonator.

The original detection approaches used in fundamental research included, for
instance, the magnetomotive technique that, however, suffers from the need of high
fields and bulky equipment. Similarly, optical interferometry also endures the lat-
ter issue, and the laser spot size limits the size of the mechanical resonator that can
be studied. While impressive quantum experiments have been performed using cav-
ity optomechanics either in optical or in microwave frequency range, the laser or
microwave powers that are needed tend to be high and heat up the system. There-
fore, one should look for even less intrusive detection techniques that would work at
extremely small power. To this end, several experiments have taken advantage of a
single-electron transistor (SET) [18,19], which is an ultimate charge-sensitive device
and can be capacitively coupled to mechanical devices [20–22]. In such scheme, a
DC voltage bias of the order of several volts is applied to a conductive mechanical
resonator, and the mechanical vibrations modulate the amount of charge coupled to
the SET. In the most delicate measurements, the SET has been replaced by supercon-
ducting qubits that bring the system in the quantum regime [23–28].

In our recent work [29], we show how a massive piezoelectric resonator coupled
to superconducting microcircuits [30] can be analyzed as a cavity optomechanical
device, with implications in studies of quantum-mechanical phenomena. The sensi-
tivity advantage offered by piezoelectric transduction [20,31,32] is highly beneficial
for studying and further using the quantum properties of truly macroscopic resonators
that can exhibit long-energy lifetimes but nearly vanishing amplitudes of their zero-
point motion.

In practical usage, a SET has a very limited bandwidth. The typical large tunnel
junction resistance needed for the Coulomb blockade, together with the ever-present
stray capacitance from the cables, limits the output bandwidth to about 104 Hz. A
first stage amplifier in close proximity to the SET [33,34] can extend the bandwidth
to 106 . . . 107 Hz at best. There are two standard options to circumvent this limitation
and broaden the spectral range of the SET. One is to use it as a radio-frequency (RF)
mixer, either in homodyne, or in heterodyne measurement scheme [35,36], taking
advantage of the nonlinear dependence of the SET current response to the gate charge.
This approach does not increase the instantaneous bandwidth of the SET, which is still
limited by the RC charging time, but allows to tune the measurement center frequency
up to 10 GHz [35]. The second approach is to use an RF-SET [37], where a series
inductance resonates with the cable stray capacitance, creating an LC tank resonator
that impedance matches the SET to the low impedance cables, unlocking bandwidth
up to 100 MHz [38].

In this article, we investigate a mechanical system that is a 6-millimeter-diameter
and 200-microns-thick quartz disk resonator (Fig. 1e) that has the first shear-mode
resonance frequency at ω0/2π ∼ 9 MHz. A major motivation for studying such
monolithic resonators is that they can have exceedingly high mechanical quality fac-
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Fig. 1 Measurement scheme for detecting vibrations of the massive quartz disk via SET, using a DC
rectification; b homodyne and c heterodyne detection using the SET as a mixer; and d RF-SET. The disk
represents the quartz resonator/substrate. Drawings not to scale. e Photograph of the 6-mm quartz disks
used both as the mechanical element and as the substrate where the SET circuit is fabricated. f Scanning
electron microscope (SEM) image of the SET device with a 3 µm × 4 µm island. g Electrical resonant
circuit equivalent to a piezoelectric mechanical resonator. h Simulated shear-mode shape. The black circle
represents the quartz disk edges, and the color codes indicate the deformation. The displacement values are
normalized to the maximum displacement. The side view dimensions are not in scale (Color figure online)

tors, paving the way toward macroscopic quantum mechanics [39]. These systems are
trulymacroscopicwith themode effectivemass around20mg.We study the prospect of
measuring the disk vibrations using four different SET detection setups: DC (Fig. 1a),
homodyne mixing (Fig. 1b), heterodyne mixing (Fig. 1c) and RF-SET (Fig. 1d). The
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SETs are fabricated directly on top of the quartz disk (Fig. 1f), that acts as both the
mechanical element and the substrate for the fabrication of the electrical circuit. The
basic idea is independent of the measurement scheme chosen: the deformation of the
quartz disk generates piezoelectric charge on the chip surface; the charge created in
the vicinity of the SET island couples to it, thereby modulating the tunneling current
or the SET resistance.

2 Piezoelectric Resonator and SET

A piezoelectric resonator can be represented by an equivalent series RLC circuit like
the one in Fig. 1g. Let us consider a circular quartz disk with the surface area A,
thickness z, shear-mode stress coefficient es , shear modulus Ys , relative permittivity εr
and piezoelectric coupling coefficient K 2

0 = e2s /(ε0εr Ys). The geometric capacitance
in the plate-capacitor approximation isC0 = ε0εr A/z, and the other equivalent circuit
parameters can be calculated as Cm = K 2

0C0, Lm = [(2πω0)
2Cm]−1 and Rm =

(Cmω0Q)−1, where Q is the mechanical quality factor. In Table 1, we summarize the
quantities mentioned above.

A static shear deformation Δx0 corresponding to an applied potential difference V
between the two faces of the quartz disk is given as

Δx0 = εrε0

es
V , (1)

that amounts to less than a nanometer displacement per volt. In a dynamical situation,
close to the mechanical resonance, the resonator amplifies the applied voltage Vm with
the frequency ωm , cf. the equivalent electrical circuit in Fig. 1g, and one obtains the

Table 1 Geometric and material parameters of the quartz disk resonator and an approximation of the
correspondent equivalent electrical quantities when modeling the mechanical resonator as the RLC circuit
of Fig. 1g

Parameter Symbol Value Unit

Disk surface area A 2.8 × 10−5 m2

Disk thickness z 2 × 10−4 m

Quartz shear modulus Ys 3 × 1010 Pa

Quartz shear stress coefficient es 1 × 10−1 C m−2

Quartz relative permittivity εr 4.5

Disk mechanical frequency ω0 2π × 9 MHz

Coupling coefficient K 2
0 = e2s /(ε0εr Ys ) 8 × 10−3 m2C−1

Geometric capacitance C0 = ε0εr A/z 5 × 10−12 F

Mechanical capacitance Cm = K 2
0C0 4 × 10−14 F

Mechanical inductance Lm = [ω2
mCm ]−1 8 × 10−3 H

Mechanical resistance Rm = (CmωmQ)−1 30 �

Mechanical quality factor Q 15 × 103
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dynamical vibration amplitude

Δx = esVm
γYsz

sinh(γ z/2)

cosh(γ z/2)
, (2)

where

γ 2 = − ω2
m/ν20

1 + i/Q
, (3)

and ν0 ≈ 3540 ms−1 is the sound speed of shear waves in quartz.
In the experiment, we actuate the vibrations through a separate excitation electrode

shown in Fig. 1a–d. Equation (2) holds only for the part of the chip covered by the
excitation electrode, while we are interested in the amplitude under the SET island
somewhat distant from the electrode. In order to enable experimental comparison, we
need to know how much the amplitude is reduced from that in Eq. (2) due to the small
overlap. To this end, we run a COMSOL simulation and compare a full electrode
coverage versus the actual chip layout, obtaining a reduction factor β � 0.11 that
should multiply the right-hand side of Eq. (2).

Assuming a uniform piezoelectric charge distribution across the disk surface, a
shear deformation Δx corresponds to a shear strain λs = Δx/z and generates a
piezoelectric surface charge density σq = λses . Then, the number of electron charges
coupled to a SET island is

nisl ≈ σq Aisl = Δxes Aisl

ze
. (4)

Here, Aisl is the effective quartz surface area overwhich the SET sees the piezo-charge.
It is of the order the SET island area, but larger by a small numerical factor.

We model the SET response to charge as follows: If there is a total charge ng
coupled to the SET island, we suppose the periodic gate charge response of the SET
can be approximated as sinusoidal:

ISET = i0 − I0
2
cos

(
πng

)
, (5)

which represents the 2e periodicity of a superconducting SET. Here, I0 is the peak-to-
peak amplitude of gatemodulation, and i0 the average current, both ofwhich depend on
the SET bias. The nonlinearity of the SET is the basis for the DC and mixing detection
methods. The most general case of gate charge setting discussed below consists of
three terms. There is usually a nonzero constant offset ng0, and around the offset
the gate charge is supposed to oscillate sinusoidally in time due to the mechanical
oscillations driven at the frequency ωm . Moreover, in the mixing schemes, there is a
strong local oscillator at the frequency ωLO and with the amplitude nLO:

ng(t) = ng0 + nisl cos (ωmt) + nLO cos (ωLOt) . (6)

The nested sinusoidal behavior of Eqs. (5, 6) will be seen in the experimental data
below.
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3 Results

In the measurements, we used two individual samples, labeled A and B. Sample A
was used in all the other measurements except in the heterodyne scheme (Fig. 1c).
The samples were essentially similar, but sample B had a smaller junction resistance,
although this plays only a minor quantitative role in the results.

We begin with discussing the current–voltage (IV) properties of the SET in sample
A. It comprises a 3 µm× 4 µm island delimited by two Al (30 nm)/AlOx/Al (60 nm)
tunnel junctions made by shadow evaporation. For the measurements, the edges of
the chip with the SET are firmly glued to a sample stage, but the center of the chip is
free to vibrate. All the measurements discussed in this paper were taken in a dilution
refrigerator at a temperature of ∼ 20 mK. The sum resistance of the two junctions of
our SET in sample A is approximately 169 k�, and the charging energy is estimated
as 0.3 K.

The standard DC IV measurement involves the biasing scheme shown to the left in
Fig. 1a–c. We apply current bias through a 8.8 M� resistor for the schemes in Fig. 1a,
b and through 100 k� in Fig. 1c. Figure 2a shows the DC IV properties for our SET
device. The width of the ISET current plateau is mostly set by the superconductor gap
in our superconducting device. The Coulomb blockade modulation as a function of
the gate voltage VG is visible at edges of the plateau.

In the quartz vibration measurements with sample A, we use the optimal VSET ≈
0.86 mV biasing point around the gap edge, which maximizes the modulation of ISET
by VG , marked by an arrow in Fig. 2a. Figure 2c displays the gate dependence of the
current around such optimal biasing, showing approximately sinusoidal dependence
with a peak-to-peak amplitude of I0 ≈ 0.9 nA. Here and throughout the paper, we
refer to the gate voltage as the value at the room-temperature generator, preceding the
cryogenic voltage division.

3.1 DC Readout with the SET

We begin with a simple rectification approach where nLO = 0 in Eq. (6), allowing to
measure large-amplitude vibrations. Equation (5) becomes
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Fig. 2 a Sample A: DC IV curve for the SET measured with the setup of Fig. 1a when the gate voltage
VG = 0. b Dependence of the current through the SET on VG for the bias values around the steepest part
of the IV curve presented in this figure a. c Dependence of the SET current on gate voltage for an optimal
VSET biasing of 0.86 mV (Color figure online)
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ISET = i0 − I0
2
cos

(
πng0

)
J0 (πnisl) , (7)

where J0 is the zeroth-order Bessel function of the first kind.
Now we excite the mechanical vibrations with voltage, thereby creating nonzero

nisl. Physically, the piezoelectric charge modulates the SET current by changing the
potential of the island, in the same way as the gate voltage. In Fig. 3a, we display such
a measurement for different values of VG . The mechanical resonance can be observed
at f0 = 8.865 MHz, as a sharp feature that depends on the gate bias. Looking at
Eq. (7), the data qualitatively match the prediction. At the current minima or maxima,
where cos

(
πng0

) = 1, the peak is roughly the maximum in amplitude, but disappears
at the intermediate values when cos

(
πng0

) ≈ 0. Also, the sign of the peak changes
according to the prediction.

In Fig. 3b, we display an example of a resonance peak measured at a rather large
mechanical excitation voltage of 13 mVRMS, corresponding to a displacement around
27 × 10−12 m calculated from Eq. (2). At higher mechanical excitation amplitudes,
the SET current, however, starts to decrease as shown in Fig. 3c at Vm ≈ 10 mVRMS
where the driven charge coversmore than one gate period.We canmake an independent
estimate of the crossover voltage by the fact that it corresponds to the first minimum
of J0 (πnisl), at nisl ≈ 1.2 e, and using Eqs. (2, 4) yielding Vm ≈ 11 mV, in a good
agreement with the measurement.

The lowest mechanical excitation amplitude with which we could still use the
DC rectification method to discern the mechanical resonance peak with this setup
is Vm ≈ 1.6 mVRMS that corresponds to Δx ≈ 3.4 × 10−12 m and nisl ≈ 0.18 e.
The linewidth of the mechanical peak is ∼ 600 Hz, corresponding to a mechanical
Q value of ∼ 15 × 103. That Q value is modest compared to what is in principle
achievable with quartz resonators [39]. We expect this is due to the fact that the disk
was fully flat in cross-section profile, which does not result in confinement of the
mechanical vibration in the disk center, and hence, there can be pronounced energy
leakage through the supports.
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Fig. 3 Response of the DC measurement SET setup of Fig. 1a (sample A), biased with VSET = 0.86 mV,
to the driven motion in the piezoelectric quartz disk resonator: a gate voltage modulation of the SET current
ISET around the mechanical mode frequency at ≈ 8.865 MHz when Vm ≈ 11 mVRMS; b the mechanical
resonance peak for an actuation voltage Vm ≈ 13 mVRMS, when VG � 0.12 V; c the SET current when the
mechanical resonator is excited on-resonance at increasing excitation voltages. The solid line is a theoretical
curve based on Eqs. (2, 4, 7) with ng0 = 0.31 and an island interaction area Aisl ≈ 18 (µm)2 (Color figure
online)
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3.2 Homodyne and Heterodyne Mixing Schemes

Although theDC rectification is a simple and robustmethod to obtain the signal at large
excitation amplitudes, its sensitivity vanishes toward small vibrations. An improved
approach is to use the SET as an RFmixer [35] in the setups shown in Fig. 1b, c. Mixer
operation entails that a strong local oscillator (LO) at the frequency ωLO, see Eq. (6),
is applied to the SET gate, while the actuation tone goes to the actuation electrode
as above. In homodyne detection, the LO frequency is the same as the mechanical
excitation frequency, ωLO = ωm , and the signal appears as a DC offset similar to the
rectification setup. The device has the same bandwidth as the standard SET, but with a
tunable measurement center frequency. The DC biasing is done in a fashion similar to
that described in the previous section. In terms of complexity, the homodyne setup is
comparable to the rectification setup. Analogous to Eq. (7), we obtain the homodyne
current

IDC � i0 − I0
2
cos

(
πng0

) [
J0(πnLO)J0(πnisl) + 2J1(πnLO)J1(πnisl)

]
, (8)

which allows for linear detection at small amplitudes. Here, J1 is the first-order Bessel
function of the first kind. In Fig. 4a, we see, similar to Fig. 3a, the mechanical mode
at f0 ≈ 8.865 MHz. In Fig. 4b, we show the SET current caused by the increase
in the mechanical vibration amplitude when the mechanics is actuated on-resonance.
The increased sensitivity of the homodyne detection over the DC method enables the
visibility of the mechanical resonance peak at smaller mechanical excitation voltages
down to V0 ≈ 0.6mVRMS. That corresponds toΔx ≈ 1.3×10−12 m and nisl ≈ 0.07 e.
The theoretical curve plotted in Fig. 4b, calculated from Eq. (8) matches well the
homodyne experimental data.
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Fig. 4 Quartz disk vibrations detected using the homodyne detection scheme in Fig. 1b (sample A, with
the SET biased as shown in Fig. 2a): a the SET current as a function of gate voltage and actuation frequency
whenVm = 2.6mV;bSETdrain-to-source currentwhen themechanical resonator is excited at its resonance
frequency f0 = 8.865 MHz with different excitation amplitudes. The device is biased with VG = 0.3 V.
The solid line is a theoretical curve based on Eqs. (2, 4, 8) with the same parameters used in Fig. 3c except
ng0 = 1 and nLO = 0.65 (Color figure online)
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Fig. 5 a Sample B: DC IV curve for the SET measured with the setup of Fig. 1c when the gate voltage
VG = 0. b Dependence of the current through the SET on VG for the bias values around the JQP peak
(Color figure online)

Direct conversion to DC, either using the DCmethod or using homodyne detection,
encompasses challenges, namely DC offsets from self-mixing of the excitation signal,
and in particular, 1/ f charge noise that is dominant in charge-sensitive devices at
low frequencies. In heterodyne detection, the gate electrode is excited by a local
oscillator with frequency ωLO different from the mechanical excitation frequency ωm .
The response of the SET current is then mixed down to an intermediate frequency (IF)
equal to ωIF = ωm − ωLO. The relevant current is given as

IIF = I0 cos
(
πng0

)
J1 (πnLO) J1 (πnisl) cos [(ωm − ωLO)t] . (9)

The intermediate frequency needs to be within the bandwidth of the SET setup. Here,
we used ωIF/2π = 18 kHz. In the heterodyne setup shown in Fig. 1c, the SET current
is detected by a current preamplifier, then acquired by a DAQ board and processed
in the frequency domain. Here, we used a different sample B, although the setup is
expected to work also with the sample A used for the other measurements discussed.
Figure 5a shows the IV curve of the SET in sample B. We operate at the Josephson
Quasiparticle (JQP) peak, originated from the tunneling of Cooper pairs through one
junction followed by two successive quasiparticle tunneling events through the other
junction. Instead of the quasiparticle current onset (Fig. 2a) used in the measurements
discussed above, in this sample we found the JQP peak biasing provides a strong gate
modulation as shown in Fig. 5b. We relate this to the lower resistance of sample B,
providing pronounced Cooper pair tunneling features.

Figure 6a displays the detected mechanical signal, with the local oscillator ampli-
tude roughly optimized. Comparing to Fig. 4a, it is clear that the heterodyne scheme
disposes of the DC response of the SET, hence making the data easier to interpret.
Figure 6b shows the mechanical resonance peaks for different mechanical excitation
amplitudes. The elimination of low-frequency noise by the heterodyne setup allows to
measure themechanical vibrations down toΔx ≈ 6×10−13 m.This is an improvement
over the homodyne setup, although since the data were obtained from different sam-
ples, the origin of the improvement is not necessarily in the mixing scheme used. The
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Fig. 6 Response in the heterodyne scheme of Fig. 1c (sample B) with the SET bias VSET ≈ −0.45 mV:
a intermediate-frequency SET current as a function of gate bias and mechanical excitation frequency.
The mechanical mode is excited with Vm ≈ 0.9 mVRMS and visible at ≈ 8.652 MHz; b resonance peaks
acquired at different mechanical excitation amplitudes; c response when the mechanical resonator is excited
on-resonance. The solid line is a theoretical curve based on Eqs. (2, 4, 9) (Color figure online)

dependence of IIF with the mechanical excitation amplitude is presented in Fig. 6c.
The solid line represents a theory curve calculated from Eq. (9) with I0 = 22 nA
obtained from Fig. 5b and nLO = 0.59. The data points follow the shape of the the-
oretical curve, however, display double the amplitude as predicted by independent
estimates, a fact we attribute to inaccuracies in the local oscillator amplitude.

3.3 Radio-Frequency SET as a Displacement Sensor

In the RF-SET setup [37,40], the SET is impedance-matched to 50 � microwave
cables via an LC tank resonator circuit. The inductor and capacitor at the input of the

SET, see Fig. 1d, form the tank circuit with resonance frequency ωLC = (LC)− 1
2 ,

loaded by the SET.
When the SET resistance changes, due to piezo-vibrations as here, the loading

of the LC circuit by the SET changes, hence modulating the reflected power of a
monochromatic carrier wave sent down the input line. The carrier appears as a time-
dependent voltage across the SET, with the amplitude δV. The SET conductance is

GSET = ISET
VSET

= i0 − I0
2 cos

(
π(ng0 + nisl cosωmt)

)

Vbias + δV cosωLC t
. (10)

The information is the power of the sidebands that appear at frequencies offset by
the actuation frequency from a carrier applied atωLC , obtained by detecting the carrier
at room temperature. Under δV � V , the first sideband amplitude is

I1 = δV
I0
2

∣∣sin(πng0)J1(πnisl)
∣∣ . (11)

The transmitted and reflectedwaves are separated by circulators at base temperature
stage of the refrigerator, so the reflected power can be measured by a spectrum ana-
lyzer. The bias-T allows for DC biasing the SET, needed to obtain a charge-sensitive
response.
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Fig. 7 Measurement of the quartz disk vibrations using the RF-SET scheme of Fig. 1d (sample A) biased
with Vbias ≈ −0.18 mV: a gate bias dependence of the sideband response whose amplitude is called V1 in
this plot; bmechanical resonance peaks measured at various low amplitude mechanical excitation voltages,
and VG ≈ 40 mV; c as (b), but high amplitudes; d response as a function of excitation amplitude with
resonant excitation. The solid line is the theory curve from Eqs. (2, 4, 11), with a carrier amplitude of
−86 dBm and an output amplification of 80 dB (Color figure online)

In the present system, the tank circuit capacitance and inductance come from the
bonding wires’ and bonding pad’s stray inductance and capacitance, respectively. The
sample box configuration and bonding wires’ lengths and placements were simulated
with Sonnet software and tweaked to set the tank circuit resonance frequency around
4 GHz to 5 GHz. As an example, Fig. 7a shows a RF-SET measurement display-
ing the mechanical peak. For the following measurements, the gate and SET bias
voltages were chosen so that the maximum SET differential resistance modulation is
obtained.

Figure 7b, c presents examples of the mechanical resonance curves. Each curve
represents the amplitude of the sideband of the carrier. Similar to the other detection
methods discussed above, we can enter the nonlinear regime of the SET response,
that is, observe the full Bessel dependence in Eq. (11). Splitting of the peaks is due to
the fact that the driven charge nisl at on-resonance drive is larger than at off-resonant
drive. The lowest mechanical excitation amplitude with which we could still discern
the mechanical resonance peak with this setup is Vm ≈ 15µVRMS, which corresponds
to Δx ≈ 3 × 10−14 m, more than 20 times better than the other techniques.

4 Conclusions

We have shown that single-electron transistor (SET) is a viable tool to detect minus-
cule mechanical vibrations in millimeter-sized monolithic quartz disk resonators. We
compared four detection schemes: DC rectification, homodyne and heterodynemixing
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detection, and an approach based on the radio-frequency SET. We found that over the
compared schemes, RF-SET is superior in sensitivity over mixing methods, allowing
to measure oscillations down to ∼ 3 × 10−14 m within the mechanical linewidth,
corresponding to the sensitivity 10−15 m/

√
Hz. The zero-point motion of our quartz

disk resonators is of the order of Δxzp ∼ 10−19 m, and hence, it is still beyond the
capabilities of our SET-based detectors.

The performance can be improved, first of all, by increasing the sensitivity of
the RF-SET to the piezo-charge. In the current setup, the charge sensitivity is around
∼ 10−3 e/

√
Hz that leaves plenty of room for improvement up to the best demonstrated

values∼ 10−6 e/
√
Hz [41]. This entails in particular designing an on-chip tank circuit

having a high Q value and also increasing the charging energy by fabricating smaller
junctions.

Another limiting factor is that the piezoelectric surface charge originating from
the mechanical strain gets spread across a 6-mm-diameter circular area, while our
SET-sensitive area, the island, is just 3 µm × 4 µm. This limits the charge coupled
to the island to a very small fraction of the total piezoelectric charge generated by a
given deformation of the quartz disk. At the moment the amount of charge coupled
to the island due to Δxzp is of the order 10−8 e. One could increase the island size in
order to boost up the coupled charge. However, this would lead to an increase in the
island capacitance, decreasing the Coulomb gap and possibly reducing the detector
sensitivity. Thus, the island size is a trade-off between the SET sensitivity and the
charge it couples to. We note, however, that since quartz has a low dielectric constant
εr ∼ 4, the charging energy is currently set by the junctions.

The most important challenge to tackle is to increase the mechanical Q value,
allowing to narrow down the detection bandwidth. With high Q values demonstrated
bymonolithic quartz resonators, combinedwith the best charge sensitivitiesmentioned
above, and possibly with low-noise Josephson parametric amplifiers to further reduce
the detection noise [42], one would reach the level of sensitivity needed to observe
vibrations at the single-quantum level with the current amount of coupled charge.
Plano-convex cross-section profile [43] of the quartz disks would focus the mode
energy in the center, hence mitigating anchor losses that we believe are limiting the
losses.

The work paves the way toward studying massive mechanical resonators near the
quantum limit of their motion. Monolithic quartz resonators are suitable for this pur-
pose since they are tangible, sturdy, durable and easily manipulated objects in contrast
to other micrometer-sized resonators and can have high-quality factors at frequencies
of tens of MHz. They can be easily integrated in other devices without the need of
advanced fabrication techniques. The millimeter-sized diameter of the disk resonators
provides a large sensing area that can be coupled to other macroscopic object to sense
mechanical loadings. It can excel at applications that require a simple design that can
measure very small strains over a large sensing area.
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