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Abstract In this work, we study thermodynamic properties of a GaAs double ring-
shaped quantum dot under external magnetic and electric fields. To this end, we
first solve the Schrödinger equation and obtain the energy levels and wave func-
tions, analytically. Then, we calculate the entropy, heat capacity, average energy
and magnetic susceptibility of the quantum dot in the presence of a magnetic field
using the canonical ensemble approach. According to the results, it is found that the
entropy is an increasing function of temperature. At low temperatures, the entropy
increases monotonically with raising the temperature for all values of the magnetic
fields and it is independent of the magnetic field. But, the entropy depends on the
magnetic field at high temperatures. The entropy also decreases with increasing the
magnetic field. The heat capacity and magnetic susceptibility show a peak structure.
The heat capacity reduces with increasing the magnetic field at low temperatures.
The magnetic susceptibility shows a transition between diamagnetic and param-
agnetic below for T < 4 K. The transition temperature depends on the magnetic
field.
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1 Introduction

In the last 2 decades, many scientists have studied physical properties of low-
dimensional semiconductor nanostructures. The research on the low-dimensional
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structures is an interesting challenge due to their important applications in physics,
chemistry and engineering. There are a number of ways devised to fabricate nanos-
tructures such as molecular-beam epitaxy, droplet epitaxy, chemical vapor deposition
and lithography [1–3]. In addition, these techniques have the capability to produce
structures of different geometries such as rectangular, cylindrical, spherical, rings,
single quantum ring and double quantum ring [4–10].

Among the low-dimensional structures, quantum dots, in particular, have exten-
sively been studied both experimentally and theoretically in the last few years [11–14].
The confinement of charge carriers in quantum dots generates discrete energy levels
with spacing of a few meV or more. The theoretical study of quantum dots with
different geometries such as parabolic, lens-shape, cone-like, Gaussian, modified
Gaussian and spheroidal has been the subject of much discussion for the last decade
[15–20].

The prediction of confinement potential in quantum dots plays an important role
in the physics of low-dimensional semiconductor structures. It is worth mentioning
that the knowledge of the realistic profile of the confinement potential is important
in theoretical studies of the physical properties of quantum dots. To study theoreti-
cally physical properties of quantum dots, researches have used different models for
the confinement potential like parabolic potential, spherical harmonic oscillator, non-
spherical oscillator, ring-shaped oscillator, ring-shaped non-spherical oscillator and
double ring-shaped oscillator [21–26].

An important challenge in the physics science is to study electronic and optical
properties of quantum dots because these structures have interesting potential appli-
cations. In the past few years, electronic and optical properties of quantum dots have
been extensively investigated under external factors such as spin–orbit interaction,
electron–phonon interaction, magnetic field, electric field, temperature, impurity and
pressure [27–31]. For example, Ciftja and Faruk [32] have studied a two-dimensional
quantum dot helium confined by parabolic potential in the presence of weak and strong
magnetic field using variational theory. Chen et al. [33] have studied the effect of SOI
in the double ring-shaped oscillator. Boda et al. [34] have studied the effect of electron–
electron interaction on the magnetic moment and susceptibility of a parabolic GaAs
quantum dots.

Among the physical properties of quantum dots, there are few studies on thermo-
dynamics properties of quantum dots [35–43]. For example, Sukirti et al. [44] have
studied thermodynamic behavior of Rashba quantum dots in the presence of mag-
netic field. Ibragimov [45] has investigated thermodynamic properties of asymmetric
parabolic quantum dot. Since thermodynamics properties of nanostructures are an
interesting subject in physics science, we intend to study thermodynamics quanti-
ties such as energy, entropy, heat capacity and magnetic susceptibility of the double
ring-shaped quantum dot.

2 Theory and Model

We consider an electron confined in a double ring-shaped quantum dot under magnetic
and electric fields. The Hamiltonian of the system is given by
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H = (P + eA)2

2m∗ + V (r, θ) − eF.r, (1)

wherem∗ is the effectivemass of the electron, A = B
2 (−y, x, 0) is the vector potential

induced by the magnetic field which is taken in the symmetric gauge and F is the
electric field. The second term in Eq. (1) is the confinement potential which is given
by [26] (see Fig. 1)

V (r, θ) = 1

2
m∗ω2

0r
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)
. (2)

Here B andC are two potential parameters, ω0 is the frequency of confinement poten-
tial and h̄ is the Plank constant. For C = 0 and B = C = 0, Eq. (2) reduces to the
ring-shaped oscillator and spherical harmonic oscillator, respectively.

In the cylindrical coordinates, the Schrödinger equation with the potential Eq. (2)
is written as
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]
ψ (ρ, ϕ, z) = Eψ (ρ, ϕ, z) . (3)

Substituting the wave function in the form ψ (ρ, ϕ, z) = R (ρ) F (z) eimϕ in Eq. (3),
we obtain the following equations
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where ωc = eB/m∗ is the cyclotron frequency and � =
√

ω2
0 + ω2

c
4 .

Considering the change of variable as η = κρ2(κ = m∗�
h̄ ), Eq. (4) can be written

as

[
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+ λ
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R (η) = 0. (6)

Here λ =
(
2m∗Eρ

h̄2
− m∗mωc

h̄

)
. The radial wave function R (ρ) needs to be finite as

R (0) → 0 and R (∞) → 0. To make the solution satisfying the above conditions,
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we have considered the solution of the wave function as R (η) = e− η
2 η

∣∣∣√m2+B
∣∣∣

2 F (η).
Inserting the wave function into Eq. (6), we obtain the following equation
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The above equation is the confluent hypergeometric differential equation, and it has

the solution as F (η) = F
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Using the values of parameters λ and κ , we can obtain the energy levels as
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2
. (8)

Considering the solution of Eq. (5) as F (z) = z
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Above equation is the HeunB differential equation with α = √
1 + 4C , β =
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Employing Eqs. (8) and (10), we have
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From a theoretical point of view, there are many effective techniques to calculate the
energy levels of nanostructured systems. Examples of the techniques are the density
of function and the variational method of Pekar type. For example, Chen and Xiao
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[43,46] have studied the temperature effects on the parabolic quantum dot qubit in
the presence of electric and magnetic fields using the variational method of Pekar
type. Chen and Xiao [47] have calculated electronic and excitonic properties of two-
dimensional InN crystals using density of function. The aforementionedmethods have
been performed numerically. The variational method of Pekar type is based on trial
wave functions, and the method is usually an approximate approach. In this work,
we have solved the Schrödinger equation and obtained the energy levels analytically.
The advantage of the method used in the present paper is to obtain analytical wave
functions and energy levels.

3 Thermodynamic Properties

A starting point to derive thermodynamic properties of the system is the partition
function. The partition function can be calculated by direct summation over all possible
states available to the system,

Q =
∑
nρ

∑
nz

∑
m

exp
(−βEnρ,nz ,m

)
(12)

where β = 1
kBT

, kB is the Boltzmann constant and T is the temperature. Substituting
expression (11) into Eq. (12), we can obtain the partition function. After obtaining the
partition function, one can calculate the thermodynamic functions of the system using
the following relations,

(i) Mean energy U = − ∂lnQ
∂β

,

(ii) Specific heat Cv = ∂U
∂T = kBβ2 ∂2

∂β2 lnQ,
(iii) Free energy F = −kBT lnQ,
(iv) Entropy S = kB lnQ − kBβ

∂lnQ
∂β

,

(v) Susceptibility χ = − ∂2F
∂B2 ,

4 Results and Discussions

In this part, we have selected a typical GaAs as an example to present our numerical
results with m∗ = 0.067m0. Also, in our calculations, we have defined the following
parameters:

l0 =
√

h̄

m∗ω0
and lB =

√
h̄

m∗ωc
.

In Fig. 1, we have plotted a schematic diagram of the double ring-shaped quantum
dot.

Figure 2a, b shows the mean energy as a function of the temperature for different
magnetic fields with l0 = 20 nm and F = 1V/m. It is seen from the figures that
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Fig. 1 A schematic diagram of
double ring-shaped quantum dot
(Color figure online)

the mean energy increases with enhancing the temperature at low and high tempera-
tures. At low temperatures (Fig. 2b), the variation of mean energy is more than that
at high temperatures. At high temperatures, the mean energy increases slowly with
temperature, whereas it increases rapidly at low temperatures. At a fixed temperature,
the mean energy increases with enhancing the magnetic field. This increment at low
temperatures is higher than high temperatures. There is a competition between ther-
mal energy and magnetic energy in the system. At low temperatures, however, the
magnetic energy wins. In the case of quantum dots, the energy levels are discrete, and
therefore, the mean energy can be said to depend on the distribution of energy levels.

Figure 3a, b displays the specific heat as a function of the temperature for different
magnetic fields with l0 = 20 nm and F = 1V/m. It is observed from Fig. 3a that the
specific heat increases until it reaches a maximum and then reduces with increasing
the temperature. We observe that the specific heat shows a peak structure at low
temperatures. The peak position of the specific heat shifts toward higher temperatures
with increasing the magnetic field. Also, the width of the specific heat curve increases
with raising the magnetic field. There is an interesting point in these figures. At low
temperatures, the specific heat reduces with increasing themagnetic field (see Fig. 3b),
whereas at high temperatures, it increases with enhancing the magnetic field (see
Fig. 3a). Also, for T < 2K, the magnetic field has no effect on the specific heat
(see Fig. 3b). At low temperatures, the occupation probability of the higher states
decreases. The application of the magnetic field enhances the quantum confinement
effects, and thereby, the occupation probability of the levels increases. Consequently,
the specific heat capacity should depend on both the energy level distribution and the
temperature dependence of the occupation probability of the states.

The variations of entropy have been plotted in Fig. 4a, b as a function of the temper-
ature and the magnetic field, respectively, with l0 = 20 nm and F = 1V/m. As seen
from Fig. 4a, the entropy increases with raising the temperature at a fixed magnetic
field, as is generally expected. This is because the occupation probability of the levels
changes and thereby the system disorder increases with raising the temperature. At
a fixed temperature, the entropy decreases with increasing the magnetic field due to
the increase in quantum confinement effects and thereby the reduction of the system
disorder. The obtained order in the system by the magnetic field might be counter-
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Fig. 2 Mean energy as a function of temperature for different magnetic fields with l0 = 20 nm and
F = 1V/m. The curves in (a) and (b) correspond to high and low temperatures (Color figure online)

balanced by the kinetic energy due to confinement together with the thermodynamic
disorder at higher temperatures. It is observed from Fig. 4b that the entropy decreases
with increasing magnetic field at a fixed value of temperature. It is worth mentioning
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Fig. 3 Specific heat as a function of temperature for different magnetic fields with l0 = 20 nm and
F = 1V/m. The curves in (a) and (b) correspond to high and low temperatures (Color figure online)

that there are two kinds of energies: kinetic energy due to confinement and heat energy
due to the thermodynamic disorder. At low and high temperatures, these energies are
competed. We have compared our results with a GaAs quantum dot with Gaussian
potential [21].
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Fig. 4 Entropy as a function of temperature for different magnetic fields with l0 = 20 nm and F = 1V/m.
The curves in (a) and (b) correspond to high and low temperatures (Color figure online)

In Fig. 5a, we have presented the magnetic susceptibility as a function of the tem-
perature for different magnetic fields with l0 = 20 nm and F = 1V/m. It is seen
from the figure that the susceptibility shows a peak structure at low temperatures
(T < 50K). The paramagnetic peak position shifts toward higher temperatures with
increasing the magnetic field. The magnetic susceptibility for the selected magnetic
fields approaches a constant value with enhancing temperature. The peak width of the
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Fig. 5 The susceptibility as a function of temperature for different magnetic fields with l0 = 20 nm and
F = 1V/m. The curves in (a) and (b) correspond to high and low temperatures (Color figure online)

magnetic susceptibility increases with raising the magnetic field, whereas the height
of magnetic susceptibility increases with reducing the magnetic field. To obtain more
information, themagnetic susceptibility has been plotted in Fig. 5b at low temperatures
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Fig. 6 Mean energy as a function of temperature for different confinement lengths with lB = 5 nm and
F = 1V/m. The curves in (a) and (b) correspond to high and low temperatures (Color figure online)

(T < 10K). As seen from the figure, below 4 K, the susceptibility shows a transition
between diamagnetic and paramagnetic. The transition temperature increases with
raising the magnetic field.
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Figure 6a, b shows the mean energy as a function of the temperature for different
confinement lengths with lB = 5 nm and F = 1V/m. It is observed from the figures
that the mean energy enhances with increasing the temperature. At high temperatures,
the mean energy increases linearly with temperature, whereas it increases nonlinearly
at low temperatures. At low temperatures (Fig. 6b), the variation of mean energy is
more than that at high temperatures. It is to be noted that the energy level distribution
depends strongly on the temperature. This causes to change the occupation probability
of the energy levels by the electron. At a fixed temperature, the mean energy increases
with enhancing the confinement length. This is because the quantum confinement
effect decreaseswith increasing the confinement length and thereby the energy spacing
reduces. Therefore, the occupation probability of the levels increases, and thereby, the
mean energy enhances.

5 Conclusion

We have studied theoretically the thermodynamic properties of a double ring-shaped
quantum dot as a function of temperature under the magnetic and electric fields.
The results have been presented at low and high temperatures. We have found that
the entropy is increased with the temperature. The entropy increases monotonically
for all values of the magnetic fields at low temperatures, whereas it depends on the
magnetic field at high temperatures. The heat capacity and magnetic susceptibility
showa peak structure. The heat capacity decreaseswith increasing themagnetic field at
low temperatures. Themagnetic susceptibility shows a transition between diamagnetic
and paramagnetic below4K.The transition temperature depends on themagnetic field.
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