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Abstract Correlated basis function (CBF) perturbation theory and the formalism of
cluster expansions have been recently employed to obtain an effective interaction from
a nuclear Hamiltonian strongly constrained by phenomenology. We report the results
of a study of the superfluid gap in pure neutron matter, associated with the formation
of Cooper pairs in the 1S0 channel. The calculations have been carried out using an
improved version of the CBF effective interaction, in which three-nucleon forces are
taken into account using a microscopic model. Our results show that a non-vanishing
superfluid gap develops at densities in the range 2 × 10−4 � ρ/ρ0 � 0.1, where
ρ0 = 2.8 × 1014 g cm−3 is the equilibrium density of isospin-symmetric nuclear
matter, corresponding mainly to the neutron-star inner crust.

Keywords Neutron stars · Superfluidity ·Nuclear matter ·Correlated basis functions ·
Cluster expansions

1 Introduction

In neutron stars, both conditions for the occurrence of superfluidity in fermionic sys-
tems, that is, strong degeneracy and the existence of an attractive interaction between
the constituents of strongly interacting matter, are believed to be fulfilled [1].

The onset of a superfluid (and/or superconducting) phase does not have a significant
impact on the equation of state, determining the equilibrium properties of the star,
except in the very low-density region of the crust. The condensation energy—i.e. the
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difference between the energies of the normal and superfluid states associated with
the formation of Cooper pairs [2]—is in fact small, although not totally negligible,
with respect to the typical energies of the normal phase [3].

The main effect of the superfluid transition is the opening of an energy gap at the
Fermi surface [4]. This leads to a reduction of the phase space available to particles
undergoing scattering processes, which in turn results in a strong modification of
the neutrino emission, scattering and absorption rates, as well as of the transport
coefficients, including the shear viscosity and thermal conductivity. As a consequence,
a quantitative understanding of the superfluid phase transition is required to study both
neutron-star cooling [5] and the onset of the Chandrasekhar–Friedman–Schutz (CFS)
instability of rotating stars [6,7], which is largely driven by dissipative processes [8,9].

The approach based on effective interactions has long been recognized aswell suited
for the development of a unified description of equilibrium and non-equilibrium prop-
erties of nuclear matter, based on realistic models of nuclear dynamics at microscopic
level [3,10,11].

In recent implementations, the effective interaction has been derived from realistic
phenomenological Hamiltonian—strongly constrained by the available data—within
the formalism of correlated basis functions (CBF) [12–16]. Unlike the bare nucleon–
nucleon force, the effective interaction is well behaved at short distances and can
be used to carry out perturbative calculations in the basis of eigenstates of the non-
interacting system.

Existing applications of the CBF effective interaction include calculations of the
shear viscosity and thermal conductivity coefficients of neutronmatter [13,17], as well
as the nuclear matter response to neutrino interactions [12,15,16,18,19]. The potential
of the approach based on effective interactions obtained from correlated functions has
been recently confirmed by the results of systematic studies of the properties of the
Fermi hard-sphere system [20,21], providing a valuable model of nuclear matter.

In this work, we report the results of a calculation of the superfluid gap associated
with the formation of Cooper pairs in the 1S0 channel in pure neutron matter (PNM),
performed using the CBF effective interaction derived in Refs. [14,15].

The paper is organized as follows. In Sect. 2, we outline the ab initio approach
based on a microscopic nuclear Hamiltonian and discuss the derivation of an effec-
tive nucleon–nucleon (NN) interaction—suitable to carry out perturbative calculation
using the basis states of the non-interacting system—performed combining the CBF
formalism and the cluster expansion technique. The differences between the effective
interaction and the bare NN potential are also illustrated. The numerical results, indi-
cating the occurrence of a superfluid phase of PNM at densities corresponding to the
inner crust of neutron stars, are reported in Sect. 3. Finally, in Sect. 4 we summarize
our findings and draw the perspectives for future application of the CBF effective
interaction approach.
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2 Formalism

In this section, we briefly outline the phenomenological model of nuclear dynamics
employed in our work and describe the procedure leading to the determination of the
effective interaction.

2.1 The Nuclear Hamiltonian

The formalism of nuclear many-body theory provides a consistent framework, suitable
for treating the non-perturbative nature of NN interactions. Within this approach,
nuclear matter is modelled as a collection of point-like particles, the dynamics of
which are dictated by the Hamiltonian

H =
∑

i

p2i
2m

+
∑

j>i

vi j + · · · , (1)

where pi and m denote the momentum of the i th nucleon and its mass, respectively,
vi j is the NN interaction potential and the ellipses refer to the presence of irreducible
interactions involving three or more nucleons. The inclusion of a three-nucleon poten-
tial, Vi jk , is in fact necessary to explain the properties of the three-nucleon systems,
as well as saturation of isospin-symmetric nuclear matter (SNM).

The NN potential vi j reduces to the Yukawa one-pion exchange potential at large
distances, while its behaviour at short and intermediate range is determined by a fit of
deuteron properties and NN scattering phase shifts.

Coordinate-space NN potentials are usually written in the form

vi j =
∑

p

v p(ri j )O
p
i j , (2)

where ri j = |ri − r j | is the distance between the interacting particles, and the sum
includes up to eighteen terms. The most prominent contributions are those associated
with the operators

Op≤6
i j = [1, (σ i · σ j ), Si j ] ⊗ [1, (τ i · τ j )], (3)

where σ i and τ i are Pauli matrices acting in spin and isospin space, respectively, while
the operator

Si j = 3

r2i j
(σ i · ri j )(σ j · ri j ) − (σ i · σ j ), (4)

reminiscent of the potential describing the interaction between two magnetic dipoles,
accounts for the occurrence of non-spherically symmetric forces.
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The potential models obtained including the six operators of Eqs. (3)–(4) explain
deuteron properties and the S-wave scattering phase shifts up to pion production
threshold.

2.2 The CBF Effective Interaction

Performing perturbative calculations in the basis of eigenstates of the non-interacting
system requires the replacement of the bareNN potential—featuring a strongly repul-
sive core—with a well-behaved effective interaction [22,23] that can be obtained
either summing up ladder diagrams at all orders, as in G-matrix perturbation theory
[11,17,24], or modifying the basis states, as in the CBF approach [12,13,17].

Within theCBF formalism, non-perturbative effects are taken into account replacing
the states of the non-interacting system, i.e. the Fermi gas states |nFG〉 in the case of
uniform nuclear matter, with a set of correlated states, defined as (see, for example,
Refs. [25–27])

|n〉 = F |nFG〉
〈nFG|F†F |nFG〉1/2 . (5)

The operator F , embodying the correlation structure induced by the NN interaction,
is written in the form

F = S
∏

j>i

fi j , (6)

with

fi j =
∑

p

f p(ri j )O
p
i j , (7)

the two-body operators Op
i j being the same as inEq. (2). Note that, because the operator

structure of fi j reflects the complexity of the NN potential, the product appearing in
Eq. (6) needs to be symmetrized through the action of the operator S, to account for
the fact that [ fi j , fik] �= 0.

In principle, the radial dependence of the correlation functions f p(ri j ) can be
determined from functional minimization of the expectation value of the Hamiltonian
in the correlated ground state

EV = 〈0|H |0〉. (8)

In practice, however, the calculation of the variational energy of Eq. (8) involves non-
trivial difficulties. It can be effectively carried out expanding the right-hand side in a
series, whose terms describe the contributions of subsystems, or clusters, involving an
increasing number of correlated particles (see, for example, Refs. [27,28]). The terms
of the cluster expansion can be represented by diagrams, that are classified according
to their topological structures. Selected classes of diagrams can then be summed
up to all orders solving a set of coupled nonlinear integral equations—referred to as
Fermi Hyper-Netted Chain/Single-Operator Chain (FHNC/SOC) equations [26,29]—
to obtain an accurate estimate of the ground-state energy. The full derivation of the
Euler equation obtained from
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δEV

δF
= 0, (9)

within the FHNC scheme is discussed in Ref. [30].
The new basis defined by Eq. (5) can be employed to perform perturbative calcu-

lations with the bare NN potential, although the non-orthogonality of the basis states
entails severe computational difficulties [31]. However, the same formalism can be
also exploited to obtain an effective interaction, suitable to be used with the Fermi gas
basis [12,13].

The CBF effective interaction, veff , is defined through the relation [32]

〈0|H |0〉 = 〈0FG|
∑

i

p2i
2m

+
∑

j>i

veffi j |0FG〉, (10)

where |0FG〉 and |0〉 denote the Fermi gas and CBF ground state, respectively, and H
is the nuclear Hamiltonian of Eq. (1).

In the pioneeringworks ofRefs. [12,13], the left-hand side of Eq. (10) has been eval-
uated using a truncated version of the state-of-the-art Argonne v18 potential, including
contributions with p ≤ 6 [see Eqs. (2)–(4)][33,34] and including two-nucleon cluster
contributions only. This approximation leads to the simple expression

veffi j = 1

m

(∇ fi j
)2 + fi jvi j fi j , (11)

where vi j is the bare NN potential and the fi j are determined solving the Euler equa-
tions derived from the approximated energy functional, with the correlation range fixed
in such a way as to reproduce the FHNC/SOC results obtained with the same Hamil-
tonian. In Ref. [13], the effects of three- and many-nucleon interactions have been
also taken into account, using a density-dependent modification of the NN potential
originally proposed in Ref. [35].

More recently, an improved CBF effective interaction has been derived by the
authors of Refs. [14–16], who explicitly included three-body cluster contributions to
the left-hand side of Eq. (10). This scheme allows for a more realistic treatment of
three-body forces, which are known to play a critical role in determining both the
spectra of few-nucleon systems and the saturation properties of SNM, based on a
realistic description at microscopic level.

The CBF effective interaction of Refs. [14,15] has been obtained from a nuclear
Hamiltonian comprising the Argonne v′

6 NN potential [34,36] and the Urbana IX
(UIX) three-nucleon potential [37]. The v′

6 potential accounts for deuteron properties
and S-wave NN scattering phase shifts, while the UIX potential, including a Fujita–
Miyazawa two-pion exchange attractive term [38] and a purely phenomenological
repulsive term, is designed to reproduce the properties of the three-nucleon bound
states and the saturation density of SNM.

The energy per particle of both isospin-symmetric nuclear SNM and PNMobtained
from veff in the Hartree–Fock approximation—which reproduces by construction the
FHNC/SOC variational results computed using the v′

6+UIX Hamiltonian—turns out
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[h]

Fig. 1 Energy per particle of PNM as a function of the density, ρ. The solid line represents the ener-
gies obtained using the CBF effective interaction—which coincide with the FHNC/SOC energies by
construction—while the circles correspond to the values calculated using the Auxiliary Field Diffusion
Monte Carlo (AFDMC) technique [39]. Note that the statistical error bars associated with the Monte Carlo
energies are only visible ρ � 0.4 fm−3 (Color figure online)

[h]

Fig. 2 Nucleon–nucleon potential in the S = 0, T = 1 channel. The solid and dot–dash lines correspond
to the CBF effective interaction of Ref. [15] and to the bare Argonne v′

6 [34] potential, respectively. The
inset shows a blow-up of the region 0.5 ≤ r ≤ 2.5 fm (Color figure online)

to also be in excellent agreement with the results of other highly advanced many-body
approaches [15]. Figure 1, showing a comparison with the PNM energies obtained
using the Auxiliary Field Diffusion Monte Carlo technique [39], strongly suggests
that the FHNC/SOC scheme provides a very accurate upper bound to the ground-state
energy.

The solid line of Fig. 2 shows the radial dependence of the CBF effective interaction
in the S = 0, T = 1 channel, S and T being the total spin and isospin of the interacting
pair, respectively. Comparison with the dot–dash line, corresponding to the bare v′

6
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potential, clearly illustrates the screening effect arising from NN correlations, leading
to the near-disappearance of the short-range repulsive core of the bare interaction. In
addition, due to the modification of the two-nucleon wave function arising from the
inclusion of correlations, the effective interaction includes an additional purely kinetic
term. The inset shows a blow-up of the attractive region.

3 Results

The generalization of the formalism originally derived by Bardeen, Cooper and Schri-
effer [40] to allow the use of correlated basis functions is thoroughly discussed in
Ref. [41]. For any baryon density ρ = k3F/(3π

2), where kF denotes the Fermi momen-
tum, the gap equation corresponding to S-wave coupling in cold PNM,

�(k) = − 1

π

∫
k′2dk′ v(k, k′)�(k′)

[
ξ2(k′) + �2(k′)

]1/2 , (12)

has been solved using the algorithm discussed in Ref. [42]. Equation (12) involves in
the momentum-space matrix elements of the potential

v(k, k′) =
∫

r2dr j0(kr)v
eff(r) j0(k

′r), (13)

where j0(x) = sin(x)/x is the zeroth-order spherical Bessel function, veff(r) is the
projection of the CBF effective potential in the S = 0, T = 1 channel (see Fig. 2),
and

ξ(k) = e(k) − μ, (14)

where e(k) and μ = e(kF) denote the energy of a particle carrying momentum k and
the chemical potential, respectively.

The calculation has been carried out using theCBF effective interaction ofRefs. [14,
15]. The single-particle spectrum e(k) has been consistently computed at first order
in the CBF effective interaction, that is, within the Hartree–Fock approximation. The
solid line of Fig. 3 illustrates themomentumdependence of theHartree–Fock spectrum
of PNM at density ρ = 0.04 fm−1. For comparison, the kinetic energy spectrum is
also shown, by the dashed line.

The main results of our work are summarized in Fig. 4, showing the superfluid gap
at the Fermi surface, �(kF), as a function of the Fermi momentum kF. The solid line
has been obtained using the CBF effective interaction and the Hartree–Fock spectrum,
while the dashed line corresponds to a calculation carried out with the bare v′

6 NN
potential and the kinetic energy spectrum. The comparison shows that, while the range
of Fermimomentum inwhich�(kF) �= 0 is about the same, the inclusion of interaction
and correlation effects leads to a significant reduction of the gap.

To clarify the roles played by the interaction employed to evaluate the matrix ele-
ment entering Eq. (12) and of the single-particle energies appearing in (14), the results
obtained combining the CBF effective interaction with the kinetic energy spectrum
are also displayed, by the dot–dash line. It appears that while being sizable, the effect
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[h]

Fig. 3 Momentum dependence of the single-particle spectrum in PNM. Solid line: results obtained at first
order in theCBF effective interaction, corresponding to theHartree–Fock approximation, atρ = 0.04 fm−1.
Dashed line: kinetic energy spectrum (Color figure online)

[h]

Fig. 4 Fermi momentum dependence of the superfluid gap at the Fermi surface, �(kF). The dashed line
represents the results obtained using the bare v′

6 potential and the kinetic energy spectrum,while the solid line
corresponds to calculations carried out using the CBF effective interaction and the Hartree–Fock spectrum.
For comparison, the dash–dot line shows �(kF) computed combining the CBF effective interaction with
the kinetic energy spectrum (Color figure online)

of interactions in the single-particle spectrum is not as large as that arising from the
replacement of the bare potential with the CBF effective interaction in Eq. (13). In
this context, it has to be also kept in mind that second-order contributions, leading
to the appearance of an explicit energy dependence of the neutron self-energy, are
known to significantly affect e(k) and the nucleon effective mass in the vicinity of the
Fermi surface. The impact of these corrections on the determination of �(k) within
the proposed approach should be carefully investigated.
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[h]

Fig. 5 Momentum dependence of the superfluid gap of Eq. (12). The dashed line shows the results obtained
using the bare v′

6 potential and the kinetic energy spectrum, while the solid line corresponds to calculations
carried out using the CBF effective interaction (Color figure online)

The solid lines of Fig. 5 illustrate the momentum dependence of the gap function,
�(k), obtained using the CBF effective interaction for three different values of the
Fermi momentum: kF = 0.4, 0.8 and 1.2 fm−1. For comparison, the corresponding
results obtained using the bare NN potential and the kinetic energy spectrum are also
shown, by the dashed lines.

As a final remark,we note that the present version of the code employed to obtain the
numerical results shown in Fig. 4 does not allow to pin down the contribution arising
from three-nucleon interactions, unless three-nucleon cluster terms are disregarded
altogether. However, in the low-density region in which the superfluid gap is nonzero,
two-nucleon interactions are expected to largely dominate.

4 Summary and Outlook

We have carried out a calculation of the superfluid gap in PNM, associated with the
formation of Cooper pairs of neutrons in states of total spin S = 0 and relative angular
momentum � = 0. The interaction in this channel, which dominates the attractive
component of the neutron–neutron force, has been described within the CBF formal-
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ism, using an effective potential derived from the state-of-the-art phenomenological
models of the two- and three-nucleon potentials referred to as Argonne v′

6 and UIX.
Note that the CBF effective interaction is not defined in operator form, but only

in terms of its expectation value in the Fermi gas ground state. However, unlike the
Skyrme-like interactions derived using a similar procedure [45,46], it is strongly con-
strained by a microscopic model of nuclear dynamics. Therefore, it is well suited
to perform calculations of many different quantities, including the nucleon–nucleon
scattering rates in matter, needed for a consistent description of equilibrium and non-
equilibrium properties of neutron stars.

It is important to keep in mind that the validity of the assumption that perturba-
tive calculations involving matrix elements of veffi j between Fermi gas states provide
accurate estimates of quantities other than the ground-state energy cannot be taken
for granted, and must be ultimately assessed at numerical level. A step along this line
is the work of Refs. [45,46], whose authors employed a CBF effective interaction to
carry out calculations of a variety of properties of the Fermi hard-sphere system, rang-
ing from the self-energy to the in-medium scattering cross section and the transport
coefficients. The agreement between the results of this study and the predictions of
low-density expansions appears to be quite encouraging.

We find that a non-vanishing superfluid gap develops in the density range typical
of the neutron-star inner crust, extending from the the neutron drip density ρND ≈
4 × 1011 g cm−3 to ρ ≈ 1014 g cm−3 [47].

In the case of 1S0 pairing, the critical temperature Tc of the superfluid transition
can be estimated from the value of the gap at zero temperature (T = 0) [43,44].
The resulting maximum value is in the range Tc ∼ 1 − 2 MeV, corresponding to
∼ 1 − 2 × 1010 K.

Our results, while being interesting in their own right, should be regarded as a first
step towards a comprehensive description of the superfluid and superconductive phases
of neutron stars. The interaction between neutrons coupled to total spin S = 1 and
angular momentum � = 1 is also attractive. The formation of Cooper pairs of neutrons
with these quantum numbers is expected to occur at densities ρ > ρ0 typical of the
neutron-star core. The appearance of a superfluid phase in this region would strongly
affect the dissipative processes determining the stability of rotating stars. In addition,
the small fraction—typically less that∼ 10%—of protons are also expected to become
superconductive, thus affecting the dissipative processes driven by electromagnetic
interactionswith electrons andmuons. The extension of the formalism employed in our
work to study neutron superfluidity in the 3P2 channel and proton superconductivity
does not involve any conceptual difficulties.
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