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Abstract In spite of the absence of viscous drag, the neutron superfluid permeating
the inner crust of a neutron star cannot flow freely and is entrained by the nuclear
lattice similarly to laboratory superfluid atomic gases in optical lattices. The role of
entrainment on the neutron superfluid dynamics is reviewed. For this purpose, a min-
imal hydrodynamical model of superfluidity in neutron-star crusts is presented. This
model relies on a fully 4-dimensionally covariant action principle. The equivalence of
this formulation with the more traditional approach is demonstrated. In addition, the
different treatments of entrainment in terms of dynamical effective masses or super-
fluid density are clarified. The nuclear energy density functional theory employed for
the calculations of all the necessary microscopic inputs is also reviewed, focusing
on superfluid properties. In particular, the microscopic origin of entrainment and the
different methods to estimate its importance are discussed.

Keywords Neutron star · Superfluidity · Hydrodynamics · Entrainment · Effective
mass · Superfluid density · Density functional theory · BCS · Bogoliubov–de Gennes
equations

1 Introduction

Neutron stars, the compact stellar remnants of gravitational core-collapse supernova
explosions of massive stars, contain matter under the most extreme conditions with
central densities exceeding that prevailing in atomic nuclei [1]. The interior of a neutron
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star comprises essentially five distinct regions: (i) an ocean of liquid iron surmounted
by a thin atmosphere of light elements; (ii) an outer crust, at densities ranging between
∼ 104 g cm−3 and a few 1011 g cm−3, consisting of a dense plasma of neutron-rich
nuclei arranged on a body-centered cubic lattice coexisting with a highly degenerate
relativistic electron gas; (iii) an inner crust, composed of an inhomogeneous assembly
of neutron-proton clusters immersed in a neutron liquid and neutralized by electrons;
(iv) an outer core at densities above ∼ 1014 g.cm−3 made of neutrons, with a small
admixture of protons and leptons; (v) an inner core whose composition remains highly
speculative.

With typical temperatures of order 107 K, the interior of a mature neutron star is
expected to be cold enough for the existence of nuclear superfluid and superconduct-
ing phases (see, e.g., Ref. [2] for a recent review). In particular, the free neutrons
in the inner crust are thought to become superfluid by forming Cooper pairs anal-
ogously to electrons in conventional superconductors. This prediction is supported
by observations of giant pulsar frequency glitches, as in the emblematic Vela pul-
sar (see, e.g., Ref. [3] for a short review). Remarkably, similar sudden spin-ups have
been observed in superfluid helium [4]. Glitches are usually interpreted as transfers
of angular momentum between the neutron superfluid and the rest of star triggered
by the unpinning of quantized vortices [5,6]. However, it has been recently realized
that the neutron superfluid does not flow freely as previously assumed, but strongly
interacts with the periodic nuclear lattice [7–9] similarly to superfluid helium in thin
films [10] or cold atomic gases in optical lattices [11,12]. Due to these entrainment
effects, the neutron superfluid in the crust does not carry enough angular momentum
to explain giant pulsar glitches [13–15], suggesting that another superfluid reservoir
in the stellar core is involved [16–20]. The neutron superfluid may leave its imprint
on other observed astrophysical phenomena such as the thermal relaxation of tran-
siently accreting neutron stars during quiescence, or quasiperiodic oscillations in the
hard X-ray emission detected in the tails of giant flares from a few soft-gamma ray
repeaters (see, e.g., Ref. [2]). The interpretation of all these phenomena requires a
better understanding of the dynamics of superfluid neutron stars.

In this paper, recent developments in the understanding of entrainment effects in
neutron-star crusts are reviewed. The hydrodynamical aspects are discussed in Sect. 2.
After briefly reviewing in Sect. 2.1 the convective variational action principle intro-
duced by Brandon Carter [21], a minimal model of superfluid neutron-star crusts is
presented in Sect. 2.2. The equivalence of this approachwith themore heuristic formu-
lation of Refs. [22,23] using the traditional space–time decomposition is demonstrated
inSect. 2.3.As an application, low-energy collective excitations are studied inSect. 2.4.
The calculations of all the necessary underlying microscopic inputs are discussed in
Sect. 3. In Sect. 3.1, the nuclear energy density functional (EDF) theory is reviewed.
Its application to the description of neutron-star crusts and entrainment effects are
discussed in Sect. 3.3.
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2 Superfluid Dynamics and Entrainment in Neutron-Star Crusts

2.1 Convective Variational Principle

The traditional approach to superfluid hydrodynamics blurring the distinction between
velocity and momentum makes it difficult to adapt and extend Landau’s original two-
fluid model to the relativistic context, as required for a realistic description of neutron
stars. For this purpose, BrandonCarter [21] developed an elegant variational formalism
based on exterior calculus (see, e.g., Refs. [24–26] for a review). The action

A =
∫

�{n ν
X
} dM (4) , (1)

is integrated over the 4-dimensional manifold M (4), and the Lagrangian density �

(also referred to as the master function) depends on the 4-current vectors n ν
X
of the

different fluids (with the Greek letter ν = 0, 1, 2, 3 denoting the space–time compo-
nents, whereas the different constituents are labeled by X). The dynamical equations,
obtained by requiring δA = 0 under infinitesimal variations of the fluid particle tra-
jectories, take a very concise form (summation over repeated indices will be assumed
throughout this paper except for those labeling constituents):

n μ
X

�X
μν + πX

ν ∇μn μ
X

= f X
ν , (2)

expressed in terms of the total 4-momentum 1-form

πX
μ = ∂�

∂n μ
X

, (3)

the vorticity 2-form
�X

μν = ∇μπX
ν − ∇νπX

μ , (4)

and f X
ν denotes the 4-force density 1-form acting on the fluids. As emphasized by

Carter (see, e.g., Ref. [27]), the fundamentally different physical natures of the velocity
and the momentum are reflected in their mathematical structure: while the former
belongs in a tangent bundle (vector), the latter belongs in a cotangent bundle (covector),
as can be clearly seen from the definition (3).

Carter’s formalism was later adapted to the comparatively more intrincate Newto-
nian theorywithin a 4-dimensionally covariant framework [28,29]. This fully covariant
description not only provides a direct comparison with the relativistic theory (see, e.g.,
Ref. [30]), but also helped to reveal new conservation laws such as the conservation of
generalized helicy currents in superfluid mixtures. Moreover, the derivation of various
identities (e.g., generalized Bernouilli constants and virial theorems) is considerably
simplified by making use of mathematical concepts from differential geometry that
have been extremely fruitful in the relativistic context, such as Killing vectors (see,
e.g., Ref. [31]). Although less accurate than a fully relativistic description, aNewtonian
treatment of superfluid neutron stars can provide valuable insight at a much reduced
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computational cost. For this reason, studies of the neutron-star superfluid dynamics in
Newtonian theory are still being carried out. The 4-current vector n μ

X
in Newtonian

spacetime is obtained by combining the particle number density nX ≡ n 0
X
with the

3-current vector n i
X

= nXv i
X
where v i

X
is the corresponding velocity vector (with the

Latin index i = 1, 2, 3 indicating the spatial components). Because Carter’s formal-
ism relies on exterior calculus, the equations of motion (2) do not directly depend on
the space–time metric, and thus take the same form in Newtonian theory. Dissipative
processes (e.g., viscosity in non-superfluid constituents, superfluid vortex drag,mutual
friction between non-superfluid constituents, nuclear reactions) can be treated within
the same framework [32]. Carter’s formalism was further extended in order to allow
for the inclusion of the elasticity of the crust [33] and the presence of a high magnetic
field [34]. The relativistic formalism was developed in Ref. [35].

2.2 Minimal Model of Superfluid Neutron-Star Crusts

Although it would be necessary to account for gravity in a global description of neutron
stars, its effects on the local superfluid dynamics of neutron-star crusts, on which
we focus here, are relatively small and will thus be neglected. A smooth-averaged
hydrodynamic treatment at length scales large compared with the mean ion spacing
aI = (3/(4πnI))

1/3 with nI the ion number density, the neutron superfluid coherence
length ξ (see Sect. 3.3), and the electron screening length re = (4πe2dne/dμe)

−1/2

with ne the electron number density and μe the electron Fermi energy, was presented
in Ref. [36].

In this model, the crust of a neutron star is described by two interpenetrating fluids:
(i) a neutron superfluid with current n ν

n , and (ii) an electrically charge neutral plasma
of electrons and ions that are essentially locked together by the interior magnetic field,
and whose current n ν

p is carried by protons (although electrons play an important
role for electromagnetic effects, their contribution to the fluid dynamics considered
here can be ignored owing to the negligibly small electron mass compared to the
proton mass). It should be stressed that the neutron superfluid component includes
here neutrons that are both bound inside ionic clusters and unbound. The two-fluid
model can be reformulated in terms of a “free” neutron current and a “confined” baryon
current. However, the specification of which neutrons are to be counted as “free” or
“confined” is subject to some degree of arbitrariness. We refer the reader to Ref. [36]
for a detailed discussion. We shall ignore here the effects of stratification [36], as well
as the small stress anisotropy arising from the elasticity of the crust [33], or from
high magnetic fields [34]. However, allowance will be made for the relatively strong
entrainment effects between the neutron superfluid and the charged particles. As will
be shown below, once formulated in the usual space–time decomposition, the fully
covariant dynamical equations derived in Ref. [36] are equivalent to those recently
obtained in Refs. [22,23] following a more heuristic approach.
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2.3 Equivalence Between the Convective Variational Formulation and the
Traditional Approach

The total force balance equation given by Eq.(2.12) of Ref. [36] in the fully covariant
approach reads

∇μT μ
ν = 0 , (5)

where T μ
ν is the material energy–momentum tensor, and we assumed that no external

force acts on the system. Introducing the total momentum density space vector gi =
T 0

i , and decomposing this equation in the space–time coordinates leads to Eq. (10) of
Ref. [23]

∂

∂t
gi + ∇ j	

j
i = 0 , (6)

with 	
j
i ≡ T j

i . The explicit form of the energy–momentum tensor can be derived
using the variational principle and is given by Eq. (1) of Ref. [29]:

T μ
ν =

∑
X

n μ
X

πX
ν + 
δμ

ν , (7)

where δ
μ
ν is the Kronecker symbol, and


 = � −
∑
X

n ν
X
πX

ν (8)

is interpretable as a generalizedpressure. In the present context, the energy–momentum
tensor is given by Eq.(2.11) of Ref. [36]. In particular, introducing the proton and
neutronmomentawritten asμ

p
i andμn

i respectively inRef. [36] the spatial components
of the total momentum density covector and of the energy–momenty tensor read

gi = nnμn
i + n pμ

p
i , (9)

	
j
i = n j

pμ
p
i + n j

nμn
i + δ

j
i 
 . (10)

Under the assumption that the currents are sufficiently small, the internal energy den-
sity U can quite generally be written as the sum of a purely static part Uins and
a dynamical part Udyn (including the kinetic contribution) given by Eq. (2.41) of
Ref. [36]

Udyn = 1

2

(
μn

i ni
n + μ

p
i ni

p

)
. (11)

Likewise, the generalized pressure can be decomposed as


 = 
ins + 
dyn , (12)

where the first term represents a purely static contribution having the form


ins = nn
∂Uins

∂nn
+ n p

∂Uins

∂n p
− Uins , (13)
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whereas the second term arises from dynamical effects and is given by


dyn = −nn
∂Udyn

∂nn
− n p

∂Udyn

∂n p
− Udyn . (14)

When taking partial derivatives, it is understood that the relevant variables are the
densities nn , n p, and the currents ni

n , ni
p.

The superfluidity condition is embedded in Josephson equations, which in the fully
covariant approach is given by Eq. (2.18) of Ref. [36], namely1

μn
ν = h̄∇νϕ

n , (15)

where ϕn is half the phase of the condensate (denoted by θ in Ref. [23]), and the time
component of the 4-momentum covector is interpretable as the opposite of the neutron
chemical potential μn = −μn

0
. The latter is expressible as

μn = ∂Uins

∂nn
− ∂Udyn

∂nn
, (16)

and similarly for the proton chemical potential2 μp. As shown in Ref. [36], μn
ν hence

also Eq. (15) are invariant regardless of how the superfluid neutrons are counted.
Decomposing Eq. (15) into space and time components yields

μn
i = h̄∇iϕ

n , h̄
∂ϕn

∂t
+ μn = 0 . (17)

The first condition is traditionally expressed as

V S
n i = h̄

m
∇iϕ

n (18)

in terms of a “superfluid velocity” defined by

V S
n i ≡ μn

i

m
, (19)

and m is the nucleon mass (we neglect here the small difference between the neutron
and proton masses). It can thus be easily seen that the superfluidity conditions (17)
coincide with Eqs. (3) and (11) of Ref. [23].

As stressed by Carter (see, e.g., Ref. [27]), V S
i does not represent the true physical

velocity of the neutron superfluid, denoted here by v i
n . The different nature of V S

n i

1 Since gravity is neglected here, the total momentum covectors πX
ν reduce to the material momentum

covectors μX
ν , as can be seen from Eq. (152) of Ref. [28] after setting the Newtonian gravitational potential

φ = 0.
2 Because of the local electric charge neutrality condition n p = ne , where ne is the electron number
density, the electron chemical potential is included in μp .
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and v i
n appears very clearly in the 4-dimensionally covariant approach, see Eq. (3).

It should be stressed that in Newtonian spacetime, vectors (such as the true velocity)
and covectors (such as the “superfluid velocity”) are intrinsically different objects due
to the absence of a metric tensor (indices cannot be raised or lowered). Although the
mathematical distinction between velocity and momentum seems to disappear in clas-
sical hydrodynamics formulated in the usual space time decomposition with Cartesian
coordinates, this is no longer the case when dealing with superfluid systems. In partic-
ular, in superfluid mixtures such as helium-3 and helium-4, the different superfluids
are generally mutually coupled by (nondissipative) entrainment effects whereby the
true velocity of one species is not aligned with the corresponding “superfluid veloc-
ity” even in Cartesian coordinates [37]. In the present context, the neutron and proton
momenta can thus be generally written as

μn
i = K nn

i j n j
n + K

np
i j n j

p , μ
p
i = K

np
i j n j

n + K
pp

i j n j
p . (20)

In the minimal model we consider here, whereby the crust is treated as a fluid, the
mobility tensorsK nn

i j ,K np
i j , andK pp

i j reduce to the isotropic formsK nn
i j = K nnγi j ,

K
np

i j = K npγi j , andK
pp

i j = K
pp

i j γi j , with γi j the space metric. Equation (20) thus
become

μn
i = γi j (K

nn n j
n + K np n j

p ) , μ
p
i = γi j (K

np n j
n + K pp n j

p ) . (21)

These relations remain valid for a perfectly crystalline solid crust with cubic symme-
try, as well as for polycrystalline, amorphous, or disordered crust on a macroscopic
scale (as is presumably the case in reality). The coefficients K nn , K np, and K pp

are not independent, but must satisfy the following conditions imposed by Galilean
invariance [36]:

K nn nn + K np n p = m , K np nn + K pp n p = m . (22)

Entrainment effects can thus be described by only one coefficient, for instanceK np.
Indeed, the dynamical contribution Udyn to the internal energy density can be decom-
posed into a kinetic term

Ukin = 1

2
m

(
nnv2n + n pv

2
p

)
, (23)

and an entrainment term

Uent = 1

2
ρ̄npv̄

2
np , (24)

where v̄i
np = vi

n − vi
p is the relative velocity, and ρ̄np = −nnn pK np [36]. Imposing

Udyn > 0, as required for the stability of the static configuration, entails the additional
constraint

ρ̄np > −x p(1 − x p)ρ , (25)
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where ρ = m(nn + n p) is the mass density, and x p = n p/(nn + n p) is the proton
fraction. Inserting Udyn = Ukin + Uent in Eq. (14) using Eqs. (23) and (24), the
generalized pressure is expressible as


dyn = 1

2
v̄2np

(
ρ̄np − nn

∂ρ̄np

∂nn
− n p

∂ρ̄np

∂n p

)
. (26)

Combining Eqs. (8), (11), (12), (13), (14), and (16), it can be seen that the Lagrangian
density is expressible as

� = Udyn − Uins = Ukin + Uent − Uins . (27)

This shows that the internal contribution �int ≡ � − Ukin to the Lagrangian density
of a fluid mixture does not generally coincide with the opposite of the internal energy
density Uint = Uins + Uent.

In Ref. [23] the neutron current (denoted by j i
n) was alternatively expressed in terms

of the “superfluid velocity” and the proton velocity vi
p in a more traditional form as

ni
n = nS

n V S i
n + nN

n vi
p , (28)

where nS
n and nN

n were referred to as the “superfluid” and “normal” neutron density,
respectively. Comparing Eqs. (21) and (28), we find

nS
n = m

K nn
, (29)

or equivalently

nS
n = nn

(
1 + ρ̄np

ρn

)−1

. (30)

The stability condition (25) can thus be written as

nS
n

nn
<

1

1 − x p
. (31)

It is easily seen that the relations (22) can be equivalently expressed as

nN
n + nS

n = nn . (32)

With these notations, the total momentum density coincides with Eq. (3.8) of Ref. [22],
namely

gi = mnS
n V S

n i + (ρ − mnS
n)vp i . (33)

The dynamical energy becomes

Udyn = 1

2
mnS

n V S 2
n + 1

2
(ρ − mnS

n)v2p . (34)
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Entrainment can be equivalently formulated in terms of dynamical effective
masses [36]. In the crust rest frame (vi

p = 0), the neutron momentum can thus be

written as μn
i = γi j m�

nv
j
n . Alternatively, a second kind of effective mass can be

defined by expressing μn
i = γi j m

�
nv

j
n in the crust momentum rest frame (μp

i = 0).
Using Eqs. (21), we obtain

m�
n = nnK

nn , m�
n = nn

K nnK pp − (K np)2

K pp
. (35)

Although this formulation could provide amore intuitive interpretation of entrainment,
it is not devoid of ambiguity. Indeed, these dynamical effective masses are found to
depend on how “free” and “confined nucleons are defined. More importantly, different
definitions of effectivemasses have been introduced in various contexts to characterize
different physical aspects. In particular, the dynamical effectives masses above should
not be confused with those introduced in microscopic many-body theories, as will be
discussed in Sect. 3.3 (see also Ref. [38]).

To be complete, the system of dynamical equations Eqs. (5) and (15) for the currents
n ν

n ,n
ν
p , and thephaseϕn must be supplementedwith a further condition.On sufficiently

short dynamical timescales, neutrons and protons can be reasonably assumed to be
separately conserved, which can be covariantly expressed as

∇νn ν
n = 0 , ∇νn ν

p = 0 . (36)

In the usual space–time decomposition, these equations become

∂nn

∂t
+ ∇i n

i
n = 0 ,

∂n p

∂t
+ ∇i n

i
p = 0 , (37)

which are equivalent to Eqs. (8) and (9) of Ref. [23]. In fact, only one of Eqs. (36)
needs to be considered if the conservation of the full energy–momentum tensor is
imposed, see Eqs. (5). Alternatively, the dynamical evolution can be fully determined
by Eqs. (6), (17), and (37). Finally, let us remark that the hydrodynamical equations
could have been equivalently derived from Eq. (2) with f X

ν = 0.

2.4 Low-Energy Collective Excitations of Superfluid Neutron-Star Crusts

In Refs. [22,23], the dynamical equations (6), (17), and (37) were further simplified
considering small perturbations against an initially static background. The particle
number conservation Eqs. (37) thus become to first order

∂δnn

∂t
+ nS

n∇iδV S i
n + nN

n ∇iδv
i
p = 0 ,

∂δn p

∂t
+ n p∇iδv

i
p = 0 , (38)

using Eq. (28). To linearize the momentum conservation Eq. (6), we make use of the
generalized Gibbs–Duhem identity, see Eq. (151) of Ref. [28] (ignoring here gravity),
namely
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δ
 = −
∑
X

n ν
X
δμX

ν , (39)

which in the present context reduces to Eq. (19) of Ref. [23]

δ
 = nnδμn + n pδμ
p . (40)

Using Eqs. (9), (19), (33), and (40), the momentum conservation is found to coincide
with Eq. (21) of Ref. [23]

mnS
n
∂δV S

n i

∂t
+ m(nN

n + n p)
∂δvp i

∂t
+ nn∇iδμ

n + n p∇iδμ
p = 0 . (41)

The linearized version of the Josephson equations (17) leads to the same equation as
Eq. (23) of Ref. [23]:

m
∂δV S

n i

∂t
+ ∇iδμ

n = 0 . (42)

Rearranging Eqs. (41) and (42) as in Ref. [23] yields

m(nN
n + np)

∂δvp i

∂t
+ nN

n ∇iδμ
n + n p∇iδμ

p = 0 . (43)

Let us consider perturbations in the form of plane waves that vary in space and
time as exp[i(qi xi − ωt)], where qi are the coordinates of the wave vector and ω is
the angular frequency. In the long wavelength limit q → 0, such perturbations have
a soundlike dispersion relation of the form ω = vq, where v is the corresponding
propagation speed. The properties of these modes are of particular importance for
studying the thermal evolution of neutron-star crusts [39]. In the minimal model that
we consider here, the modes are purely longitudinal. In the absence of the neutron
superfluid (as in the outer crust of a neutron star), these modes are lattice vibrations
propagating at the speed

v0� =
√

K̃

ρI
, (44)

where K̃ is the bulk modulus of the electron–ion system, given by3

K̃ = n2
p
∂μp

∂n p
, (45)

and ρI is the ion mass density. A pure neutron superfluid with density nf
n could be

subject to Bogoliubov–Anderson perturbations with a speed

v0φ =
√

nf
n

m

∂μn

∂nf
n

. (46)

3 Let us recall that the chemical potential μp includes the contribution of electrons.
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In the shallowest region of the inner crust, the neutron superfluid is very dilute and
weakly coupled to the electron–ion plasma. The excitationmodes of the combined sys-
tem can still be decomposed into lattice vibrations and Bogoliubov–Anderson sound
mode with nf

n the density of “free” neutrons. The speeds of these two modes are such
that v0φ � v0� . With increasing depth, the speeds of these modes are changed due to
entrainment effects. In particular, lattice vibrations are accompanied by motions of
the neutron superfluid so that their speed is reduced [39]:

v� = v0�

√
ρI

m(n p + nN
n )

≤ v0� . (47)

Likewise, because the electron–ion plasma is entrained by the neutron superfluid, the
speed of the Bogoliubov–Anderson mode is decreased [39]:

vφ = v0φ

√
nS

n

nf
n

≤ v0φ . (48)

With further compression, the speeds of the two modes become comparable and mix.
The speeds can be determined from Eqs. (38), (42), (43) leading to an equation of the
form [40]

(v2 − v2φ)(v2 − v2� ) = g2
mixv

2 + g4 . (49)

The mixing between the modes is characterized by the parameters gmix and g, given
by

gmix =
√

nN
n (2L + EnnnN

n )

m(n p + nN
n )

, g =
(

L2nS
n

m2(n p + nN
n )

)1/4

, (50)

where

L = n p
∂μn

∂n p
, Enn = ∂μn

∂nn
. (51)

Note that Eq. (49) is identical to Eq. (34) from Ref. [23] although it is expressed here
in a slightly different form. The two solutions of Eq. (49) are given by [40]

v± = V√
2

√√√√
1 ±

√
1 − 4v2�v

2
φ

V 4 + 4g4

V 4 , (52)

where V =
√

v2� + v2φ + g2
mix. In the deep region of the inner crust, most nucleons

consist of superfluid neutrons so that the two modes resemble lattice vibrations and
Bogoliubov–Anderson excitations, with speeds v− ∼ v� � v+ ∼ vφ .

In the non-superfluid phase, any relative motion between the neutron liquid and the
crust will be damped by viscosity to the effect that ions, electrons, and neutrons will
be essentially comoving. In this case, the Josephson’s equation (42) has to be replaced
by the condition δvi

n = δvi
p. Only one longitudinal mode corresponding to ordinary

hydrodynamic sound will persist, and its speed will be given by
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cs =
√

K

ρ
, (53)

where ρ is the total mass density of the crust and K is the total bulk modulus

K = K̃ + 2nn L + n2
n Enn . (54)

This analysis illustrates the importance of entrainment effects on the dynamics of
neutron-star crusts. The complete characterization of the modes (and more generally
the complete determination of the superfluid dynamics) requires the specification of
the static internal energy density Uins, as well as of the superfluid density nS

n . These
microscopic ingredients can be calculated using the nuclear EDF theory.

3 Microscopic Description of Neutron-Star Crusts and Origin of
Entrainment

3.1 Nuclear Energy Density Functional Theory

The density functional theory has been very successfully employed in a wide variety
of fields, from chemistry to condensed matter physics. A somehow similar approach
called the nuclear EDF theory has been developed in nuclear physics (see, e.g.,
Ref. [41] for a recent review of this formalism).

In this theory, the energy E of a many-nucleon system is expressed as a universal
functional of the so-called normal and abnormal density matrices [42,43] defined by

nq(r, σ ; r ′, σ ′) = < 
|cq(r ′, σ ′)†cq(r, σ )|
 > , (55)

ñq(r, σ ; r ′, σ ′) = −σ ′ < 
|cq(r ′,−σ ′)cq(r, σ )|
 > , (56)

respectively, where |
 > is the many-nucleon wave function, cq(r, σ )† and cq(r, σ )

are the creation and destruction operators for nucleons of charge type q (q = n, p
for neutron, proton, respectively) at position r with spin σ . The abnormal density
matrix characterizes the pairing of nucleons (see, e.g., the discussion in Ref. [43]). The
normal and abnormal density matrices are usually expressed in terms of independent
quasiparticle (q.p.) states characterized by two-component wavefunctions ψ

(q)
1i (r, σ )

and ψ
(q)
2i (r, σ ), as

nq(r, σ ; r ′, σ ′) =
∑
i(q)

ψ
(q)
2i (r, σ )ψ

(q)
2i (r ′, σ ′)∗ , (57)

and

ñq(r, σ ; r ′, σ ′) = −
∑
i(q)

ψ
(q)
2i (r, σ )ψ

(q)
1i (r ′, σ ′)∗ = −

∑
i(q)

ψ
(q)
1i (r, σ )ψ

(q)
2i (r ′, σ ′)∗ ,

(58)
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where the index i represents the set of suitable quantum numbers and the symbol ∗
denotes complex conjugation. Considering independent q.p. states leads to the follow-
ing constraints on the q.p. wavefunctions [42,43]:

∑
σ

∫
d3r

{
nq(r1, σ1; r, σ )ñq(r, σ ; r2, σ2) − ñq(r1, σ1; r, σ )nq(r, σ ; r2, σ2)

}

= 0 , (59)
∑
σ

∫
d3r

{
nq(r1, σ1; r, σ )nq(r, σ ; r2, σ2) + ñq(r1, σ1; r, σ )ñq(r, σ ; r2, σ2)

}

= nq(r1, σ1; r2, σ2) . (60)

The ground-state energy of the system is determined by minimizing the energy E with
respect toψ

(q)
1i (r, σ ) andψ

(q)
2i (r, σ ) under the constraint of fixed numbers of neutrons

and protons.
The main limitation of the EDF theory stems from the energy functional itself,

whose exact form is unknown. For this reason, various phenomenological functionals
have been proposed. They have been traditionally obtained from density-dependent
effective nucleon–nucleon interactions in the framework of the self-consistent “mean-
field” methods [44]. Although such a formulation imposes stringent restrictions on the
form of the EDF, it guarantees the cancelation of the internal energy in the limiting case
of one nucleon [45]. On the other hand, the EDFs may still be contaminated by many-
body self-interactions errors (see, e.g., Ref. [41]). TheEDFs reduce to a semilocal form
for zero-range effective interactions. Such interactions have been widely employed
since they allow for very fast numerical computations. In particular, the most popular
effective interactions are of the Skyrme type [44]

v(r1, r2) = t0(1 + x0Pσ )δ(r12) + 1

2
t1(1 + x1Pσ )

1

h̄2

[
p212 δ(r12) + δ(r12) p212

]

+t2(1 + x2Pσ )
1

h̄2 p12 · δ(r12) p12 + 1

6
t3(1 + x3Pσ )n(r)α δ(r12)

+ i

h̄2 W0(σ̂1 + σ̂2) · p12 × δ(r12) p12 , (61)

where r12 = r1 − r2, r = (r1 + r2)/2, p12 = −ih̄(∇1 − ∇2)/2 is the relative
momentum, σ̂1 and σ̂2 are Pauli spin matrices, Pσ is the two-body spin-exchange
operator, and n(r) denotes the average nucleon number density. Nuclear pairing is
generally treated using a different effective interaction of the form (see, e.g., Ref. [46]
and references therein)

v(r1, r2) = 1

2
(1 − Pσ )vπ q [nn(r), n p(r)]δ(r12) , (62)

where nn(r) and n p(r) denote the average neutron and proton number densities,
respectively. Only pairing between nucleons of the same charge state is considered
here. Because of the zero range, the pairing interaction must be regularized. This is

123



J Low Temp Phys (2017) 189:328–360 341

usually achieved by introducing an energy cutoff (for a review of the various prescrip-
tions, see for instance Ref. [47]).

With these kinds of zero-range interactions, the energy E can be expressed as

E = Ekin + ECoul + ESky + Epair , (63)

where Ekin is the kinetic energy, ECoul is the Coulomb energy, ESky is the Skyrme
nuclear energy, and Epair is the nuclear pairing energy. Assuming the system to be
invariant under time reversal, the ground-state energy depends on the local normal and
abnormal nucleon number densities

nq(r) =
∑

σ=±1

nq(r, σ ; r, σ ) , (64)

ñq(r) =
∑

σ=±1

ñq(r, σ ; r, σ ) , (65)

the kinetic densities

τq(r) =
∑

σ=±1

∫
d3r ′ δ(r − r ′)∇ · ∇′nq(r, σ ; r ′, σ ) , (66)

and the spin-current vector densities

Jq(r) = −i
∑

σ,σ ′=±1

∫
d3r ′ δ(r − r ′)∇nq(r, σ ; r ′, σ ′) × σ σ ′σ

= i
∑

σ,σ ′=±1

∫
d3r ′ δ(r − r ′)∇′nq(r, σ ; r ′, σ ′) × σ σ ′σ , (67)

where σ σσ ′ denotes the components of the Pauli spin matrices. The energy minimiza-
tion leads to the Hartree–Fock–Bogoliubov (HFB) equations4

∑
σ ′=±1

(
hq(r)σσ ′ �q(r)δσσ ′

�q(r)δσσ ′ −hq(r)σσ ′

) (
ψ

(q)
1i (r, σ ′)

ψ
(q)
2i (r, σ ′)

)

=
(

Ei + μq 0
0 Ei − μq

) (
ψ

(q)
1i (r, σ )

ψ
(q)
2i (r, σ )

)
, (68)

where Ei denotes the energy of the q.p. state i , and the chemical potentials μq intro-
duced as Lagrange multipliers to impose the constraints on the fixed numbers Nq of
nucleons are determined from the condition

Nq =
∑

i

∑
σ

∫
d3r |ψ(q)

2i (r, σ )|2 . (69)

4 These equations are also called Bogoliubov–de Gennes equations in condensed matter physics.
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The single-particle (s.p.) Hamiltonian hq(r)σσ ′ is given by

hq(r)σσ ′ ≡ −∇ · Bq(r)∇ δσσ ′ + Uq(r)δσσ ′ − iWq(r) · ∇ × σ̂ σσ ′ , (70)

with the s.p. fields defined by the functional derivatives of the energy

Bq(r) = δE

δτq(r)
, Uq(r) = δE

δnq(r)
, Wq(r) = δE

δ Jq(r)
. (71)

The pairing potential is defined by

�q(r) = δE

δñq(r)
= 1

2
vπq [nn(r), n p(r)]ñq(r) . (72)

Expressions for these fields can be found for instance in Ref. [48].
In the absence of pairing, the HFB equations reduce to the Hartree–Fock (HF)

equations ∑
σ ′=±1

hq(r)σσ ′ϕ(q)
i (r, σ ′) = ε

(q)
i ϕ

(q)
i (r, σ ) , (73)

and ε
(q)
i is the energy of the s.p. state i characterized by the s.p. wavefunction

ϕ
(q)
i (r, σ ). The so-called BCS approximation consists in expressing the HFB equa-

tions in the HF basis5, and neglecting the off-diagonal matrix elements of the pairing
potential. Adopting the usual phase convention, the solutions of the HFB Eqs. (68)
are thus given by

ψ
(q)
1i (r, σ ) = U (q)

i ϕ
(q)
i (r, σ ) , ψ

(q)
2i (r, σ ) = V (q)

i ϕ
(q)
i (r, σ ) , (74)

U (q)
i = 1√

2

[
1 + ε

(q)
i − μq

E (q)
i

]1/2
, V (q)

i = − 1√
2

[
1 − ε

(q)
i − μq

E (q)
i

]1/2
, (75)

E (q)
i =

√
(ε

(q)
i − μq)2 + �

(q)2
i . (76)

The condition (69) reduces to
Nq =

∑
i

V (q)2
i . (77)

The pairing gaps �
(q)
i are determined by the BCS equations

�
(q)
i = −1

2

∑
j

V (q)
i j

�
(q)
j

E (q)
j

, (78)

V (q)
i j = 1

2

∑
σ,σ ′

∫
d3r |ϕ(q)

i (r, σ )|2vπq [nn(r), n p(r)]|ϕ(q)
j (r, σ ′)|2. (79)

5 The pairing contributions to hq are typically very small, and therefore often neglected.
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The BCS ansatz actually provides an exact solution of the HFB equations for homo-
geneous systems, as shown in Sect. 3.2.

Depending on the choice of boundary conditions, the HFB or HF(+BCS) equations
can describe atomic nuclei, neutron-star crusts, or homogeneous nuclear matter as in
the core of neutron stars.

3.2 Application to Pure Neutron Matter

In homogeneous neutronmatter with neutron number density nn , all fields are uniform
so that the HFB equations (68) reduce exactly to theHF+BCS equations (73) and (78).
The s.p. wavefunctions are plane waves

ϕ
(n)
k (r, σ ) = 1√

V
exp (ik · r) χ(σ ) , (80)

where k is the wave vector, χ(σ) is the Pauli spinor, and V is the normalization
volume. The s.p. energies can be readily obtained from Eq. (73) using Eqs. (70) and
(80) and are given by

ε
(n)
k = Bnk2 + Un . (81)

The coefficients Bn and Un generally depend on the neutron number density nn . The
former coefficient is usually expressed in terms of a “microscopic” effective mass m∗

n
of the kind introduced in Landau’s Fermi liquid theory, as Bn = h̄2/(2m∗

n).
It can be seen from Eqs. (79) and (80) that the pairing matrix elements reduce to

V (q)
i j = vπn[nn, 0]/(2V ) < 0 so that the pairing gaps are independent of k. It is

convenient to introduce the reduced chemical potential μ̃n ≡ μn − Un . Introducing
an energy cutoff εC above the Fermi level, the BCS gap equations (78) become

1 = −1

4
vπn

∫ μ̃n+εC

0
dε

g(ε)

E(ε)
, (82)

where E(ε) = √
(ε − μ̃n)2 + �(n)2 is the q.p. energy, and g(ε) is the density of s.p.

states

g(ε) =
∫

d3k

(2π)3
δ(ε

(n)
k − Un − ε) =

√
ε

4π2B3/2
n

. (83)

The reduced chemical potential can be obtained from Eq. (77)

nn = 1

2

∫ +∞

0
dε g(ε)

[
1 − ε − μ̃n

E(ε)

]
. (84)

In the weak-coupling regime �(n) � ε
(n)
F and �(n) � εC , where ε

(n)
F = Bnk(n)2

F is

the reduced Fermi energy with the Fermi wave number k(n)
F = (3π2nn)1/3, the pairing

gaps are approximately given by [46]
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�(n) ≈ ε
(n)
F exp

[
2

vπng(ε
(n)
F )

]
8
√

x

1 + √
1 + x

exp
(√

1 + x − 2
)

, (85)

where x = εC/ε
(n)
F , and μ̃n ≈ ε

(n)
F . Finally, let us remark that Eq. (85) can be inverted

to infer the pairing strength function vπn[nn, 0] from many-body calculations of the
pairing gaps �(n)(nn), as proposed in Ref. [48].

3.3 Application to Neutron-Star Crusts

Assuming that the crust of a neutron star consists of a perfect crystal, the neutron and
proton q.p. states are characterized by a band index α and a Bloch wave vector k. The
corresponding q.p. wavefunctions must obey the following boundary conditions [49]

ψ
(q)

1αk(r + �, σ ) = exp(ik · �) ψ
(q)

1αk(r, σ )

ψ
(q)

2αk(r + �, σ ) = exp(ik · �) ψ
(q)

2αk(r, σ ) (86)

for any lattice translation vector �, as imposed by the Floquet–Bloch theorem (see,
e.g., Ref. [50]). Solving the HFB equations (68) fully self-consistently with Bloch
boundary conditions (86) represents a computationally extremely onerous task, even
in the case of semilocal EDFs. The main reason stems from the fact that the structure
and the composition of the crust of a neutron star are not a priori known, contrary
to the case of electrons in ordinary materials, or cold atoms in optical lattices. It is
generally assumed that during the formation of a neutron star in gravitational core-
collapse supernova explosions and the subsequent cooling, the dense stellar matter
undergoes all kinds of electroweak and nuclear reactions until it eventually becomes
cold and fully “catalyzed” [51,52]. Determining the ground state of any layer of the
crust of a neutron star at some given pressure thus requires to solve the coupled HFB
equations (68) for both neutrons and protons (together with Poisson’s equation for
the Coulomb electrostatic potential) considering all possible compositions and crystal
lattice structures6. Such calculations must be repeated for all pressures prevailing in
the crust, from P = 0 at the surface to ∼ 4 − 7 × 1032 dyn cm−2 at the crust–core
boundary.

In the outermost region of the crust at pressures P � 8 × 1029 dyn cm−2, the
determination of the equilibrium structure is considerably simplified since all nucleons
are bound inside nuclei that are very far apart from each other. In this case, the q.p.
states are essentially independent of k and the HFB equations can thus be solved
for a single isolated nucleus (whose mass is given by the HFB energy E divided by
the square of the speed of light, i.e., E/c2). Since any given layer of the outer crust
is usually made of only one type of nuclei due to gravitational settling, the crystal
structure is expected to be body-centered cubic (see, e.g., Ref. [53] and references

6 In principle, one should also solve the density functional theory equations for electrons. But in the extreme
environment of neutron stars it is usually a very good approximation to treat electrons as an ideal relativistic
Fermi gas.
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therein). The composition predicted by recent nuclear mass models can be found in
Refs. [54–59].

The determination of the equilibrium structure of the inner regions of neutron-star
crusts is much more challenging due to the presence of unbound neutrons. For this
reason, following the pioneer work of Negele and Vautherin [60], most HFB calcula-
tions (see, e.g., Ref. [61]) have been performed using an approximation introduced by
Wigner and Seitz [62] in the context of electrons in metals. Namely, the Wigner–Seitz
or Voronoi cell of the lattice (defined by the set of points that are closer to a given lattice
site than to any other) is approximated by a sphere of equal volume, and the Bloch
boundary conditions (86) are replaced by the requirement that the neutron and proton
distributions are approximately uniform near the cell edge. In particular, as discussed
by Bonche and Vautherin [63], two types of Dirichlet–Neumann boundary conditions
are physically admissible: either the wavefunction or its radial derivative vanishes at
the cell edge. A further simplification is to solve the HF+BCS equations (73) and (78)
instead of the full HFB equations (68). Systematic calculations have recently shown
that the error on the total energy amounts to a few keV per nucleon at most [64]. The
Wigner–Seitz approximation allows for relatively fast numerical computations, but is
unreliable in the densest region of the crust due to the appearance of spurious neutron
shell effects [65–67]. More importantly, entrainment between the neutron superfluid
and the crust cannot be studied within this approach since nucleons are localized in the
Wigner–Seitz cell. A few 3-dimensional HF(+BCS) calculations of the ground-state
of cold dense matter have been carried out [68,69], but are still prone to spurious shell
effects due to the use of a cubic box with strictly periodic boundary conditions (this
limitation has been recently analyzed in Ref. [70]).

For all these reasons, we have followed a different approach by solving the
HF(+BCS) equations perturbatively [71–74]. Themain contribution to the total energy
is determined by the 4th-order Extended Thomas–Fermi (ETF) method (see, e.g.,
Ref. [75,76]). Namely, the kinetic densities τq(r) and the spin-current densities Jq(r)
are expanded in terms of the nucleon densities and their gradients. The total energy
E of the system thus reduces to a functional of nq(r), ∇nq(r) and ∇2nq(r) only,
treated as the basic variables (instead of the q.p. wavefunctions). The minimization
of the energy is further simplified by adopting the Wigner–Seitz approximation for
the calculation of the Coulomb energy, and by using parametrized nucleon density
distributions. In particular, we have been employing the following ansatz [72]

nq(r) = nBq + n�q fq(r) , (87)

in which nBq is a constant background term, while

fq(r) = 1

1 + exp

{(
Cq−R
r−R

)2 − 1

}
exp

(
r−Cq

aq

) , (88)

and n�q , Cq , and aq are free parameters and R is theWigner–Seitz sphere radius. This
form was chosen so as to ensure the vanishing the density gradient at the cell edge.
The main correction δE to the ETF energy arises from proton shell effects. Because
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protons are all bound inside clusters, their Bloch states are essentially independent of k.
Neutron shell effects are expected to be much smaller than proton shell effects (except
possibly near the neutron drip point [77]), and are therefore neglected. The correction
δE is calculated via the Strutinsky integral (SI) theorem (see, e.g., Ref. [74])

δE =
∑
α

V (p)2
α ε(p)

α −
∫

d3r
[

Bp(r)τp(r) + n p(r)Up(r) + Jp(r) · Wp(r)
]

−
∑
α

�
(p)2
α

4E (p)
α

, (89)

in which overlined fields are the smooth fields emerging from the ETF calculation.
In this equation, the sums go over the s.p. states, with the s.p. energies ε

(p)
α being the

eigenvalues of the Schrödinger equation

∑
σ ′=±1

h p(r)σσ ′ϕ(p)
α (r, σ ′) = ε(p)

α ϕ(p)
α (r) , (90)

h p(r)σσ ′ ≡ −∇Bp(r) · ∇δσσ ′ + Up(r)δσσ ′ − iWp(r) · ∇ × σ σσ ′ , (91)

while E (p)
α and V (p)

α are the BCS q.p. energies and occupation factors given by
Eqs. (75) and (76), respectively. The proton chemical potential μp and the pairing
gaps�

(p)
α are determined self-consistently by solving the BCSEqs. (77) and (78). This

so-called ETFSI method (extended Thomas–Fermi+Strutinsky integral) is a compu-
tationally high-speed approximation to the self-consistent HF+BCS equations (73)
and (78), thus allowing for systematic calculations of the ground-state structure of
the neutron-star crust. Results of such calculations presented in Ref. [72] using the
Brussels–Montreal EDF BSk14 [78] are summarized in Table 1. The neutron and
proton density distributions are shown in Fig. 1 for a few crustal layers. As can be
seen in Table 1, the composition of the nuclear clusters constituting the inner crust of
a neutron star crucially depends on the underlying proton shell structure. The EDFs
employed in calculations of neutron-star crusts should thus be carefully chosen. The
series of Brussels–Montreal EDFs have been specifically developed for astrophysical
applications (see, e.g., Ref. [79] for a short review). In particular, the BSk14 EDF was
fitted to the measured masses of 2149 nuclei with N , Z ≥ 8 from the 2003 Atomic
Mass Evaluation [80] with a root-mean-square deviation of 0.73 MeV (the deviation
falling to 0.64 MeV for the subset of 185 neutron-rich nuclei with neutron separation
energy Sn ≤ 5 MeV). At the same time, an optimal fit to 782 measured values of
charge radii was ensured with a root-mean-square deviation of 0.03 fm. Moreover,
the incompressibility Kv of symmetric nuclear matter at saturation was required to
fall in the empirical range 240 ± 10 MeV [81]. The values for the symmetry energy
coefficient at saturation and its slope, which play an important role for determining the
structure of neutron-star crusts [82], are consistent with various constraints inferred
from both experiments and astrophysical observations [83]. In addition, this EDF was
constrained to reproduce the equation of state of neutronmatter, as calculated by Fried-
man and Pandharipande [84] using realistic two- and three-body forces. Incidentally,
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Table 1 Composition of the
inner crust of a neutron star as
obtained in Ref. [72]: average
baryon number density n̄,
average mass density ρ, proton
number Z and nucleon number
A in each cluster, total number
of nucleons Acell in the
Wigner–Seitz cell

n̄ (fm−3) ρ (g cm−3) Z A Acell

0.0003 4.98 × 1011 50 170 200

0.001 1.66 × 1012 50 179 460

0.005 8.33 × 1012 50 198 1140

0.01 1.66 × 1013 40 170 1215

0.02 3.32 × 1013 40 180 1485

0.03 4.98 × 1013 40 173 1590

0.04 6.66 × 1013 40 216 1610

0.05 8.33 × 1013 20 87 800

0.06 1.00 × 1014 20 85 780

0.07 1.17 × 1014 20 76 714

0.08 1.33 × 1014 20 65 665
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Fig. 1 Neutron (solid line) and proton (dashed line) density profiles inside the Wigner–Seitz cell for
different average baryon number densities n̄ (in fm−3), as obtained in Ref. [72]. Note the formation of
“bubbles” at n̄ = 0.08 fm−3: the nucleon densities are slightly larger at the cell edge than at the cell center.
Pictures taken from Ref. [9]

this equation of state is in good agreement with more recent calculations [85–88] at
densities relevant to the neutron-star crusts.

The superfluid phase transition in uniform neutron matter has been studied using
various many-body methods thus providing a benchmark for nuclear EDFs (see, e.g.,
Ref. [90] for a review). The results of such microscopic calculations have been also
widely used to estimate the properties of the neutron superfluid permeating the inner
crust of a neutron star by neglecting the influence of nuclear clusters and treating
unbound neutrons as pure neutron matter. Using the crustal composition of Ref. [72],
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Fig. 2 1S0 pairing gaps in neutron matter, as obtained by Cao et al. [89] including self-energy and medium
polarization effects (symbols). The curve represents a fit to their calculations

and the 1S0 neutron pairing gaps �
(n)
F from Ref. [89] based on the Brueckner theory

and shown in Fig. 2, we have thus calculated at each baryon number density n̄, the
critical temperature of the neutron superfluid as

Tc(n̄) = exp(ζ )

π
�

(n)
F (nf

n) , (92)

with ζ � 0.577 the Euler–Mascheroni constant, and nf
n = nBn is the density of free

neutrons. Similarly, we have calculated the coherence length [91]

ξ = h̄2k(n)
F

πm∗
n�

(n)
F

, (93)

where k(n)
F = (3π2nf

n)1/3 the neutron Fermi wave number, and m∗
n is the microscopic

neutron effective mass (not to be confused with the dynamical effective masses intro-
duced in Sect. 2.3). The latter was obtained from extended Brueckner–Hartree–Fock
calculations using the interpolation of Ref. [92]. Results are summarized in Table 2.
As can be seen in Fig. 1, the coherence length ξ is of the same order as the size of
spatial inhomogeneities, or even larger, especially in the deep regions of the crust.
For this reason, the presence of nuclear clusters may change substantially the neutron
superfluid properties. The neutron superfluid transition was first studied within the
band theory of solids in Refs. [93,94] by solving the BCS gap Eqs. (77) and (78) for
the neutrons. The s.p. states were calculated by solving the Schrödinger equation

{
− ∇Bn(r) · ∇ + Un(r)

}
ϕ

(n)
αk (r, σ ) = ε

(n)
αk ϕ

(n)
αk (r, σ ) , (94)

with Bloch boundary conditions
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Table 2 Properties of the
neutron superfluid in the inner
crust of a neutron star ignoring
the influence of nuclear clusters.
For each average baryon number
density n̄, are shown the critical
temperature Tc , the coherence
length ξ and the ratio of the

pairing gap �
(n)
F to the reduced

Fermi energy ε
(n)
F = h̄2k(n)2

F /

(2m∗
n) using the crustal

composition of Ref. [72]. See
text for detail

n̄ (fm−3) Tc (K) ξ (fm) �
(n)
F /ε

(n)
F

0.0003 7.9 × 108 12.1 0.48

0.001 3.7 × 109 6.1 0.40

0.005 8.7 × 109 5.0 0.26

0.01 1.0 × 1010 5.2 0.19

0.02 1.1 × 1010 6.2 0.13

0.03 1.1 × 1010 7.5 0.09

0.04 9.5 × 109 9.4 0.07

0.05 7.7 × 109 12.6 0.05

0.06 5.5 × 109 18.6 0.03

0.07 3.3 × 109 32.5 0.02

0.08 3.9 × 108 304 0.002

ϕ
(n)
αk (r + �, σ ) = exp(ik · �) ϕ

(n)
αk (r, σ ) , (95)

using the s.p. fields Bn(r) and Un(r) obtained from the ETFSI calculations. The
spin-orbit potential Wn(r), which is proportional to ∇nq(r), is small in most region
of the inner crust (nuclear clusters in the neutron-star crust have a very diffuse sur-
face so that the spin-orbit potential is much smaller than that in isolated nuclei [65])
and was therefore neglected for simplicity. The crust was assumed to be a per-
fect body-centered cubic lattice, as in the outer crust. Calculations were performed
in the dense regions of the crust where the Wigner–Seitz approximation breaks
down. The neutron superfluid in neutron-star crusts bears similarities with terres-
trial multiband superconductors such as magnesium diboride. The main difference
lies in the fact that the number of bands involved in the pairing phenomenon can
be huge (up to ∼ 1000) due to the strong nuclear attraction. In particular, both
bound and unbound neutrons are paired and should thus be treated consistently.
Because of the large coherence length as compared to the size of clusters, prox-
imity effects are very important. As a result, pairing correlations are substantially
enhanced inside clusters, while they are reduced in the intersticial region, leading to a
smooth spatial variation of the pairing potential. The presence of clusters was found
to reduce the average neutron pairing gap at the Fermi level and the critical temper-
ature by ∼ 20%. The impact of clusters on the superfluid dynamics is much more
dramatic.

Despite the absence of viscous drag, the neutron superfluid flow can still be affected
by the crust. These effects were studied in Refs. [95–97] by calculating the classical
potential flow of a neutron liquid induced by the motion of a single cluster. For sim-
plicity, the neutron liquid was assumed to be incompressible with density nf

n and the
cluster was treated as a uniform density sphere of radius RI. Except in Ref. [96], the
cluster was supposed to be permeable to the neutron liquid, an hypothesis consis-
tent with microscopic calculations. With these approximations, the hydrodynamical
equations can be analytically solved. The neutron superfluid density is expressible
as
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nS
n = nn − N∗nI , (96)

where nI is the cluster number density, and the effective number of neutrons N∗ in a
cluster is given by

N∗ = N
(1 − γ )2

1 + 2γ
, (97)

with N = (4/3)π R3
I nI

n the number of neutrons in a cluster whose neutron density is
nI

n , and γ = nf
n/nI

n . In this model, the average neutron number density is given by

nn = VI

Vcell
nI

n +
(
1 − VI

Vcell

)
nf

n , (98)

where VI = (4/3)π R3
I , and Vcell = 1/nI is the volume of the Wigner–Seitz cell. The

neutron superfluid density can be equivalently expressed as

nS
n

nf
n

= 1 + 3
VI

Vcell

1 − γ

1 + 2γ
. (99)

Leaving aside the possibility of nuclear bubble, we have γ ≤ 1 so that N∗ ≤ N : the
neutrons in the clustermovewith an effectively reduced speed due to the counterflowof
liquid through the cluster. In this simple model, the neutron superfluid is not entrained
by the crust, but counter moves. The neutron superfluid density is thus found to be
larger than the density of free neutrons

1 ≤ nS
n

nf
n

≤ 1 + 3
VI

Vcell
. (100)

However, these results should be interpreted with some care. Indeed, as shown in
Ref. [98], the neutron number N does not generally coincide with the number of
neutrons that are actually bound in the cluster in the quantum mechanical sense (i.e., a
state is quantum mechanically bound if its s.p. energy ε

(n)
αk lies below the maximum of

the potentialUn(r)). The number N was actually found to systematically overestimate
the number of quantummechanically boundneutrons, by up to a factor∼ 3.5 at average
baryon number density n̄ = 0.06 fm−3. The neutron flow induced by a periodic lattice
of clusters has been recently studied in Ref. [98] under the same assumptions as in
Refs. [95–97]. The resulting neutron superfluid density is essentially the same as that
given by Eq. (99). This conclusion was actually anticipated in Ref. [95] given that
the lattice spacing is typically much larger than RI. In this analysis, the density nI

n
was defined as the physical density of neutrons located in the cluster. However, as
first pointed out in Ref. [95], this density should rather be interpreted as a neutron
superfluid density in the cluster, which may be different from nI

n . Introducing the
fraction δ of superfluid neutrons in the cluster, the effective number of neutrons in the
cluster becomes [98]

N∗ = N

(
1 − δ + (δ − γ )2

δ + 2γ

)
. (101)
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Inserting this expression in Eq. (96) yields

nS
n

nf
n

= 1 + 3
VI

Vcell

δ − γ

δ + 2γ
. (102)

The superfluid density is smaller than the density of free neutrons if δ < γ , in which
case the neutron superfluid is entrained by the crust. Allowing the neutrons in the
cluster to bo partially superfluid extends the range of nS

n/nf
n :

1 − 3

2

VI

Vcell
≤ nS

n

nf
n

≤ 1 + 3
VI

Vcell
. (103)

The lower bound coincides with the case δ = 0 originally considered in Ref. [96]
whereby the cluster is treated as a solid obstacle. In this limit, the ratio nS

n/nf
n is

independent of γ . In all regions of the crust but the deepest, VI � Vcell (see, e.g.,
Fig. 1), so that the hydrodynamical models predict nS

n ∼ nf
n .

The local hydrodynamical approximation assumes that the neutron superfluid
coherence length ξ is much smaller than RI, a condition that is however usually not
fulfilled in any region of the inner crust, as can be seen from Fig. 1 and Table 2 (see,
also Ref. [98]). The first quantummechanical calculations of entrainment effects were
presented in Refs. [7,8,99] using the band theory of solids. The neutron superfluid
density is given by [100]

nS
n = m

24π3h̄2

∑
α

∫
d3k |∇kε

(n)
αk |2 (�

(n)
αk )2

(E (n)
αk )3

, (104)

where the integral is taken over the first Brillouin zone, and ∇k denotes the gradient
in k-space. In the weak-coupling limit �

(n)
αk � ε

(n)
F , the neutron superfluid density

reduces to an integral over the neutron Fermi surface (defined by the set of k points
such that ε(n)

αk = μn) [99]

nS
n ≈ m

12π3h̄2

∑
α

∫
d3k |∇kε

(n)
αk |2δ(ε(n)

αk − μn)

= m

12π3h̄2

∑
α

∫
F
|∇k ε

(n)
αk |dS (α) . (105)

The neutron superfluid density can be equivalently expressed as the trace of an effective
mass tensor similar to that originally introduced in solid-state physics for electrons
(see, e.g., Ref. [50])

(
1

m∗
n(k)α

)
i j

= 1

h̄2

∂2ε
(n)
αk

∂ki∂k j
, (106)

nS
n = 1

12π3

∑
α

∫
F
d3k Tr

[
m

m∗
n(k)α

]
, (107)
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Table 3 Properties of the inner crust of a neutron star as determined by band-structure calculations [9]:
average baryon number density n̄, effective number A� of nucleons attached to clusters, ratio of the neutron
superfluid density nSn to the density nfn of unbound neutrons, ratio of the Fermi surface areaSF to the area
of the Fermi sphere of an ideal neutron Fermi gas with density nfn , ratio of the density of statesNF to that
of an ideal neutron Fermi gas

n̄ (fm−3) A� nSn/nfn (%) SF/S f
F (%) NF/N f

F (%)

0.0003 175 82.6 92.1 107

0.001 383 27.3 49.2 104

0.005 975 17.5 38.2 99.4

0.01 1053 15.5 36.2 100

0.02 1389 7.37 24.3 98.9

0.03 1486 7.33 24.6 98.1

0.04 1462 10.6 29.9 101

0.05 586 30.0 51.5 98.6

0.06 461 45.9 63.3 96.7

0.07 302 64.6 75.3 93.5

0.08 247 64.8 74.3 91.9

where the integral is taken over the Fermi volume (defined by the set of k points such
that ε

(n)
αk ≤ μn). The concept of effective mass tensor (106) has been also employed

in the context of neutron diffraction in ordinary crystals [101,102]. Equation (107)
generalizes the expression obtained in Ref. [10] in thin films of superfluid 4He, and
that derived in Ref. [11] in the case of a Bose–Einstein condensate in a 1-dimensional
periodic optical lattice. In both cases, a single energy band with a k-independent effec-
tive mass tensor was considered. The microscopic effective mass m∗

n(k)
α is related to

the dynamical effective mass introduced in Eq. (35) by the following equation

m

m�
n

= nS
n

nf
n

= 1

3

1

VF

∑
α

∫
F
d3k Tr

[
m

m∗
n(k)α

]
, (108)

where VF is the Fermi volume associated with unbound neutrons. Entrainment effects
can be alternatively formulated in terms of the effective number A� of nucleons
attached to clusters [93]

A� = Acell − nS
n

nI
. (109)

Systematic band-structure calculations in all regions of the inner crust of a neutron
star using the crustal composition previously obtained in Ref. [72] were carried out
(see Ref. [9] for numerical detail). Results are summarized in Table 3. In all regions
of the crust, the neutron superfluid density is found to be lower than the density of
unbound neutrons: the neutron superfluid is therefore entrained by the crust. Similarly
to the case of electrons in ordinary solids, the transport properties of free neutrons are
governed by the shape of the neutronFermi surface,which in turn depends on the lattice
interactions (unlike the Fermi volume given by VF = (2π)3nf

n). In the shallowest
layer in the vicinity of the neutron drip transition, the neutron Fermi wavelength
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λF = 2π/kF is much larger that the lattice spacing so that the Fermi volume is entirely
contained inside the first Brillouin zone, and the Fermi surface is nearly spherical. The
neutron superfluid can thus flow freely through the crust and nS

n ∼ nf
n . With further

compression, the neutron Fermi volume increases until it touches the Brillouin zone
boundary. For a body-centered cubic lattice, this occurs as the density of unbound
neutrons reaches the threshold value nf

n = nI
√
2π/3 (about 1.5 unbound neutrons per

lattice site). At this point, the Fermi surface is expected to be substantially distorted
by the periodic potential recalling that a wave vector k lying on a zone boundary
satisfies the diffraction condition 2k · G = G2 where G denotes a reciprocal lattice
vector: a neutron with wave vector k will thus be Bragg-reflected by the lattice. As a
consequence, the Fermi surface area is reduced, as shown in Table 3 (a more detailed
analysis can be found in Refs. [8,65]). On the contrary, the density of s.p. states at the
Fermi level given by

NF = 2
∑
α

∫
d3k

(2π)3
δ(εαk − μn) = 2

∑
α

∫
F

dS (α)

|∇k ε
(n)
αk |

, (110)

remains essentially unaffected by the lattice [8,65], as can be seen in Table 3. This
quantity is of particular interest for determining thermal properties such as the neutron
specific heat [103]. Since the Fermi surface area SF is reduced compared to the
corresponding Fermi sphere areaS f

F , the average Fermi velocity (1/h̄)|∇k ε
(n)
αk | must

be reduced by the same amount. FromEq. (105), we can infer that nS
n ∼ (SF/S

f
F )2nf

n ,
as first pointed out in Ref. [7] (see also Ref. [103]). This scaling is approximately
satisfied, as can be seen in Table 3. From these general considerations, we therefore
expect nS

n ≤ nf
n at variance with results obtained within the local hydrodynamical

approximation discussed previously. Examples of neutron Fermi surfaces are plotted
in Figs. 3 and 4 for two different average baryon number densities. Note that the
Fermi surface has as many different branches as bands satisfying the defining equation
ε
(n)
αk = μn . The distortions of the neutron Fermi surface, and in particular the formation
of necks, can be clearly seen. The more the Fermi surface intersects Brillouin zone
boundaries, the largerwill generally be the effect of the lattice on the neutron superfluid
density. The number of intersections depends on the ratio between the Fermi volume
and the volume VBZ = (2π)3/Vcell of the first Brillouin zone. Their ratio VF/VBZ =
nf

n/nI is simply equal to the average number of unbound neutrons per lattice site.
Basically, this number is the lowest at the neutron drip point, peaks at about Acell− A =
1417 at density n̄ = 0.03 fm−3 and decreases at higher densities. As expected, the
neutron superfluid density follows a similar behavior (see Table 3). The same trend
has been independently predicted in the context of atomic gases in optical lattices [12].
With increasing density, the lattice interactions become progressively weaker, as can
be inferred from Fig. 1, thus further reducing entrainment effects.

The strong reduction in the neutron superfluid density in the intermediate crustal
regions at densities n̄ ∼ 0.03 fm−3 has been recently questioned in Refs. [98,104]
in view of the neglect of neutron pairing in Eq. (105). In particular, the authors of
Ref. [104] have solved the HFB Eqs. (68) for neutrons in a fixed external periodic
potential and found that to a large extent band-structure effects are suppressed by
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Fig. 3 Neutron Fermi surface in the crust of a neutron star at average baryon number density n̄ =
0.0003 fm−3 in the reduced zone scheme: each panel shows a different branch of the Fermi surface in
the first Brillouin zone. Figure made with XCrySDen [107] using the neutron band structure calculated in
Ref. [9] (Color figure online)

pairing. As a result, the superfluid density is much less reduced than predicted in
Ref. [9]. This conclusion, however, is puzzling. Indeed, at the densities n̄ ∼ 0.03 fm−3

where entrainment effects are the strongest, the neutron pairing gaps are expected to be
relatively small�(n)

F /ε
(n)
F ∼ 10%, as can be seen in Table 2. It therefore seems unlikely

that calculating the superfluid density using Eq. (104) instead of (105) would lead to
dramatically different results since the factor (�(n)

αk )2/(E (n)
αk )3 is expected to be strongly

peaked at the Fermi surface. On the other hand, the calculations of Ref. [104] were
performed using a simplified model of the neutron-star crust. In particular, the solid
crust was approximated by a 1-dimensional periodic lattice, and the potential Un(r),
which resembles a smooth square well around clusters (see Fig. 1), was replaced by a
pure sinusoidal potential of the form Un(z) ≈ 2Ŭn(G) cos(Gz), where Ŭn(G) is the
Fourier coefficient of the original potential associated with the reciprocal lattice vector
G. Although many Fourier components of the original potential are small, keeping
only one and ignoring all the others may introduce considerable errors. For instance,
at the density n̄ = 0.03 fm−3 considered in Ref. [104], the depth of the original
potentialUn is about∼ 30MeV,whereas its individual Fourier components |Ŭn(G)| �
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Fig. 4 Same as Fig. 3 at average baryon number density n̄ = 0.03 fm−3. FiguremadewithXCrySDen [107]
using the neutron band structure calculated in Ref. [9] (Color figure online)
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2 MeV. In other words, the periodic potential adopted in Ref. [104] is an order of
magnitude weaker than that originally used in Ref. [9]. Moreover, the field Bn(r)
appearing in the s.p. Hamiltonian (94) was replaced by h̄2/(2mn). Finally, the neutron
superfluiddensitywas estimated assuming that eachFourier component of the potential
contributes independently, and by integrating over G treated as a continuous variable.
In view of the many approximations, it seems premature to draw general conclusions
on the role of pairing. The suppression of band-structure effects found inRef. [104] still
needs to be confirmed by solving the fully 3-dimensional HFB Eqs. (68) with Bloch
boundary conditions using the same Hamiltonian (94) as that employed in Ref. [9].
Quantumand thermalfluctuations of clustersmayalso influenceband-structure effects,
as suggested inRef. [23]. On the other hand, nuclear clusters are effectively heavier due
to entrainment (A� > A) thus reducing the frequency of lattice vibrations, as shown in
Sect. 2.4. The role of low-energy excitations on entrainment needs to be investigated
self-consistently. Finally, the occurrence of nuclear pasta phases consisting of nuclear
configurations with unusual shapes (see, e.g., Refs. [105,106]) leads to weaker (but
nonvanishing) entrainment effects, as shown in Refs. [7,99]. However, the existence
of such phases remains uncertain.

4 Conclusion

Despite the absence of viscous drag, the neutron superfluid present in the inner crust of
a neutron star cannot flow freely. The neutron superfluid is coupled to the solid crust by
nondissipative entrainment effects, whereby the momentum of the neutron superfluid
is generally not aligned with the neutron velocity similarly to laboratory superfluid
helium in thin films [10] or superfluid atomic gases in optical lattices [11,12].Applying
the fully 4-dimensionally covariant variational formalism developed in Refs. [28,29],
we have shown how to construct a minimal smooth-averaged hydrodynamical model
of superfluid neutron-star crusts, taking into account the effects of entrainment. The
equivalence of this formulation with the more heuristic approach of Refs. [22,23] has
been demonstrated. The different treatments of entrainment in terms of an entrain-
ment matrix, dynamical effective masses, or superfluid density have been clarified.
Entrainment may have a profound influence on the superfluid dynamics. For example,
we have shown that the Bogoliubov–Anderson excitations of the neutron superfluid
are strongly mixed with longitudinal lattice vibrations thus illustrating the need for a
consistent treatment of neutron-star crusts. Entrainment effects have implications for
observed astrophysical phenomena, such as pulsar frequency glitches.

A smooth-averaged hydrodynamical description of neutron-star crusts requires the
specification of some microscopic inputs, such as the static internal energy density
Uins(nn, n p) and the neutron superfluid density nS

n in the simple model presented
in this paper. We have shown how to determine these ingredients using the nuclear
EDF theory. This theory provides a self-consistent quantum description of super-
fluid neutrons and nuclear clusters, but its full implementation in neutron-star crusts
remains challenging. For this reason, we have developed a computationally very fast
approach [74], in which the quantum shell effects are treated as a small correction
to the total energy. This method allows for systematic calculations of the internal
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structure of neutron-star crusts. For this purpose, we have employed the accurately
calibrated Brussels–Montreal EDFs.We have studied the neutron superfluid transition
in the framework of the BCS theory of multiband superconductors. Because of the
strong long-range attractive nuclear interaction, both bound and unbound neutrons
form Cooper pairs involving up to ∼ 1000 bands. As a consequence, the pairing
mechanism is highly nonlocal. The presence of the nuclear inhomogeneities reduces
the average neutron pairing gap on the Fermi surface �

(n)
F and the critical temperature

Tc by ∼ 20% [94]. On the other hand, the neutron superfluid dynamics is found to be
strongly influenced by the nuclear lattice [9]. Systematic band-structure calculations
have shown that the neutron superfluid density nS

n is reduced by about an order of
magnitude as compared to the density nf

n of unbound neutrons in the intermediate
region of the inner crust at densities∼ 0.02−0.03 fm−3 so that the neutron superfluid
is strongly entrained by the crust. These calculations were carried out in the limit
�

(n)
F /ε

(n)
F → 0. Although this approximation appears reasonable in view of the BCS

expression of nS
n , Eq. (104), and the fact that �

(n)
F /ε

(n)
F ∼ 0.1, the neglect of pairing

has been recently questioned [98,104]. In particular, band-structure effects were found
to be suppressed by pairing in Ref. [104] considering, however, a simplified model of
the crust, whereby neutrons were assumed to interact with a very weak 1-dimensional
sinusoidal potential. These results need to be confirmed with fully 3-dimensional cal-
culations using the same realistic periodic potentials as in Ref. [9]. More importantly,
the role of lattice vibrations, impurities, defects, and nuclear pastas deserve further
studies.

The advantage of the fully covariant formulation developed in Refs. [28,29] is
that it facilitates the comparison with the relativistic theory, which will be ultimately
required for a realistic global description of neutron stars. Besides, this variational
formalism considerably simplifies the derivation of conservation laws (e.g., conser-
vation of helicity currents) and identities (e.g., generalized Bernouilli constants and
virial theorems) making use of differential geometric concepts such as Killing vectors.
Dissipative processes can be naturally incorporated along the lines of Ref. [32]. More
importantly, this formalism can be easily extended so as to account for the rigidity of
the solid crust, and the presence of a high magnetic field, both within the Newtonian
theory [33,34] and in the fully relativistic context [35]. It should be stressed that this
formalism is very general and thus could also be applied to study the dynamics of
various laboratory (super)fluid systems.
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