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Abstract We report calculations of the superfluid pairing gap in neutronmatter for the
1S0 components of the Reid soft-core V6 and theArgonne V ′

4 two-nucleon interactions.
Ground-state calculations have been carried out using the central part of the operator-
basis representation of these interactions to determine optimal Jastrow–Feenberg
correlations and corresponding effective pairing interactions within the correlated
basis formalism, the required matrix elements in the correlated basis being evaluated
by Fermi hypernetted-chain (FHNC) techniques. Different implementations of the
Fermi hypernetted-chain Euler–Lagrange (FHNC-EL) method agree at the percent
level up to nuclear matter saturation density. For the assumed interactions, which are
realistic within the low density range involved in 1S0 neutron pairing, we did not find
a dimerization instability arising from divergence of the in-medium scattering length,
as was reported recently for simple square-well and Lennard–Jones potential models
(Fan et al. in Phys Rev A 92:023640, 2015).
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1 Introduction

1.1 Adaptation of BCS Theory to Nuclear Systems

The nature and role of fermionic pairing and superfluidity in nuclei and nuclear matter
became a subject of great interest shortly after publication of the landmark paper by
Bardeen, Cooper, and Schrieffer (BCS) establishing the physical basis of supercon-
ductivity in metals [1,2]. Bohr et al. [3] were quick to recognize implications of this
development for a deeper understanding of nuclear phenomena, relating it to evidence
for a characteristic energy gap between the ground state and the first intrinsic excitation
in a certain class of nuclei.

Concurrently, there was growing interest among nuclear theorists in what could be
learned from the quantum many-body problem of infinite nuclear matter composed
of nucleons interacting through the best nucleon–nucleon (NN) potentials available at
the time. Cooper et al. [4] (CMS) were the first to apply BCS theory to such a system.
They encountered two obstacles when attempting to solve the BCS equation for the
superfluid energy gap Δk as a function of momentum k.

To understand what they faced, it is necessary to consider the BCS gap equation,
written in the generic form

Δk = −
∑

k′
Pk,k′

Δk′

2Ek′
, (1)

where Pk,k′ = 〈k ↑,−k ↓ |V (12)|k′ ↑,−k′ ↓〉 defines the pairing matrix elements
of the bare two-body potential v(12), while

Ek = [(ek − μ)2 + Δ2
k]1/2 (2)

represents the (gapped) quasiparticle energy in the superfluid state, with ek an “appro-
priate” single-particle energy related to the normal state. Given the original BCS trial
ground state

|BCS〉 =
∏

k

[
uk + vka†

k↑a†
−k↓

]
|0〉 (3)

(but written slightly differently in terms of Bogoliubov amplitudes uk, vk satisfying
the normalizing condition u2

k + v2k = 1), the expression (1) of the gap equation can be
derived from the Euler–Lagrange variational principle following exactly the same path
as in the 1957 BCS paper [1] and in Schrieffer’s book [5]. As the BCS state does not
have a definite particle number, the chemical potentialμ (determined from the number
density) is introduced as a Lagrange parameter to accommodate the constraint that the
particle number is conserved on average.

Of the two problems CMS faced in implementing BCS theory for nuclear matter,
they managed to solve what appeared to be the more difficult one, and finessed the
other. During this same period in the mid-to-late 1950s, it had become apparent that an
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acceptable model of the NN interaction, fitted to the available NN scattering data and
the deuteron, must possess a strong inner repulsion, most commonly taken to be a hard
core. This precluded solving the BCS gap equation as formulated in momentum space,
because the necessary pairing matrix elements Pk,k′ of the NN potential would be
undefined. However, CMS recognized that the BCS gap equation could be transformed
to coordinate space to yield a nonlinear but Schrödinger-like equation for an underlying
two-body problem. The analog of the wave function for the separation vector r is the
pairing function χ(r), which may also be regarded as the superfluid order parameter.
Basically,χ(r) is the Fourier transform of the product ukvk of Bogoliubov amplitudes,
or equivalently of Δ(k)/2Ek. Therefore, the problem created by the hard core of the
NN potential could be solved, for the same reason that the Schrödinger equation for a
hard-sphere scattering potential has a solution.

The second problem confronting CMS was what to take for the single-particle
energy ek in the expression for Ek. There is first a subtlety relating to ek that should
be exposed, for the record. The above derivation leads to the actual expression

ek = h̄2k2

2m
+ 1

2

∑

lσσ ′
v2l 〈kσ, lσ ′|V (12)|kσ, lσ ′ − lσ ′,kσ 〉, (4)

where σ and σ ′ are the spin projections. This contains the Fermi-surface smearing
factor represented by v2l , and hence requires a solution of the pairing problem before
ek can be evaluated. In practice, this factor is almost always replaced by the Fermi
step, converting ek to a standard Hartree–Fock single-particle energy. It is argued, in
most cases safely, that this can be done because the gap Δk is much smaller than the
Fermi energy, thus decoupling ek from the rest of the gap problem.

The primary issue raised by the expression (4) is not at all subtle. If the bare NN
interaction contains a hard core, the Hartree–Fock matrix elements it contains are
infinite; nor would the results for ek be sensible if the interaction remains finite, but
features an internal repulsion strong enough to achieve empirical saturation of nuclear
matter. CMS were forced to finesse this second problem; they imposed an effective-
mass spectrum ek = h̄2k2/2m∗. With this step, the problem was well defined and
in principal soluble for Δk; however, for some time only the existence of a super-
fluid solution was established [6], due to the limited computational resources of that
period.

In summary, the nature of the BCS theory of superfluidity is such that its application
to nuclear systems is practical, in particular for the hypothetical system of infinite
nuclear matter and certain nucleonic subsystems existing in neutron stars. However,
due to the presence of a strong short-range repulsion in the bare NN interaction,
one must make a reasonable, but ad hoc, assumption for the normal-state single-
particle energy. The theory has the capacity to generate two-body correlations that
can accommodate even the effects of a hard core, although the problem must then
be solved in coordinate space. Solution of the problem in momentum space, i.e.,
the original gap equation (1), does in fact become possible if the NN interaction,
even though strongly repulsive at short distance, has a Fourier transform. (For some
interactions including theReid soft-core potential [7,8], numerical solution can present
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some technical difficulty; this can be avoided by applying the separation approach
developed in Ref. [9]).

Yet the status of nuclear BCS as described remains unsatisfactory for potentials with
repulsive cores. This issue was naturally addressed by the introduction of Jastrow–
Feenberg correlation factors [10–12]. Cluster-expansion techniques were applied to
evaluate the required expectation values [13]. The corresponding gap equations were
studied and procedures for their solution explored, with applications not only to
isospin-symmetric nuclear matter (equal numbers of neutrons and protons) [10], but
also pure neutronmatter andβ-stable nucleonicmatter relevant to neutron-star interiors
[11,14]. In themid-1970s, major advances inmicroscopic quantummany-body theory
involving correlated basis functions (CBF) were made with the replacement of clus-
ter expansions by Fermi hypernetted-chain (FHNC) diagram-resummation techniques
[13,15], facilitating accurate evaluation of expectation values and matrix elements of
observables in a correlated basis and culminating in a framework for Euler–Lagrange
optimization of Jastrow–Feenberg correlations. When implemented in a BCS exten-
sion, these advances havemade possible the development of a rigorous correlated BCS
(CBCS) theory [16] (see also Ref. [17]) that respects the U(1) symmetry-breaking
aspect of the superfluid state—i.e., non-conservation of particle number. Some earlier
applications of CBCS theory to nuclear systems, and especially neutron-star matter,
may be found in Refs. [8,16]. A recent in-depth study of correlations in the low-density
Fermi gas [18], with emphasis on the presence of Cooper pairing and dimerization,
documents the power of the Euler–Lagrange FHNC approach adopted in the present
work, especially when coupled with CBF perturbation theory.

1.2 Extension of BCS Asymptotics to Structured Interactions and In-Medium
Effects

Having derived the equivalent of the gap equation (1), BCS went on to simplify the
pairing interaction in a way suitable for electron liquids in solids, arriving at the iconic
asymptotic result

Δ � 2h̄ωce
−1/λ (5)

for the value of the energy gapΔ in terms of a cutoff h̄ωc and the coupling constant λ =
|N (0)V | of the attractive pairing interactionV , with N (0) denoting the density of states
around the Fermi surface. It is important to recognize that this result, being restricted
to the weak-coupling regime λ 	 1, is not at all appropriate for nuclear problems. In
nuclear systems, the bare two-body interaction is strong, and strongly non-monotonic
in coordinate space. Two parameters are not sufficient to characterize the asymptotic
behavior of the gap at relevant densities. See Refs. [9,19] for extensive analysis and
computational exploration of this important distinction. The latter reference includes
an asymptotic study in which the pairing interaction is characterized by an additional
parameter κ alongwith the traditional coupling constantλ and cutoff frequencyω. This
“stiffness” parameter is introduced to represent a non-trivial momentum dependence
of the pairing interaction Pkk′ . Asymptotic behavior in the four quadrants (λ±, κ±)

123



474 J Low Temp Phys (2017) 189:470–494

is explored in Ref. [19], pointing to the existence of solutions with behavior quite
distinct from the familiar relation (5), in addition to a BCS-analog.

Another asymptotic formula of special interest (and of long standing) is that of
Gorkov and Melik-Barkhudarov [20] (GM),

ΔF = (4e)−1/3 8

e2
eFe

−1/λ, (6)

written for the zero-temperature gap rather than the critical temperature. This resultwas
derived by field-theoretic methods in the limit of an infinitely dilute gas of interacting
spin-1/2 fermions, with λ = 2kF|a0|/π . Here, a0 is the vacuum scattering length,
assumed to be negative, eF = h̄2k2F/2m is the Fermi energy, m the fermion mass,
and kF the Fermi momentum. The prefactor (4e)−1/3 is an in-medium correction
for a polarization-induced interaction corresponding to exchange of virtual phonons.
The same result without the GM prefactor was re-derived several times in the 1990s,
basically by summing ladder diagrams for the bare interaction (see Ref. [21], where
the GM prefactor is generalized to (4e)ν/3−1 for an arbitrary number ν of fermion
species).

In the recent work previously cited [18], it has been argued [cf. Eqs. (3.25) and
(3.26)] that if one has corrections of the in-medium scattering length a to the vacuum
scattering length of the form

a = a0

[
1 + α

a0kF
π

+ · · ·
]

, (7)

it follows that

ΔF = 8

e2
eF exp

(
−α

2

)
exp

(
π

2a0kF

)
. (8)

The GM factor is just one of these corrections, which still assumes that the pairing
matrix element at kF is the same as that at k = 0. Removing this assumption produces
yet another correction of the same kind.

The above summary of BCS asymptotics is intended to provide deep background
for the present work on neutron matter at densities occurring in the inner-crust region
of neutron stars, but their direct relevance is open to question. The neutron densities
involved in this application are low compared to the saturation density ρ0 of isospin-
symmetric nuclear matter, which, in pure neutron matter, would correspond to a kF
value of about 1.7 fm−1. We will find that 1S0 pairing in neutron matter is strongest
at somewhat less than half that value, thus at a density an order of magnitude below
ρ0. On the other hand, given the unusually large magnitude of the neutron-neutron S-
wave scattering length, a0 ≈ −18.6 fm, the diluteness condition |a0|kF 	 1 implies
kF 	 0.05 fm−1, over three orders of magnitude lower in density than that of the
physically relevant neutron-star environment. Naturally, the dilute-limit asymptotics
do apply for the extreme low-density tail of the roughly Gaussian shape of ΔF versus
kF in the 1S0 neutron pairing problem considered here. The higher-density tail is more
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relevant; it has been demonstrated in Ref. [9] that ΔF dies exponentially to naught as
an upper critical density is approached.

1.3 Sensitivity Issues in Optimization

The foregoing subsections of this introduction provide a rather elaborate background
and motivation for the work to be presented. Another motivation is more immedi-
ate. Recently, using updated modern NN interactions, gap calculations [22] for pure
neutron matter have again been performed within the simpler version of correlated
BCS theory in which the ground-state energy for a Jastrow–Feenberg trial func-
tion, estimated by a truncated cluster expansion, is minimized with respect to the
parameters in an assumed analytic form for the Jastrow two-body correlation function
f (r). The correlation function so determined is used to generate a “tamed” effec-
tive pairing interaction for calculation of a corresponding superfluid gap in the 1S0
state.

Reference [22] presents results for the ground-state energy per particle E/N and the
corresponding 1S0 energy gap, based on the Argonne V18 (AV18) NN interaction [23]
and two trial correlation functions with analytic forms that have been employed in ear-
lier Jastrow–Feenberg studies of nuclear and neutron matter. The optimal ground-state
energies determined for these two choices show only minor quantitative differences
over the low range of densities where a significant 1S0 gap is to be expected (peak-
ing at about 1/8 nuclear saturation density). The two curves obtained for the gap
ΔF = Δ(k = kF) at the Fermi surface, plotted versus Fermi momentum kF, have
a Gaussian appearance. In contrast to the close agreement of the E/N results for the
two correlation choices, the corresponding peak values for ΔF are found to differ by
almost a factor two (with a value 1.8MeV for the correlation function featuring an
overshoot of unity versus 3.3MeV for one that does not).

This finding could be interpreted as a reflection of the variational property that a
small error of order δ in the wave function only entails an error of order δ2 in the
energy expectation value, but of order δ for other observables, with δ in this case
corresponding to the difference in the choices for f (r). But the situation may actually
be worse for two reasons: The most immediate one is that the gap itself shows an
exponential amplification of errors in the coupling strength and density of states, at
least for the standard BCS case. Some results of the present investigation indicate a
similar strong sensitivity of gap behavior. The second, more subtle reason, involves
the convergence of cluster expansions for correlated wave functions: Typically, the
contribution of an n-body diagram in the energy is amplified by a factor of n2 in
its contribution to the effective interactions needed to calculate the coupling matrix
elements.

Figure 6 of the paper of Pavlou et al. [22] shows plots ofΔF versus kF for the AV18
interaction as obtained in almost a dozen calculations by different theoretical methods,
including various versions of Monte Carlo. (Actually, this is a summary figure taken
from the review by Gezerlis et al. [24] of novel superfluidity in neutron stars, with a
curve calculated by Pavlou et al. superimposed.) There is a spread of a factor of six
in the peak values of ΔF, with a significant spread also in the peak densities. In view
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of what has been said above, this is hardly surprising, although the calculations may
differ in the inclusion of in-medium effects.

At any rate, the message from the considerations of this subsection is that it is
imperative within any variational approach to seek truly optimal correlations, without
resorting to simple parametrizations, and that is what Euler–Lagrange FHNC (FHNC-
EL) can deliver, with minimal error.

The rest of this paper is organized as follows. Section 2 exemplifieswhat qualifies as
a generic many-body theory, first with a brief review of the elements of the Jastrow–
Feenberg theory of the normal ground state of a many-fermion system (Sect. 2.1),
then with an introduction to the formalism associated with the method of correlated
basis functions (CBF) (Sect. 2.2), concludingwith the essentials of a coherent theory of
fermion superfluidity within the CBF framework (Sect. 2.3), based on Euler–Lagrange
Fermi Hypernetted-Chain optimization (FHNC-EL). In Sect. 3.1, we describe and
discuss our application of two types of FHNC-EL theory to the ground-state energetics
of pure neutron matter. Section 3.2 is concerned with solution of the resulting CBF
gap equation for 1S0 pairing, which incorporates the effects of the optimal Jastrow–
Feenberg correlations. Results for energetics (the equation of state) and BCS pairing
in CBF framework are presented and discussed for two versions of the bare NN
interaction, namely the Reid soft-core V6 potential [7] and the Argonne V ′

4 interaction
[25]. Well known from earlier microscopic studies of nuclear matter, these choices are
quantitatively viable in the low-density regimewhere the 1S0 pairing state is dominant.
Only the central components of these potentials and their 1S0 projections are needed
for determination of the CBF pairing matrix elements, in contrast to the case of the full
Argonne V18 interaction [23]. (Note that Argonne V ′

4 is central by construction and
we use only the V4 part of the Reid potential, i.e., its tensor as well as spin-orbit terms
being omitted.) Many-body aspects of our findings unique to optimal incorporation
of short- and long-range correlations within the CBF/FHNC formalism are analyzed.
Where meaningful, our predictions for the density dependence of the gap at the Fermi
wave number are compared with those from other microscopic calculations. Section 4
summarizesways inwhich the present numerical studymaybe improved and extended.

2 Generic Many-Body Theory

2.1 The Normal Ground State

In this section, we briefly describe the Jastrow–Feenberg variational method and its
implementation to superfluid systems. (For comprehensive background on this many-
body approach and its generalization to the method of correlated basis functions, see
Refs. [13,15]. Recent descriptions and analysis of its applications to superfluid systems
may be found in Refs. [18,26].) We call this method “generic many-body theory”
because the same equations can be derived by Green functions methods [27,28], from
coupled-cluster theory [29], and by a generalization of density functional theory to pair
distribution functions [30],withoutmentioning a Jastrow–Feenbergwave function.We
use the Jastrow–Feenberg point of view here because it is the simplest to implement
and to generalize.
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For a strongly interacting and translationally invariant normal system, the Jastrow–
Feenberg theory assumes a non-relativistic many-body Hamiltonian

H = −
∑

i

h̄2

2m
∇2

i +
∑

i< j

V (i, j) . (9)

The method starts with an ansatz for the wave function [31],

Ψ0(r1, . . . , rN ) = 1√
Io,o

F(r1, . . . , rN )Φ0(r1, . . . , rN ), (10)

F(r1, . . . , rN ) = exp
1

2

⎡

⎣
∑

i< j

u2(ri , r j ) + · · · +
∑

i1<...<in

un(ri1 , . . . , rin ) + · · ·
⎤

⎦ ,

(11)

where Io,o = 〈
Φ0|F†F |Φ0

〉
is a normalizing constant. Here Φ0(r1, . . . , rN ) denotes

a model state, which for normal Fermi systems is a Slater-determinant, and F is a
correlation operator written in general form, but to be truncated at the two-body u2
term in a standard Jastrow calculation. There are basically two ways to deal with
this type of wave function. In quantum Monte Carlo studies based on the fixed-node
or constrained-path approximation, the trial wave function (10) is projected down to
the true ground state by stochastic means, to the extent permitted by the Fermi sign
problem, and an optimal correlation function F(r1, . . . , rN ) is obtained by stochastic
means. Computationally far less demanding are diagrammatic methods, specifically
the optimized Euler–Lagrange Fermi-hypernetted chain (FHNC-EL) method, which
is well suited for calculation of physically interesting quantities. These diagrammatic
methods have been successfully applied to such highly correlated Fermi systems as
3He at T = 0 [32]. We have shown in recent work [33] that even the simplest version
of the FHNC-EL theory is accurate within better than 1% at densities less than 25%
of the saturation density of liquid 3He, and the same or better performance is expected
for nuclear systems.

The correlations un(r1, . . . , rn) are obtained by minimizing the energy, i.e., by
solving the Euler–Lagrange (EL) equations

E0 = 〈Ψ0| H |Ψ0〉 ≡ Ho,o, (12)
δE0

δun
(r1, . . . , rn) = 0 . (13)

Evaluation of the energy (12) for the variational wave function (10, 11) and anal-
ysis of the variational problem are carried out by cluster expansion and resummation
methods. The procedure has been described at length in review articles [13,32] and
pedagogical material [15]. Here, we spell out the simplest version of the equations
that is consistent with the variational problem (“FHNC//0-EL”). These equations do
not provide the quantitatively best implementation of this approach [32]. Instead, they
provide the minimal version of the FHNC-EL theory. In particular, they contain the
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indispensable physics, namely the correct description of both short- and long-ranged
correlations.

In the FHNC//0-EL approximation, which contains both the random phase approx-
imation (RPA) and the Bethe-Goldstone equation in a “collective” approximation, the
Euler equation (13) can be written in the form

S(k) = SF(k)
√
1 + 2

S2
F(k)
t (k)

Ṽp−h(k)

, (14)

where S(k) is the static structure factor of the interacting system, t (k) = h̄2k2/2m
is the kinetic energy of a free particle, SF(k) is the static structure factor of the non-
interacting Fermi system, and

Vp−h(r) = [1 + Γdd(r)] V (r) + h̄2

m

∣∣∣∇
√
1 + Γdd(r)

∣∣∣
2 + Γdd(r)wI(r) (15)

is the so-called particle–hole interaction. As usual, we define the Fourier transform
with a density factor, i.e.,

f̃ (k) ≡ ρ

∫
d3r eik·r f (r) . (16)

Auxiliary quantities are the “induced interaction”

w̃I(k) = −t (k)

[
1

SF(k)
− 1

S(k)

]2 [
S(k)

SF(k)
+ 1

2

]
(17)

and the “direct-direct correlation function,”

Γ̃dd(k) = (
S(k) − SF(k)

)
/S2

F(k), (18)

a “dressed” analog of the Fourier inverse of exp[u2(r)]−1. Equations (14)–(18) form
a closed set which can be solved by iteration. Note that the Jastrow correlation function
f (r) = exp(u2(r)/2) has been eliminated entirely.
More complicated versions of the FHNC-EL method add additional equations for

the so-called ee, de, and cc diagrams which have been expressed in detail in Refs. [32,
34]; they will not be repeated here.

2.2 Correlated Basis Functions

Correlated basis functions (CBF) theory uses the correlation operator F to generate a
complete set of basis states through

|Ψ (N )
m 〉 = FN |Φ(N )

m 〉
〈Φ(N )

m |F†
N FN |Φ(N )

m 〉1/2
, (19)
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where the {|Φ(N )
m 〉} are Slater determinants of single-particle orbitals. We review the

method only very briefly, the diagrammatic construction of the relevant ingredients
having been derived in Ref. [35] (see also Ref. [32] for further details).

To develop a BCS theorywith correlatedwave functions, it is expedient to introduce
a second-quantized formulation. The Jastrow–Feenberg correlation operator in (11)
depends on the particle number, i.e., F = FN (1, . . . , N ) (whenever unambiguous, we
omit the corresponding subscript). Starting from the conventional a†

k , ak operators
that create and annihilate single-particle states, new creation and annihilation oper-
ators α

†
k , αk of correlated states are defined by their action on the correlated basis

states:

α
†
k

∣∣Ψm
〉 ≡ FN+1a†

k

∣∣Φm
〉

〈
Φm

∣∣ak F†
N+1 FN+1a†

k

∣∣Φm
〉1/2 , (20)

αk

∣∣Ψm
〉 ≡ FN−1ak

∣∣Φm
〉

〈
Φm

∣∣a†
k F†

N−1 FN−1ak
∣∣Φm

〉1/2 . (21)

According to these definitions, α
†
k and αk obey the same commutation rules as the

creation and annihilation operators a†
k and ak of uncorrelated states, but they are not

Hermitian conjugates of one another.
For off-diagonal elements Om,n of an n-body operator O , we sort the quantum

numbers mi and ni such that |Ψm〉 is mapped onto |Ψn〉 by

|Ψm〉 = α†
m1

α†
m2

· · ·α†
md

αnd
· · · αn2αn1 |Ψn〉 . (22)

Then, the matrix elements Om,n depend only on the difference between the states |Ψm〉
and |Ψn〉, and not on the states as a whole. Consequently, Om,n can be written as the
matrix element of a d-body operator

Om,n = 〈
Ψm

∣∣O
∣∣Ψn

〉 ≡ 〈
m1 m2 . . . md

∣∣O(1, 2, . . . d)
∣∣n1 n2 . . . nd

〉
a, (23)

with the index a indicating antisymmetrization. In homogeneous systems, the contin-
uous parts of the quantum numbers mi , ni are wave numbers pi , p′

i ; we abbreviate
their difference as qi .

The key quantities for the execution of the theory are diagonal and off-diagonal
matrix elements of unity and H ′ ≡ H −Ho,o,

Mm,n = 〈
Ψm

∣∣Ψn
〉 ≡ δm,n + Nm,n , (24)

H ′
m,n ≡ Wm,n + 1

2

(
H ′
m,m + H ′

n,n
)

Nm,n . (25)

Eq. (25) defines a natural decomposition [15,35] of the matrix elements of H ′
m,n

into the off-diagonal quantities Wm,n and Nm,n and diagonal quantities H ′
m,m. These

diagonal matrix elements are additive to leading order in the particle number, allowing
us to define the CBF single-particle energies em that satisfy
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H ′
m,m = 〈

Ψm
∣∣H ′∣∣Ψm

〉 ≡
d∑

i=1

[
emi − eni

] + O(N−1) . (26)

According to Eq. (23), Wm,n and Nm,n define d-particle operatorsN andW , e.g.,

Nm,o ≡ Np1 p2...pd h1h2...hd ,0

≡ 〈p1 p2 . . . pd |N (1, 2, . . . , d) | h1h2 . . . hd〉a ,

Wm,o ≡ Wp1 p2...pd h1h2...hd ,0

≡ 〈p1 p2 . . . pd |W (1, 2, . . . , d) | h1h2 . . . hd〉a . (27)

Diagrammatic representations of N (1, 2, . . . , d) and W (1, 2, . . . , d) have the same
topology [35]. In the next section,wewill show that in dealingwith pairing phenomena,
only the two-body operators are needed.

In principle,N (1, 2) andW (1, 2) are non-local two-body operators. The leading,
local contributions to these operators are readily expressed in terms of the diagram-
matic quantities of FHNC-EL theory [32]:

N (1, 2) = N (r12) = Γdd(r12),

W (1, 2) = W (r12), W̃ (k) = − t (k)

SF(k)
Γ̃dd(k) . (28)

For further reference, we also display the coordinate space form of the interaction
W (r12):

W (r) = Vp−h(r) + wI(r),

= [1 + Γdd(r)] (v(r) + wI(r)) + h̄2

m

∣∣∣∇
√
1 + Γdd(r)

∣∣∣
2
, (29)

which exhibits somewhat more clearly the physical meaning of the individual
terms: The factor [1 + Γdd(r)] describes the short-ranged correlations, the term
(h̄2/m)|∇√

1 + Γdd(r)|2 describes the cost in kinetic energy for bending the wave
functions at short distances, and the induced potential wI(r) describes the corrections
due to phonon exchange. In the local approximations spelled out in Eqs. (28), the CBF
single-particle energies (26) assume the simple form

ek = t (k) + X̃ ′
cc(k)

1 − X̃cc(k)
+ const. (30)

with

X̃ ′
cc(k) = −ρ

ν

∫
d3r eik·rW (r)�(rkF), (31)
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X̃cc(k) = −ρ

ν

∫
d3r eik·rΓdd(r)�(rkF), (32)

where ν (= 2) is the degree of degeneracy of the single-particle states, �(x) =
(3/x) j1(x) is the Slater exchange function, and the constant is determined by the
condition ekF = μ. In the limit of a weakly interacting system, we haveW (r) = v(r),
and the ek reduce to the Hartree–Fock single-particle energies (4).

2.3 BCS Theory with Correlated Wave Functions

The BCS theory of fermion superfluidity generalizes the Hartree–Fock model by
introducing a superposition of independent-particle wave functions corresponding
to different particle numbers [36], represented economically by Eq. (3) in terms of
Bogoliubov amplitudes uk, vk.

The most natural way to deal with a strongly correlated system is to first project
the bare-BCS state on an arbitrary member of a complete set of independent-particle
states with fixed particle numbers. Then, apply the correlation operator to that state,
normalize the result, and finally, sum over all particle numbers N . Thus, the correlated
BCS (CBCS) state is taken as

∣∣CBCS
〉 =

∑

m,N

∣∣Ψ (N )
m

〉〈Φ(N )
m

∣∣BCS
〉
. (33)

The trial state (33) superposes the correlated basis states
∣∣Ψ (N )

m
〉
with the same ampli-

tudes the model states
∣∣Φ(N )

m
〉
have in the corresponding expansion of the original

BCS vector. It is important to note that this state differs from the state proposed,
analyzed, and applied computationally in Refs. [37–39], which fails to include the
normalizing denominators present in Eq. (19). As shown in Ref. [17], this option
leads to a meaningful gap equation only if specific diverging quantities are omit-
ted.

Consider now the expectation value of an arbitrary two-body operator Ô with
respect to the superfluid state (33):

〈
Ô

〉

s
=

〈
CBCS

∣∣Ô
∣∣CBCS

〉

〈CBCS∣∣CBCS
〉 . (34)

For superfluid gaps that are small compared to the Fermi energy, it suffices to consider
the interaction of only one Cooper pair at a time. In that case, one need retain only the
terms of first order in the deviation v2k−v20,k, where v0,k = θ(kF−k) is the normal-state
value, and those of second order in the productukvk.We refer to this as the “decoupling
approximation”. The error introduced thereby is of order ε = (ΔF/eF)2, where ΔF is
the superfluid gap energy at the Fermi energy eF. Within this approximation, neither
the pairing matrix elements nor the single-particle energies entering the gap equation
depend on the Bogoliubov parameters uk, vk.
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The calculation of
〈
Ĥ −μN̂

〉
s for correlated states is somewhat tedious [16]. Details

maybe found inRefs. [16,18];weonly give thefinal result. The energyof the superfluid
state may be derived from

〈Ĥ − μN̂ 〉s = H (N )
oo − μN + 2

∑

k, | k | >kF

v2k(ek − μ) − 2
∑

k, | k | <kF

u2
k(ek − μ)

+
∑

k,k′
ukvkuk′vk′Pkk′ (35)

in terms of the “pairing interaction” specified by

Pkk′ = Wkk′ + (|ek − μ| + |ek′ − μ|)Nkk′ , (36)

Wkk′ = 〈
k ↑,−k ↓∣∣W (1, 2)

∣∣k′ ↑,−k′ ↓〉
a, (37)

Nkk′ = 〈
k ↑,−k ↓∣∣N (1, 2)

∣∣k′ ↑,−k′ ↓〉
a . (38)

With the result (35), we have arrived at a formulation of the theory which is isomor-
phicwith theBCS theory forweakly interacting systems.Closer inspection [18] reveals
that our approach corresponds to a BCS theory formulated in terms of the scattering
matrix [40]. The correlation operator F serves here to tame the short-range dynamical
correlations. The effective interaction W (1, 2) is just an energy-independent approx-
imation of the T -matrix.

We may now implement the standard procedure of determining the Bogoliubov
amplitudes uk, vk, by variation of the energy expectation (35). This leads to the
familiar gap equation

Δk = −1

2

∑

k′
Pkk′

Δk′
√

(ek′ − μ)2 + Δ2
k′

. (39)

The conventional (i.e., “uncorrelated” or “mean-field”) BCS gap equation [41] is
retrieved by replacing the effective interactionPkk′ by the pairing matrix of the bare
interaction. The low-cluster-order approximations to the pairing interaction used by
Benhar [42] and Pavlou et. al. [22] are obtained by setting Γdd(r) ≈ f 2(r) − 1 in
Eqs. (28) and (29) and omitting the induced interaction wI(r).

3 Application to Neutron Matter

3.1 Energetics

We have carried out ground-state calculations for static properties and superfluid pair-
ing gaps in neutron matter based on two representative NN interactions acting in the
T = 1 channel, namely the central parts of the Reid soft-core potential [7] as for-
mulated in Eqs. (A.1)–(A.8) of Ref. [43], generally referred to as Reid V6, and the
Argonne V ′

4 potential [23]. In the density regime where the 1S0 pairing gap has signifi-
cant amplitude, any interactionmust give very close to the sameE/N for nuclear matter
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Fig. 1 Neutron-matter equation of state for the central component of the Reid V6 soft-core potential (red
line and asterisks) and for the Argonne V ′

4 potential (blue dashed line and asterisks), as obtained by a full
FHNC-EL calculation (solid lines) and from the simple FHNC//0-EL approximation (asterisks). Included
for comparison are results from the auxiliary-field diffusion Monte Carlo (AFDMC) method [44] for the
Argonne V18 interaction (magenta squares) and from a Brueckner–Hartree–Fock (BHF) calculation [45]
for the Argonne V ′

4 potential (orange dots) (Color figure online)

and the deuteron, as long as it fits the S-wave scattering data and the deuteron. We
have carried out two types of calculations: Full FHNC-EL calculations as described,
for example, in Refs. [32,34], and FHNC//0-EL calculations as described in Sect. 2.1.
Results for the equation of state for these two calculations, plotted as E/N versus Fermi
momentum kF, are shown in Fig. 1.

The picture is very similar to that found for Lennard–Jones interactions [33]: The
FHNC//0 approximation performs well up to about half nuclear saturation density.
It is also noteworthy that the two potentials lead to very nearly the same equation of
state in the density range considered, with the asterisks for the respective FHNC//0-EL
calculations overlapping.

For the Reid potential, we have also examined the importance of optimized triplet
correlations, i.e., non-vanishing u3 in Eq. (11) and elementary-diagram cluster con-
tributions as outlined in Ref. [32] and found their influence negligible. We have also
tried the central part of the full Argonne V18 potential in the T = 1 channel. It turns
out that this component of the interaction is too soft to lead to a stable solution of
the Euler equation. The problem can be solved by an artificial enhancement of the
repulsive regime, but the results depend sensitively on that enhancement factor and
hence were considered unreliable.

3.2 BCS Pairing

Once the ground-state correlations are known, the superfluid gap function Δk can be
determined by solving the gap equation (39). Since we are concerned with 1S0 pairing,
we have inserted the 1S0 component of the chosen potential model into the effective
interaction (29). In the phonon-exchange correction wI(r), the central component of
the interaction is the appropriate choice.
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Fig. 2 Neutron effective mass
for the central component of the
Reid V6 soft-core potential
(solid red line) and for the
Argonne V ′

4 potential (dashed
blue line), as derived from the
CBF single-particle spectrum
(30). Recall that the gap
increases monotonically with the
effective mass, see Fig. 3 (Color
figure online)
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The gap equation was solved by the eigenvalue method with an adaptive mesh, as
outlined in appendix of Ref. [18]. We have primarily adopted a free single-particle
spectrum for ek as it occurs inEqs. (36) and (39).One could also use the actual spectrum
of CBF single-particle energies (30), calculated from the effective interactions [35],
in both the pairing interaction (36) and the denominator of Eq. (39). We have not done
this for the reason outlined below.

At first glance, only the spectrum in the vicinity of the Fermimomentum is relevant.
In that regime, it can be approximated quite well in terms of an effectivemass. Figure 2
shows the effective mass obtained from the CBF single-particle energies for both
potential models.

Evidently, the effective-mass ratio m∗/m obtained for both potentials is very close
to unity.

However, “first glance” may not be sufficient; there is a subtlety to consider: If the
gap at the Fermi surface is small, we can replace the pairing interaction W̃ (k) by its
S-wave matrix element at the Fermi surface,

W̃F ≡ 1

2k2F

∫ 2kF

0
kdkW̃ (k) = NWkF,kF . (40)

Then, we can write the gap equation as

1 = −W̃F

∫
d3k′

(2π)3ρ

[
1√

(ek′ − μ)2 + Δ2
kF

− |ek′ − μ|√
(ek′ − μ)2 + Δ2

kF

SF(k′)
t (k′)

]
, (41)

which is almost identical to Eq. (16.91) in Ref. [40]. In particular, the second term,
which originates from the energy numerator generated in Eq. (39) by the second term
of Pkk′ in Eq. (36), has the function of regularizing the integral for large k′. This
feature is lost if the bare mass is used in the relationship (28), and the integral (41)
diverges unless a momentum-dependent effective mass ratio is used that approaches
unity in the limit of large momenta.
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Fig. 3 Superfluid gapΔkF at the Fermi momentum as a function of Fermi wave number kF for the Reid V6
soft-core interaction (solid red curve) and the Argonne V ′

4 potential (dashed blue curve). The gray shaded
area shows the range of influence an effective-mass correction can have: The lower boundary of that area
corresponds tom∗/m = 0.95 and the upper boundary tom∗/m = 1.05. Included for comparison are results
from a pure (“uncorrelated”) BCS gap calculation for the Argonne V18 interaction (red asterisks) (Color
figure online)

A second issue is that it has been known for a long time [46,47] that the effective
mass in nuclear systems has a peak around the Fermi surface; however, such a peak is
absent in the CBF single-particle spectrum. An effective-mass enhancement may be
obtained by including complex self-energy corrections; this can be done, for example,
by going to higher-order terms in CBF perturbation theory [48]. We note that the
enhancement effect is much stronger in 3He (see Refs. [49–51]) due to the softness of
the spin-fluctuation mode.

In view of these considerations, we have deemed it more accurate to employ the free
single-particle spectrum ek = t (k), and to study the sensitivity of our results to changes
in the effectivemass. Our results for the superfluid gap for the two potentials are shown
in Fig. 3. Evidently, the difference of the gap between these two potential models is
almost negligible and certainly within the accuracy of the FHNC approximations. To
determine the importance of effective-mass corrections, we have also solved the gap
equation assuming effective-mass ratios between m∗/m = 0.95 and m∗/m = 1.05 in
both the pairing interaction (36) and the energy denominator (2). The results for the
gap define the gray area in Fig. 3; their spread provides a conservative estimate of the
importance of a non-trivial single-particle spectrum.

3.3 Consequences for Many-Body Theory

Toconclude this section, let us lookmore closely at different aspects of the convergence
of cluster expansion and resummation techniques. Apart from cold atomic gases—
which with rare exceptions like the “unitary limit” pose no challenges to modern
many-body theory—pure neutron matter at subnuclear and nuclear densities is, apart
from the complications introduced by the NN force, one of the most lenient many-
particle systems provided by nature. This is largely due to the low density of the
system, as measured for example by the ratio of the pion Compton wavelength [7],
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Fig. 4 Plots of the “dressed”
correlation function Γdd(r)

(solid lines) for three
representative densities, as
indicated in the legend. Also
shown is the pair correlation
function f 2(r) − 1 (dotted
lines). Note that this function is
calculated a posteriori from the
solution of the Euler equation;
the generic many-body method
spelled out in Sect. 2.1 never
needs to introduce this quantity
(Color figure online)
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λπ = 1/μπ = h̄/mπ c ≈ 1.4 fm, or the radius of the “hard core,” σ ∼ 0.7−0.9 fm, to
the average particle spacing at the given density ρ = k3F/3π

2. Thus, at kF = 1.4 fm−1

the density is ρ ≈ 0.06σ−3, which corresponds to only 20% of the saturation density
of 3He.

Evidence for the good convergence of many-body theory for neutron matter in the
density regime relevant for 1S0 pairing is already provided in Fig. 1, which shows that
the very simple FHNC//0 approximation for the energy is quite accurate. In fact, even
the very simple two-body cluster approximation

(
E

N

)

2
= TF

N
+ ρ

2

∫
d3r

[
(1 + Γdd(r)) v(r) + h̄2

m

∣∣∣∇
√
1 + Γdd(r)

∣∣∣
2
]

gF(r),

(42)

in which TF is the kinetic energy of the free Fermi gas and gF(r) = 1 − �2(rkF)/2
its pair distribution function, yields results virtually identical to the FHNC//0 results
plotted in Fig. 1. We have refrained from showing these results in order not to obscure
the figure. Note that one can of course identify 1 + Γdd(r) with f 2(r) in Eq. (42).

These findings are consistent with the fact that the optimal results for 1 + Γdd(r)

and f 2(r) are not very different. To demonstrate this, both functions are plotted in
Fig. 4 for three representative densities, i.e., kF = 0.5, 1.0, and 1.5 fm−1. At the
lowest density, the two functions are practically identical. As the density increases,
Γdd(r) becomes slightly steeper in the attractive regime of the interaction.

From these results, one might be led to conclude that low-order methods are also
adequate for calculating the superfluid gap. We remind the reader, however, of the dis-
cussions in Sect. 1.3 on the both the sensitivity of quantities other than the energy to the
correlation functions, and to the convergence rate of cluster expansions. Accordingly,
we have examined the consequences of two approximations: leaving out the energy
numerator generated by the pairing interaction (36) and leaving out the induced inter-
action wI(r).

The most important function of the energy numerator is to regularize the integral
in the gap equation for contact interactions, as witnessed in Eq. (41). The situation
being discussed at that point is, of course, extreme. More generally, one would expect
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Fig. 5 Momentum dependence
of the pairing interaction
W (k) ≡ W̃ (k)/ρ for three
representative densities as
indicated in the legend (Color
figure online)
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that the energy-numerator term is important whenever the pairing interaction W̃ (k)

does not fall off sufficiently rapidly for large momenta. This is indeed the case: We
show in Fig. 5 the interaction W̃ (k) for three representative densities. Evidently, the
pairing interaction does not fall off rapidly above kF. The effect is, of course, most
pronounced for low densities. Although the gap is determined solely by the pairing
matrix element W̃F in the limit of an infinitesimal gap, one must expect significant
finite-range effects in the present case where the gap is of the order of 10–50% of the
Fermi energy.

The second new aspect is the appearance of the induced interaction term wI(r)

appearing in the pairing interaction [cf. Eqs. (29) and (17)]. This term describes the
exchange of particle–hole excitations [27] and is one of the important effects intro-
duced into the CBF version of BCS theory. While the gap equation includes the
summation of ladder diagrams [4,52] and can, at least in principle, deal with bare
hard-core interactions, the particle–hole reducible diagrams described by wI(r) intro-
duce new physics.

Ignoring the induced interaction wI(r) leads to the two-body approximation

W2(r) = [1 + Γdd(r)] v(r) + h̄2

m

∣∣∣∇
√
1 + Γdd(r)

∣∣∣
2

(43)

for the pairing interaction. We note that in this case one can again identify Γdd(r) ⇒
f 2(r) − 1.
Figure 6 demonstrates the impact on the calculated energy gap of the two

approximations identified above, for the case of the Reid potential. Evidently, both
simplifications have rather dramatic effects, being enhanced by the nominally expo-
nential dependence of the gap on the pairing interaction. At this point, we are not
prepared to describe or affirm any systematics of the effects of these approximations.
However, the close proximity of the “full CBCS” results and those for the bare inter-
action shown in Fig. 3 would seem to be coincidental, stemming from competing
corrections.
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Fig. 6 This figure shows the consequences of the two approximations discussed in the text for themagnitude
of the gap at the Fermi surface. The curve “full CBCS” (red) is identical to that shown in Fig. 3; the curve
“onlyW ” (blue) shows the consequenceof omitting the energy-numerator termgenerated by theCBFpairing
interaction, and the curve “two-body order” (magenta) is obtained by using the two-body approximation
(43) while also leaving out the energy-numerator term. In this last case, inclusion of the energy-numerator
term does not lead to sensible results because the cancelation illustrated by Eq. (41) is violated (Color figure
online)

3.4 Comparison with Previous Gap Calculations

The work we report represents the most rigorous calculation yet performed for nuclear
systems within correlated BCS theory. It is therefore of special interest to compare
its results with those of earlier calculations of the 1S0 pairing gap for neutron matter
based on microscopic many-body theories, where meaningful conclusions might be
drawn.

Informative comparison of the predictions of previous gap calculations—as repre-
sented for example by the aforementioned summary figure in the review by Gezerlis
et al. [24]—is rendered problematic by the diversity of methods applied, interac-
tions adopted, and assumptions made (e.g., whether or not polarization effects from
exchange of density and/or spin-density fluctuations are included). Nevertheless, some
specific and non-specific comparisons may be useful.

Figure 3 includes data plotted for a pure-BCS calculation in which the pairing
interaction is the bare potential in the 1S0 channel of the Argonne V18 interaction,
used along with free single-particle ek . The BCS result for Argonne V18, calculated by
the separation method of Ref. [9], was taken from Ref. [53]. (For this present purpose,
the distinction between the original Argonne V18 interaction and Argonne V ′

4 should
be immaterial.) Corresponding bare-BCS results for the Reid V6 choice (displayed
in Ref. [9] but not plotted here) are very close to those shown for Argonne V18, as
expected. What is unexpected is that our CBF results for the Argonne case show
only a modest suppression (about 15%) of the ΔF maximum, which occurs slightly
above 0.8 fm−1 in both calculations. The approximately Gaussian shape of ΔF versus
kF shifts to slightly lower kF in the absence of Jastrow–Feenberg correlations. It is
obvious from Fig. 6 that this near concurrence cannot be attributed to unimportance of
the correlations introduced in the CBF treatment. It is possible that this feature is due
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in part to the presence of the induced interaction term wI(r) in the effective pairing
interaction coming from density fluctuations, which is expected to enhance the gap
relative to that given by direct part of W (r).

The most recent microscopic calculations of the 1S0 gap incorporating Jastrow–
Feenberg two-body correlations are those of Pavlou et al. [22], described briefly
in Sect. 1.3. Their variational CBF study was carried out for each of two different
parametrized forms of the Jastrow factor f (r), subject to a constraint on its “wound,”
as outlined briefly in Sect. 1.3. Both of these forms have been used in earlier work:
one, referred to as the “Benhar” choice, has one free parameter but allows f (r) to
overshoot unity, whereas the “Davé” choice has two free parameters but no overshoot.
Restricted minimization was performed on an approximation to the energy expecta-
tion E/N that retains only the leading (zeroth) order of its cluster expansion, neglecting
terms of first and higher orders in a dimensionless small parameter ξ that grows with
density. (While its value remains well below 0.05 in the relevant density regime, the
implied rate of convergence of the expansion of E/N does not extend to approximants
of ΔF.)

The approach adopted in Ref. [22] may be considered the simplest implementation
of correlated CBF theory. The effective pairing interaction it generates differs from its
FHNC-EL counterparts in two essential respects: It lacks precisely those ingredients
that are the subjects of the above discussion of the “many-body consequences” of our
work based on FHNC-EL theory, namely the energy-numerator term and the induced
interaction entering the effective interaction W .

This same statement applies to the variational component of the correlated BCS
approach applied much earlier by Chen et al. [8], in which the 1S0 gap in neutron
matter was estimated based on the central, V4 part of the Reid V6 soft-core interaction.
In that case, ΔF was found to peak at about 0.75 fm−1 with a maximum value close
to 3.2MeV, a result based in fact on the Davé form for f (r). It should then be no
surprise that with negligible differences, Pavlou et al. obtained almost exactly the
same result for ΔF versus kF, although the Argonne V18 interaction was assumed.
It should be said that all of the tests we have made support the assertion that, when
the 1S0 gap is calculated by the same method with different inputs for the bare NN
interactions but otherwise the same assumptions (e.g., for the single-particle energies
ek), virtually identical results will be obtained for ΔF, provided the NN interaction
chosen reproduces the NN scattering data up to laboratory energies relevant for kF
below about 1.5 fm−1. Indeed, this a well-established property for the BCS gap [54].

As already pointed out, the maximum gap value obtained by Pavlou et al. with
AV18 for their two optimized correlation functions differ by nearly a factor two (about
3.7MeV for the Davé form at kF = 0.85 fm−1 and 1.8MeV at kF = 0.75 fm−1 for the
Benhar choice)—reflecting the extreme sensitivity of the gap to inputs for the effective
interaction. Recognizing that the induced interaction and energy-numerator terms are
absent in these two calculations, the information provided by Fig. 6 on the relative
contributions of these additional terms suggests that the results obtained in Ref. [22]
for the Benhar correlation function are to be favored over those for the Davé form.

Turning to other microscopic calculations designed to provide accurate predictions
for the 1S0 gap in neutron matter, we first single out the study of Cao, Lombardo, and
Schuck [55], carried out within the framework of Brueckner theory. Mean-field theory
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for the superfluid state, as represented by the pure-BCS treatment, was modified by
replacement of the bare pairing interaction with a proper vertex part, which includes
an induced interaction describing the competition between the attractive density exci-
tations and their repulsive spin-density counterparts (i.e., screening or polarization
corrections [56]). In-medium corrections were also introduced into the self-energies
ek , corresponding to both dispersion and Fermi-surface depletion. The quenching of
the gap due to exchange of spin-density fluctuations was found to be less extreme than
indicated by some previous studies. Results based on a free single-particle spectrum
were also reported, allowing more direct comparison with our results. For the free
spectrum, Cao et al. [55] find a maximum ΔF of about 2.7MeV occurring close to
kF = 0.85 fm−1, based on the Argonne V18 interaction. The close agreement with our
CBCS results shown in Fig. 3 is remarkable, but provocative, as our treatment does
not include an induced interaction term corresponding to spin-density fluctuations. On
the other hand, the treatment of screening effects in the two approaches is not directly
comparable. For a recent intensive computational analysis of medium polarization in
asymmetric nuclear matter, see Refs. [56,57].

The auxiliary-field diffusion Monte Carlo algorithm (AFDMC) purports to yield
accurate results for pairing gaps in neutron matter and other many-fermion systems
[44,58]. This algorithm has two essential features, not unique to AFDMC:

(i) Unlike the BCS state, the trial wave function ΨT that is propagated in imaginary
time describes a definite number of particles N , even or odd. The part of ΨT that
describes pairing is essentially the projection of the BCS state onto the N -particle
Hilbert space, which is a Pfaffian. Correlations are otherwise introduced into ΨT

by a Jastrow factor.
(ii) The pairing gap is constructed as a difference of energies obtained for different

particle numbers,

Δ = E(N ) − 1

2
[E(N + 1) + E(N − 1)] . (44)

Whatever the merits and deficits of the AFDMC approach, which implements a
uniquely economical strategy in sampling the spin degrees of freedom, they differ
significantly from those of traditional, analytically oriented many-body theory. Con-
sequently, AFDMC tends to be regarded as one potentially independent arbiter in
judging the quality of such traditional methods when valid comparisons can be made.
The number of data points shown inRef. [58] for the 1S0 gap in neutronmatter does not
allow a reliable identification of the peak value of ΔF, but it would lie slightly above
2MeV, reached slightly above kF = 0.6 fm−1. This calculation is based on a bare
pairing interaction of V6 form, obtained by deleting the two spin-orbit components of
the Argonne V ′

8 potential.
A more established alternative for arbitration is the Green Function Monte Carlo

(GFMC) method, which has been applied to neutron matter by Gerzelis and Carlson
[59,60]. Five data points are reported for ΔF versus kF (as shown in Fig. 6 of Pavlou
et al.). These data extend only to a kF value slightly beyond 0.5 fm−1, where the gap
is about 1MeV (with an error bar of about 0.2), well below the interpolated result
of Gandolfi et al. [58] at this density. It appears unlikely that, if the calculation were
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extended, the GFMC gap value would reach 1.5 MeV. The bare interaction, which
includes only S- and P-wave parts, is assumed and hence is essentially equivalent to
Argonne V4.

This comparison of different Monte Carlo results is another testament to the sen-
sitivity of the pairing gap calculations to the microscopic input, whether this input
is the interaction itself, methodological assumptions within a traditional many-body
theory, or the trial function ΨT for initiating Monte Carlo simulation. We discuss the
two Monte Carlo studies to provide a more balanced perspective on the current status
of the problem, but restrain from drawing conclusions about their relative merit or
their bearing on the quality of our calculations.

4 Summary and Prospects

In this paper, we have described new calculations of the pairing gap in the 1S0 partial-
wave channel. Our findings have been analyzed and discussed in the preceding section.

Themost interesting result of previous [18] work along these lines is the appearance
of a divergence of solutions of the FHNC-EL equations that occurs, as a function of
potential strength, well before the divergence of the vacuum scattering length a0 of
the interaction potential. This divergence of solutions of the FHNC-EL equations
is analogous to the spinodal instability often discussed in earlier literature, with the
principled and practical conclusion that the FHNC-EL equations for the homogeneous
system have no solutions if Fs

0 < −1, i.e., if the system is unstable in the particle–hole
channel. In Ref. [18], divergence of the FHNC-EL equations in the case of a diverging
in-medium scattering length gave evidence that the ground state is unstable against
dimerization. The appearance of such instabilities whenever the assumptions on the
state of the system fail—here, assumption of a non-dimerized phase, in the case of
particle–hole instabilities, of a uniform system—is a unique feature of theories such
as FHNC-EL that enjoy the topological completeness of parquet diagrams.

In the calculations being reported, we have not encountered such an instability,
which could be taken as evidence that medium-driven formation of dineutrons in low-
density neutron matter does not occur, or, in current terminology, that a BEC–BCS
crossover [61–64] does not take place. This is remarkable in view of the fact that, at
low densities (kF ≈ 0.2 fm−1), the gap reaches 0.45 times the Fermi energy eF which
is not much less than what is found in the unitary Fermi gas at the BCS–BEC crossover
[65]; see also Ref. [60] who pointed this out more recently. It should also bementioned
that a recent study [66] of the phase diagram of spin-polarized neutron matter revealed
signatures that can be interpreted [52] as a precursor of such a crossover.

There are four areas where the present calculation can be improved:

(a) As pointed out above, the FHNC-EL method sums all ring and ladder diagrams.
It does that, however, in a “collective approximation” of the particle–hole and the
particle–particle propagators [32] that treats the correlations between particles
within the Fermi sea in an average way. Since pairing occurs between particles
at the Fermi surface, it must be examined to what extent the average treatment
of correlations is appropriate. The route to improve upon this aspect is well
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charted within CBF theory, and earlier studies [67,68] have demonstrated that
CBF corrections to the pairing matrix elements can indeed be significant.

(b) Related to (a): Whereas the effect of density fluctuations (exchange of virtual
phonons) has been included in the CBF pairing interaction in an average-
propagator sense, effects of spin-density fluctuations are not taken into account.
Based on Landau parameters and some microscopic efforts [8,69–71], density
fluctuations produce a modest enhancement of the pairing gap, whereas the spin-
density channel generates a dominant suppression. Without introducing explicit
spin-dependent correlations into the basis functions of the CBF treatment, their
perturbative treatment within the CBF framework would be required.

(c) In the present work, in-medium effects on the self-energy input ek to the gap
equation have not been pursued quantiatively. This shortcoming warrants further
attention in subsequent applications of correlated BCS theory.

(d) The most severe approximation made in this work is the use of state-independent
correlation functions, albeit the two-nucleon interaction is exquisitely state depen-
dent. Introduction of a correlation operator F in Eq. (10) that contains spin-,
isospin-, tensor-, and more complicated operators in the two-body correlation
vehicle u2(i j) figuratively opens Pandora’s box. This complexity has been largely
dealt with in rather simple approximations that either completely omit commu-
tator terms [72,73] or in a “single-operator-chain” approximation [74], which
only sums the ring diagrams of state-dependent correlations. Unfortunately, for
modern nucleon–nucleon interactions, which may have different core sizes in the
singlet and triplet channels, the contributions of commutator diagrams can be
huge [75]. It remains to be seen how important these effects are in the problem
considered here, but at higher densities they can be decisive.
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