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Abstract The paper presents the results of theoretical studies of the transport pro-
cesses that take place in the newly proposed experiments on study of a vibrating quartz
fork in superfluid 3He–4He mixtures. In addition to knownmechanisms of energy loss
from a vibrating quartz fork such as first sound radiation or interaction with thermal
excitations, two more mechanisms specific for 3He–4He mixtures are proposed and
studied in the paper. The relative contribution of these mechanisms: second sound
and effective diffusion, is considered, and experimental conditions under which these
mechanisms become effective are discussed.

Keywords Superfluid 3He–4He mixtures · Cylinder · Oscillating heat source ·
Vibrating quartz fork

1 Introduction

The using of a vibrating quartz fork in pure superfluid helium (HeII) became one of
the useful methods for study of transport phenomena for the last 10years [1–9]. A
lot of interesting and unusual features were found in those experiments including,
for example, the transition to the quantum turbulence regime [10,11]. In some recent
papers and reports, presented in the last QFS conference 2016 [12], the ideas of new
experiments with a vibrating quartz fork immersed in superfluid 3He–4He mixtures
were presented.

These mixtures possess some properties that differ from the ones of pure helium.
One of them is the presence of quasiparticles at any temperatures including the tem-
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peratures close to zero (quasiparticles of 3He). Another peculiarity is the very small
value of typical interaction time between quasiparticles of 3He; so, the gas of these
quasiparticles can be always considered to be at equilibrium state. This assumption is
valid at relatively high concentrations of 10–15% under which the new experiments
are going to be carried out.

In this limit, the oscillation of a quartz fork will always cause the viscous motion
of the nearest layers of the mixture and a certain part of energy will be transformed to
the heat. So, the volume of liquid near the vibrating quartz fork in mixtures may be
considered as a cylindrical oscillating source of heat and the solution of a problem of
heat transfer with such a source can explain or predict phenomena of heat and mass
transport in this system.

Heat transfer in superfluid 3He–4He mixtures has a number of peculiarities. One
of them is that in these mixtures heat is transferred both by the second sound mode
and by the dissipative heat conductivity mode. The purpose of this work is to figure
out under what conditions each of the modes dominates.

2 Heat Transfer Description

2.1 System of Hydrodynamics Equations

In this work, we consider the heat transfer in superfluid 3He–4He mixtures with an
oscillating cylindrical heat source. The radius of the heat source is r1, and as the
boundary condition we will take the constant temperature at the outer cylindrical
surface with the radius equal to r0.

To describe heat transfer in superfluid mixtures, we start from the Khalatnikov
system of hydrodynamics equations [13]. Considering that helium is incompressible,
after making some transforms and passing to cylindrical coordinates, we obtain the
system of equations
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where w(r, t) = vn −vs is the relative velocity of normal and superfluid velocities, ρn
and ρs are the densities of normal and superfluid components, respectively; ρ0 is the
equilibrium value of the total mixture density; c(r, t) is the concentration deviation
from the equilibriumvalue c0; T (r, t) is the temperature deviation from the equilibrium
value T0, χ = κ/CV is the temperature conductivity; κ , D and DkT are the thermal

123



326 J Low Temp Phys (2017) 187:324–330

conductivity, diffusion and thermal diffusion coefficients, respectively. The value CV
is the heat capacity, and S and ζ are thermodynamic functions presented in [14,15].

The boundary conditions have the form

Q(r0, t) = Q0 cos
2(ωt), T (r0, t) = 0, g + ρ0c0vn =

[
r = r0
r = r1

]

= 0, (2)

Here Q and g are heat and concentrationflows, respectively,which dependongradients
of temperature, concentration and velocities of normal and superfluid components
[14,15].

2.2 Results of Calculation

The solution of Eq. 1 with the boundary conditions (2) can be presented in the form

T (r, t) = u22N
u22

G(Deff)(r, t) + u22ε
u22

G(sound)(r, t), (3)

consisting of two terms, which refer to relaxation by diffusion and second sound.
The respective Green functions G(Deff)(r, t) and G(sound)(r, t) are described in Refs.
[14,15] and explicitly presented in “Appendix” section to this paper. The relative
contribution of diffusion and sound modes are determined by the factors u22N/u22 and
u22ε/u

2
2, where

u2 =
√

u22N + u22ε (4)

is the second sound velocity,

u22N = ρs

ρn
c0ς and u22ε = ρs

ρn

S
2
T

ρ0CV
. (5)

The result (3) shows that the relation between the second sound mode and the dissi-
pative mode depends on the ratio u22ε/u

2
2N which are strongly depend on temperature

and concentration. Some typical limiting cases are presented in Figs. 1, 2 and 3.
Figure 1 demonstrates the case, when the heat from an oscillating fork propagates

in the mixture mainly by the dissipative mode, i.e. by effective thermal conductivity.
This case refers to enough high concentration and low temperatures, when the number
of thermal excitations of HeII is less than the number of He3 impurities.

The results for an opposite limiting case, when all the heat is transferred by second
sound, are presented in Fig. 2. This case refers to almost pure helium. The figure shows
oscillations that are typical for the second sound propagation.

In Fig. 3 the results for an intermediate case are presented and an exponential
attenuation together with weak oscillations can be observed. The intermediate case,
when contributions to heat transfer of the second sound mode and the dissipative
mode are comparable, is presented in Ref. [14], where the respective concentrations
and temperatures are found.
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Fig. 1 Temperature dependence
on distance, when the main
contribution to heat transfer
gives the dissipative mode.
u22N /u22ε = 17.6
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Fig. 2 Temperature dependence
on the distance when the main
contribution to heat transfer
gives the second sound mode.
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Fig. 3 Temperature dependence
on the distance when
contributions to heat transfer of
the second sound mode and the
dissipative mode are
comparable. u22N /u22ε = 0.3
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The obtained results show that in superfluid 3He–4He mixtures two more ways
for energy dissipation of a vibrating quartz fork can be observed. These mechanisms
are second sound and effective diffusion, and they should be taken into account for
planning new experiments.

3 Conclusion

The problem of heat transfer in cylindrical geometry (one-dimensional case) is con-
sidered. Relative contributions of the second sound mode and the dissipative mode
to the temperature and the heat flow in superfluid helium mixtures with a periodic
heater were explored. The obtained results can be used for planning and description
of experiments where temporal and spatial evolution of temperature, concentration or
heat flow is studied, e.g. studying temporal evolution of heat flow in helium in experi-
ments with an oscillating tuning fork immersed to superfluid 3He–4He mixtures. The
results of the first such experiments made in Kharkov Institute of Low Temperatures
have appeared, and they showed that some energy losses of vibrating fork immersed to
superfluid 3He–4He mixtures unexplained by known mechanisms are observed [16].

Acknowledgements Authors cordially thank the researchers from the Institute of Low Temperature
Physics, Kharkov Dr. V. Chagovets and Dr. G. Sheshin for private communication about the preliminary
results of experiments with a vibrating fork immersed to superfluid 3He–4He mixtures.

Appendix

After Laplace transform of the system (1) and excluding w(r, t), the system of two
equations is obtained

c(r, p) = A1
rc + B1
rT

T (r, p) = A2
rc + B2
rT, (6)

where
r is Laplacian in cylindrical coordinates, p is a parameter of Laplace transform
(inverse time). Here
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The system (6) can be transformed to the diagonal form

{
F = γ
rF
G = η
rG

(7)

where F = T + α1c G = T + α2c are linear combinations, and
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√
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2
,
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2
,
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.

The solution of system (5) can be written as
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(8)

where I0 and K0 are modified Bessel functions.
Substitution of (6)–(8) gives the final result for concentration and temperature
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Here Fi ,Gi (i = 1, 2) are constants depending on p that are found from the boundary
conditions and finally give the results (3) of the paper.
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