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Abstract When an electron is forced into liquid 3He, it forms an “electron bubble”,
a heavy ion with radius, R � 1.5 nm, and mass, M � 100m3, where m3 is the
mass of a 3He atom. These negative ions have proven to be powerful local probes of
the physical properties of the host quantum fluid, especially the excitation spectra of
the superfluid phases. We recently developed a theory for Bogoliubov quasiparticles
scattering off electron bubbles embedded in a chiral superfluid that provides a detailed
understanding of the spectrum of Weyl Fermions bound to the negative ion, as well as
a theory for the forces on moving electron bubbles in superfluid 3He-A (Shevtsov and
Sauls in Phys Rev B 94:064511, 2016). This theory is shown to provide quantitative
agreement withmeasurements reported by the RIKEN group (Ikegami et al. in Science
341(6141):59, 2013) for the drag force and anomalous Hall effect of moving electron
bubbles in superfluid 3He-A. In this report, we discuss the sensitivity of the forces on
the moving ion to the effective interaction between normal-state quasiparticles and the
ion. We consider models for the quasiparticle–ion (QP–ion) interaction, including the
hard-sphere potential, constrained random-phase-shifts, and interactions with short-
range repulsion and intermediate-range attraction. Our results show that the transverse
force responsible for the anomalous Hall effect is particularly sensitive to the structure
of the QP–ion potential and that strong short-range repulsion, captured by the hard-
sphere potential, provides an accurate model for computing the forces acting on the
moving electron bubble in superfluid 3He-A.
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1 Introduction

Superfluid 3He-A films are the realization of a chiral topological superfluid [1]. In
confined geometries superfluid 3He-A possesses a macroscopic ground-state angular
momentum, Lz = (N/2)h̄, where N is the number of 3He atoms in the film. The
currents responsible for Lz originate from the spectrum of Weyl Fermions confined
on the boundary and reflect the broken time-reversal and mirror symmetries of the
chiral A-phase [2–6]. Experimental confirmation of these broken symmetries was
demonstrated by the RIKEN group bymeasuring the forces on electronsmoving under
the free surface of superfluid 3He-A [7–9]. Electrons submerged in superfluid 3He form
apolaron-like state, a negative ion, commonly called an “electron bubble”, reflecting its
spherically symmetric ground-state wave function [10,11]. Electron bubbles have an
effective mass M � 100m3, wherem3 is the 3He atomic mass, and are approximately
3 nm in diameter [12]. These mesoscopic objects provide a powerful local probe of
the excitation spectrum of the quantum fluid. In particular, by studying the mobility
of electron bubbles in 3He-A, Ikegami et al. [7] have demonstrated the chiral nature of
this superfluid. Skew scattering of quasiparticles bymoving electron bubbles in 3He-A
generates a transverse force, and thus an anomalous Hall component in the mobility
tensor [13]. An essential ingredient to the theory is the effective potential describing
the interaction between quasiparticles and ions. The potential determines the t matrix
for the scattering of normal-state quasiparticles by the ion. The corresponding phase
shifts for normal-state QP–ion scattering are the key input parameters to the theory
for the scattering of Bogoliubov quasiparticles by the ion in the superfluid phase. For
temperatures above the superfluid transition, Tc � 1mK ≤ T � 30mK, the mobility
of the negative ion is independent of temperature [14,15], μexp

N � 1.7 × 10−6m2/Vs,
and determined by the normal-stateQP–ion transport cross section, e/μN = n3 p f σ tr

N ,
where p f = h̄k f is the Fermi momentum, n3 = k3f /3π

2 is the 3He particle density,

and σ tr
N is given by Eq. (8) of Ref. [13]. This relation is used to constrain models for

the QP–ion potential.
We discuss sensitivity of the forces on details of the QP–ion potential. For the elec-

tron bubble, the simplest model of a hard-sphere potential provides a good description
of both the longitudinal and transverse forces on the bubble in chiral superlfuid 3He-A
[13]. For repulsive, short-range interactions the details of the QP–ion potential are
shown to be relatively unimportant in determining the longitudinal force on the mov-
ing electron bubble provided the normal-state transport cross section accounts for
the normal-state mobility. The transverse force is shown to be more sensitive to the
structure of the QP–ion potential and corresponding phase shifts as a function of the
angular momentum channel. QP–ion interactions with intermediate-range attraction,
in addition to short-range repulsion, lead to significant discrepancies between theory
and experiment for the magnitude and temperature dependence of the transverse force
on moving electron bubbles. Only models with strong repulsion at a mesoscopic dis-
tance of order the size of the bubble provide good agreement for both the longitudinal
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and transverse forces. This explains the success of the single parameter hard-core
QP–ion potential in providing quantitative predictions for the forces in the superfluid
A-phase.

2 Stokes Drag and the Anomalous Hall Effect of Electrons in 3He-A

Superfluid 3He-A is a condensate of equal-amplitude, spin-aligned Cooper pairs,
1√
2
(| ⇒〉 + | ⇔〉), each with an orbital wave function, or mean-field order parame-

ter, Δ(p) = Δ(m̂ + i n̂) · p/p f , where p is the relative momentum of the Cooper
pair. Each Cooper pair has orbital angular momentum projection h̄ along the axis
l̂ ≡ m̂ × n̂. The ground state spontaneously breaks time-reversal symmetry (T), par-
ity (P), orbital (SO(3)L) and spin (SO(3)S) rotation symmetries in addition to gauge
symmetry (U(1)N). However, these symmetries are only partially broken. The residual
symmetry of the A-phase is H = SO(2)Sz × U(1)N-Lz × C, where C = T × Pm is
chiral symmetry defined as the product of time-reversal and mirror symmetry (Pm) in
a plane containing the chiral axis l̂: Pm m̂ = +m̂, Pm n̂ = −n̂, and thus Pm l̂ = −l̂.
Similarly, T (m̂+i n̂) = (m̂−i n̂), and thus T l̂ = −l̂, i.e. both time-reversal andmirror
symmetry are broken in 3He-A, but chiral symmetry, C = T × Pm , is preserved. For
our purposes the other important residual symmetry of 3He-A is rotational symmetry
about the chiral axis modulo a gauge transformation, i.e. the group U(1)N-Lz . Thus,
observables such as the superfluid density that are described by a rank two tensor are
constrained to be uniaxial. In particular the force on an electron bubble moving with
velocity v in superfluid 3He-A,

FQP = −↔
η · v, (1)

is defined, in the linear response limit, by a Stokes tensor of the form [13],

ηi j = η⊥
(
δi j − l̂i l̂ j

)
+ η‖ l̂i l̂ j + ηAHεi jk l̂k, (2)

where εi jk is the Levi-Civita tensor, and all components of the Stokes tensor are real
with η⊥ (η‖) defining the drag force for motion perpendicular (parallel) to the chiral
axis. The off-diagonal term, ηAH, in the Stokes tensor gives rise to a transverse force
acting on the ion for motion perpendicular to l. The transverse component of the force
is allowed by chiral symmetry, but would vanish if 3He-Aweremirror symmetric [13].

Under the action of a uniform electric field, E ⊥ l̂, the equation of motion for an
electron bubble in 3He-A is

M
dv
dt

= eE − η⊥v − ηAHv × l̂. (3)

The electric field accelerates the electron bubble, which is opposed by the Stokes drag,
−η⊥v, and the transverse force,−ηAHv× l̂. The latter gives rise to an anomalousHall
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effect, characterized by an effective magnetic field,

Beff = −c

e
ηAH l̂. (4)

The steady-state solution for the terminal velocity is given by 0 = eE − ↔
η · v, which

can be inverted to give,
v = ↔

μ · E, (5)

where the mobility tensor is given by

↔
μ = e

↔
η

−1
, (6)

and has the same uniaxial structure as the Stokes tensor in Eq. (2) with μ‖ = e/η‖,
μ⊥ = e η⊥/(η2⊥ + η2AH), and μAH = −e ηAH/(η2⊥ + η2AH). For E = E x̂ ⊥ l̂ ‖ ẑ the
anomalous Hall angle is given by the ratio of the transverse and longitudinal velocities,

tan α = vy

vx
= ηAH

η⊥
. (7)

The experimental observationof the anomalousHall effect for electronbubblesmoving
in 3He-A, including the reversal of the Hall current under l̂ → −l̂, provided the direct
signature of chirality and broken mirror symmetry in 3He-A [7]. The magnitude of
the effect is also remarkable, corresponding to an effective magnetic field of order
Beff � 103 − 104 Tesla.

For temperatures 0 < T < Tc the microscopic origin of both the drag force
and transverse force on the moving electron bubble in 3He-A is multiple scattering
of thermally excited Bogoliubov quasiparticles by the quasiparticle–ion potential,
combined with branch conversion scattering by the chiral order parameter of 3He-
A. The formulation of the scattering theory is described in detail in Ref. [13], and
calculations of the structure of the electron bubble embedded in 3He-A, as well as the
Stokes tensor, are reported for the hard-sphere model for the QP–ion potential with
radius R = 1.42 nm (k f R = 11.27), and shown to be in good agreement with the
experimental results for the drag and transverse forces reported by the RIKEN group
[7,9] for electron bubbles moving in 3He-A. In what follows we discuss the sensitivity
of the theoretical predictions to the QP–ion potential. We report theoretical results for
the drag and transverse forces for a wide range of models for the QP–ion potential and
compare them with the experiments, and the one-parameter hard-sphere potential.

2.1 Normal-State t Matrix

Our theoretical description for the bound-state spectrum and transport properties of
an electron embedded in 3He starts with a model for the effective interaction, U (r),
between a quasiparticle and the ion, whichwe assume to be short-ranged and isotropic.
At short range, the potential is expected to be of order 1 eV based on the energy
required to form the electron bubble, while the range of the potential is to be of order
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the classical estimate of the electron bubble radius, R ∼ 2 nm. Thus, the theory for
scattering and the transport properties of the ion is in the strong scattering limit for
a mesoscopic object and requires a calculation of the full normal-state scattering t
matrix. An important observation is that the scattering of quasiparticles can be treated
in the elastic limit. The heavy mass of the electron bubble, combined with the QP–ion
collision frequency, implies that recoil of the ion is negligible, i.e. QP–ion scattering
in normal 3He is to a good approximation elastic [16,17]. In fact for the electric fields
employed in the RIKEN experiments, the recoilless limit can be shown to hold down
to temperatures of order Tr � 200µK.

At the atomic level the t matrix takes into account multiple scattering of 3He atoms
by the potential representing their interaction with the ion, and is given by a solution
of the Lippmann–Schwinger equation [18],

T R = V + VGRT R, (8)

where GR is the causal propagator for 3He Fermions.
At low temperatures, kBT � E f , only quasiparticle excitationswithmomenta near

the Fermi surface, k � k f k̂, determine the transport and thermodynamic properties
of 3He liquid. The corresponding excitation energies, ξk = h̄v f (|k| − k f ), satisfy
|ξk| � E f . In the low-energy limit, the equation for the t matrix is obtained by
isolating the quasiparticle pole term, GR

low ∼ (E + i0+ −ξk)
−1, in the full propagator,

GR = GR
low + GR

high. The high-energy propagator renormalizes V to the QP–ion

effective interaction, U = V + VGR
highU . This is the interaction determining the

scattering of low-energy quasiparticles by the electron bubble in normal 3He. The
resulting equation for the QP–ion t matrix, t RN (k̂′, k̂; E) ≡ 〈k′|T R |k〉, describing
elastic scattering of quasiparticles with energy |E | � E f between states with initial
k = k f k̂ and final k′ = k f k̂′ momenta is

t RN (k̂′, k̂; E) = u(k̂′, k̂) +
∫

dΩk′′

4π
u(k̂′, k̂′′) gN(k̂′′, E) t RN (k̂′′, k̂; E), (9)

where integration is performed over the directions of the intermediate momentum
k′′ = k f k̂′′. Here, gN(k̂′′, E) = N f

∫
dξk′′ GR

low(k′′, E) = −iπN f is the ξ -integrated
quasiparticle propagator, N f = m∗k f /2π2h̄2 is the single-spin density of states at
the Fermi surface, and m∗ = p f /v f is the quasiparticle effective mass. The matrix
elements of the effective potential, u(k̂′, k̂) = 〈k′|U |k〉, as well as the t matrix, are
evaluated on the Fermi surface.

The effective potential is assumed to be spherically symmetric for the ground-state
of the electron bubble [11]. Thus, we use standard partial-wave analysis to represent
the t matrix in terms of partial-wave amplitudes and Legendre polynomials,

u(k̂′, k̂) =
∞∑
l=0

(2l + 1)ul Pl(k̂′ · k̂), (10)
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t RN (k̂′, k̂; E) =
∞∑
l=0

(2l + 1)t Rl (E)Pl(k̂′ · k̂). (11)

Equation (9) is then solved in terms of the t-matrix amplitudes, t Rl (E) = ul/(1 +
iπN f ul), which are parameterized in terms of the scattering phase shift for each
angular momentum channel, δl = − tan−1

(
πN f ul

)
,

t Rl (E) = − 1

πN f
eiδl sin δl . (12)

Note that the structure of the QP–ion potential is encoded in the set of scattering phase
shifts. The resulting t matrix determines the differential cross section for QP–ion
scattering, and thus the corresponding total and transport cross sections,

dσ

dΩk′
=

(
m∗

2π h̄2

)2

|t RN (k̂′, k̂; E)|2, (13)

σ tot
N =

∫
dΩk′

dσ

dΩk′
= 4π

k2f

∞∑
l=0

(2l + 1) sin2 δl , (14)

σ tr
N =

∫
dΩk′(1 − k̂ · k̂′) dσ

dΩk′
= 4π

k2f

∞∑
l=0

(l + 1) sin2(δl+1 − δl). (15)

The transport cross section determines the normal-state mobility, μN = e/n3 p f σ
tr
N ,

where p f = h̄k f and n3 is the 3He particle density.

2.2 Scattering Theory for the Superfluid State

The structure and transport properties of electron bubbles in 3He are modified dramat-
ically by the formation of a condensate of bound Cooper pairs. Spontaneous symmetry
breaking—particularly broken gauge, parity and time-reversal in 3He-A—has a pro-
found effect on the spectral properties of the electron bubble, aswell as the cross section
for Bogoliubov quasiparticles scattering off the negative ion. Bogoliubov quasiparti-
cles, which are coherent superpositions of normal-state particles and holes, undergo
branch conversion (Andreev) scattering by the chiral order parameter in combination
with scattering by the QP–ion potential. Multiple Andreev and QP–ion scattering in
3He-A leads to the formation of a bound spectrum of chiral (Weyl) Fermions, which
hybridize with the continuum of nodal quasiparticles to form low-energy resonances
with spectral weight confined near the electron bubble [13]. This discrete spectrum
of chiral Fermions evolves into a continuous branch of chiral edge states in the limit
R → ∞ and is a finite-size realization of the spectrum of Weyl Fermions for the 2D
topological phase of 3He-A [2–6].

Branch conversion scattering by the QP–ion potential and chiral order parameter
also leads to skew scattering, and to an anomalous Hall effect for the motion of elec-
tron bubbles in superfluid 3He-A (c.f. [13] and references therein). The t matrix for
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normal-state spin- 12 quasiparticles is expanded to a 4× 4 Nambu matrix to encode the
particle-hole coherence of Bogoliubov quasiparticles, and branch conversion scatter-
ing between particle-like (dEk/dk > 0) and hole-like (dEk/dk < 0) excitations by
the order parameterΔ(k). The scattering theory and the transport theory for the forces
on moving electron bubbles resulting from scattering of Bogoliubov quasiparticles is
described in detail in Ref. [13].

The Lippmann–Schwinger equation for the t matrix describing scattering states in
superfluid 3He-A can be expressed in terms of the normal-state t matrix (elevated to
Nambu space), and the difference between the normal-state and superfluid Nambu
propagators,

TS = TN + TN(GR
S − GR

N)TS. (16)

This subtraction allows us to use the normal-state t matrix, which we calculate for a
range of models for the QP–ion potential, as input to the calculation of the t matrix
for scattering of Bogoliubov quasiparticles in superfluid 3He.

The basis of scattering states is obtained by solving the Bogoliubov equation
with the pair potential defined by the chiral A-phase order parameter Δ(p̂) =
Δσx (px + ipx )/p f , where p = −i h̄∇ is the relative momentum operator, and σx
is the Pauli matrix in spin space. We denote particle-like and hole-like Bogoliubov
quasiparticle spinors by |Ψ1,kσ (r)〉 and |Ψ2,kσ (r)〉, respectively. The total rate for
QP–ion scattering with momentum change, k → k′, is given by Fermi’s golden rule,
Γ (k′,k) = (2π/h̄)W (k′,k)δ(Ek′ − Ek), with

W (k′,k) = 1
2

∑
σ,σ ′=↑,↓

[
|〈Ψ1,k′σ ′ |TS|Ψ1,kσ 〉|2 + |〈Ψ1,k′σ ′ |TS|Ψ2,kσ 〉|2

+ |〈Ψ2,k′σ ′ |TS|Ψ1,kσ 〉|2 + |〈Ψ2,k′σ ′ |TS|Ψ2,kσ 〉|2
]
Ek′=Ek

, (17)

where Ek =
√

ξ2k + |Δ(k̂)|2 is the Bogoliubov quasiparticle excitation energy. A key

feature of QP–ion scattering in 3He-A is the violation of microscopic reversibility;
the rates for QP scattering by ions embedded in superfluid 3He-A corresponding to
momentum transfersk → k′ andk′ → k are not equivalent, i.e.W (k′,k) �= W (k,k′).
The violation of themicroscopic reversibility is a consequence of broken time-reversal
(T) and mirror (Pm) symmetries in the 3He-A[13]. To highlight the importance of the
violation of microscopic reversibility on QP–ion scattering, we separate the rate into
mirror symmetric (W+) and anti-symmetric (W−) components,

W (k′,k) = W+(k′,k) + W−(k′,k), W±(k′,k) = 1

2

[
W (k′,k) ± W (k,k′)

]
.

(18)
The mirror symmetric scattering rate determines the drag force on a moving electron
bubble, while the mirror anti-symmetric rate is responsible for the transverse force,
and thus the anomalousHall effect for electron bubblesmoving in 3He-A. These forces
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are defined in terms of the components of the Stokes tensor [13],

ηi j = n3 p f

∫ ∞

0
dE

(
−2

∂ f

∂E

)
σi j (E), ∀ i, j ∈ {x, y, z} , (19)

where the components of the energy-resolved transport cross section also separate into
symmetric and anti-symmetric tensors, σi j (E) = σ

(+)
i j (E) + σ

(−)
i j (E), corresponding

to the signatures of W±(k′,k) under k′ ↔ k,

σ
(+)
i j (E) = 3

4

∫

E≥|Δ(k̂′)|2
dΩk′

∫

E≥|Δ(k̂)|2
dΩk

4π

[(
k̂′
i − k̂i

) (
k̂′
j − k̂ j

)] dσ

dΩk′
, (20)

σ
(−)
i j (E)= 3

4

∫

E≥|Δ(k̂′)|2
dΩk′

∫

E≥|Δ(k̂)|2
dΩk

4π

[
εi jk

(
k̂′×k̂

)
k

] dσ

dΩk′

[
f (E) − 1

2

]
,

(21)

dσ

dΩk′
(k̂′, k̂; E) =

(
m∗

2π h̄2

)2 E√
E2 − |Δ(k̂′)|2

W (k′,k)
E√

E2 − |Δ(k̂)|2
, (22)

where f (E) is the Fermi–Dirac distribution function. Note that only the mirror sym-
metric (anti-symmetric) component of the scattering rate,W+ (W−), contributes to the
energy-resolved cross section, σ (+)

i j (E) [σ (−)
i j (E)]. Furthermore, σ (+)

i j (E) is a diago-
nal tensor and determines only the longitudinal drag forces on the moving ion, while
σ

(−)
i j (E) is an anti-symmetric tensor that determines the transverse force, and thus the

anomalous Hall current.
To compute these forceswe calculate the rates,W±(k′,k), based on the formulation

outlined above and in more detail in Ref. [13]. The key input to the calculation is the
QP–ion potential, and in particular the QP–ion phase shifts that define the normal-state
t matrix. We discuss several possible models for QP–ion scattering below.

3 Quasiparticle–Ion Scattering: Models and Phase Shifts

Scattering phase shifts are the imprint of the near-field QP–ion interaction, U (r), on
far field, asymptotic, free-particle form for the scattering solutions to the Schrödinger
equation;ψlm(r) = Rl(r) Ym

l (θ, φ), where Ym
l (θ, φ) are spherical harmonics, and the

radial wave function satisfies [19]

1

r2
∂

∂r

(
r2

∂Rl

∂r

)
+

[
k2 − U (r) − l(l + 1)

r2

]
Rl = 0, (23)

with k2 = 2m∗E/h̄2 and U (r) = 2m∗U (r)/h̄2. We consider finite-range potentials
such that U (r) ≈ 0 for r > a, in which case the radial wave function for r > a is a
linear combination of spherical wave solutions,

Rl(r) = A [cos δl jl(kr) − sin δl nl(kr)], (24)
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where jl(kr) and nl(kr) are spherical Bessel functions of the first and second kind,
respectively, and A is a normalization constant. The phase shift, δl(k), for angular
momentum channel l depends on the wave number, k; in the far field, kr � 1, Rl(r) ≈
A sin(kr − lπ/2 + δl)/kr , i.e. a free QP solution shifted in phase by δl as a result of
the near-field interaction with the ion. Matching the near and far field solutions and
the first derivatives at r = a provides us with a normalization-independent condition
for the log-derivative of Rl at r = a,

tan δl(k) = k j ′l (ka) − γl jl(ka)

kn′
l(ka) − γlnl(ka)

, γl ≡ d ln Rl

dr

∣∣∣
r=a− . (25)

Equation (25) can be used directly to obtain the phase shifts provided the near-field
solution Rl(r) for r < a can be found explicitly. For short-range potentials for which
there is not an analytic solution, we use the variable-phase method to calculate the
phase shifts [20]. This method is based on a first-order, nonlinear differential equation
for a function, χl(r, k),

∂χl(r, k)

∂r
= −kr2U (r)

[
cosχl(r) jl(kr) − sin χl(r) nl(kr)

]2
, (26)

which is used to obtain the scattering phase shift δl(k). In particular, for χl(0, k) = 0,
the solution to Eq. (26) represents the phase shift accumulated by the scattered wave
at distance r from the ion. The asymptotic value is the phase shift for each l and k:
δl(k) = limr→∞ χl(r, k). The variable-phase method based on Eq. (26) is well suited
for numerical calculations. We refer the reader to Ref. [20] for more details.

3.1 Hard-Sphere Model

The simplest model with an analytic solution for the phase shifts is the one-parameter
hard-sphere model defined by U (r < R) = ∞ and U (r > R) = 0, where R is the
hard-sphere radius. The phase shifts are found by requiring that Rl(r = R) = 0, and
thus given by the formula, tan δl(k) = jl(kR)/nl(kR) [19]. The hard-sphere model
provides a benchmark for comparison with experimental measurements of the forces
on moving ions, as well as with more detailed models for the QP–ion interaction.
Model A in Table 1 is the hard-sphere potential with radius for the electron bubble
in 3He at P = 0 bar, i.e. k f R = 11.17, as determined by the normal-state mobility.
The theoretical results for the forces on a moving electron bubble in 3He, and the
comparison with the experimental data reported in Refs. [7–9] for the mobility of
negative ions in normal and superfluid 3He-A, is given in Ref. [13] and summarized
in Fig. 1. Panel (a) shows the longitudinal mobility as a function of temperature,
which is in perfect agreement with the experimental data over more than two decades
for 0.25 ≤ T/Tc < 1. From the inset, note that the number of angular momentum
channels contributing substantially to QP–ion scattering is finite and determined by
lmax ≤ k f R. For l > k f R the phase shifts decrease rapidly to zero. Panel (b) shows the
tangent of the Hall angle as a function of Δ(T )/kBT calculated from the ratio of the
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Table 1 Quasiparticle–ion potentials U (r)

Label Potential Parameters

Model A Hard sphere k f R = 11.17

Model B Repulsive core and attractive well U0 = 100E f ,U1 = 10E f , k f R
′ = 11, R/R′ = 0.36

Model C Random-phase shifts 1 lmax = 11

Model D Random-phase shifts 2 lmax = 11

Model E Pöschl–Teller 1 U0 = 1.01E f , k f R = 22.15, α = 3 × 10−5, n = 4

Model F Pöschl–Teller 2 U0 = 2E f , k f R = 19.28, α = 6 × 10−5, n = 4

Model G Hyperbolic tangent 1 U0 = 1.01E f , k f R = 14.93, b = 12.47, c = 0.246

Model H Hyperbolic tangent 2 U0 = 2E f , k f R = 14.18, b = 11.92, c = 0.226

Model I Soft sphere 1 U0 = 1.01E f , k f R = 12.48

Model J Soft sphere 2 U0 = 2E f , k f R = 11.95

(a) (b)

Fig. 1 Comparison of the hard-sphere model (Model A) with data for the mobility of electron bubbles in
3He-A [7,9]. a Calculated longitudinal mobility, μ⊥/μN versus T/Tc (black line), with the inset showing
the phase shifts for Model A. Experimental data shown as blue circles. b Calculated anomalous Hall ratio,
tan α = ηAH/η⊥ versus Δ(T )/kBT in comparison with data from two different experimental runs (red
and blue points) reported in Refs. [7,9] (Color figure online)

transverse and longitudinal Stokes parameters [Eq. (7)]. The theory based on the hard-
spheremodel (Model A) is in a good agreement withmobility experiments for electron
bubbles, providing confirmation that the microscopic theory for potential and branch
conversion scattering of Bogoliubov quasiparticles captures the essential physics and
structure of the negative ion moving at low velocity in a chiral superfluid. It is worth
noting that the hard-sphere radius R was fixed at the outset by fitting the calculated
normal-state mobility to the experimentally measured value and that there are no other
adjustable parameters in the calculations for the forces on the ion in superfluid 3He.
Nevertheless, it is important to test the robustness of the theoretical predictions by
considering a range of models for the QP–ion potential, as well as possible variations
in transport properties for ions described by a potential that deviates significantly from
that of a hard sphere.
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3.2 Piece-Wise Constant Potential with Intermediate-Range Attraction

Among the analytically solvablemodels,we considerModelB for theQP–ionpotential
with finite, short-range repulsion and intermediate-range attraction defined by the
piece-wise constant potential,

U (r) =

⎧⎪⎨
⎪⎩

U0, r < R,

−U1, R < r < R′,
0, r > R′.

(27)

Using Eq. (25), we find the following expression for the phase shifts,

tan δl = (l − ζl) jl(k f R′) − k f R′ jl+1(k f R′)
(l − ζl)nl(k f R′) − k f R′nl+1(k f R′)

, ζl = x ′ al
bl

. (28)

al = l
[
nl+1(x) jl(x

′) − nl(x
′) jl+1(x)

] + x ′ [nl+1(x
′) jl+1(x) − nl+1(x) jl+1(x

′)
]

+ lpl
x ′

[
nl(x) jl(x

′) − nl(x
′) jl(x)

]+ pl
[
nl+1(x

′) jl(x)−nl(x) jl+1(x
′)
]
, (29)

bl = x ′ [nl+1(x) jl(x
′) − nl(x

′) jl+1(x)
] + pl

[
nl(x) jl(x

′) − nl(x
′) jl(x)

]
, (30)

with pl = z′il+1(z)/ il(z), x = β1k f R, x ′ = β1k f R′, z = β0k f R, z′ = β0k f R′, β0 =√
(U0 − E f )/E f and β1 = √

(U1 + E f )/E f , where il(x) is the modified spherical
Bessel function of the first kind. Note that a purely repulsive soft-core potential case
is obtained from Eq. (28) by setting R = R′ and U1 = 0, while additionally taking
U0 → ∞ recovers the hard-sphere result.

Model B versus Model A In Fig. 2a, b we compare calculations based on Model A
with those based on Model B (parameters are listed in Table 1). Model A is the hard
sphere that agrees very well with experiments on the electron bubble in 3He-A. Model
B corresponds to strong short-range repulsion, and intermediate-range attraction. The
latter allows for a shallow bound state, and therefore a scattering resonance, in one or
more high angular momentum channels. In the case of Model B, one can see that there
is an extra scattering resonance in channel l = 10 shown in the inset of Fig. 2a. Figure
2a, b shows that the resonance leads to small deviations of the drag force compared
to that for the hard-sphere model (and experiment), but a drastic reduction in the Hall
ratio. The basic conclusion is that the electron bubble is well described by strong,
short-range repulsion with no intermediate-range attraction. A variant of Model B
may be relevant to positive ions, since positive ions attract 3He atoms producing a
more complex ionic structure.

3.3 Other QP–Ion Potentials and Scattering Models

Apart from the two exactly solvable models discussed above, we considered several
repulsive potentials, as well as a constrained random-phase-shift model (Models C
and D in Table 1).
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(a) (b)

(d)

(f)

(c)

(e)

Fig. 2 Comparison of numerical results for longitudinal mobility (μ⊥/μN) and the Hall ratio (tan α =
ηAH/η⊥) obtained with Models B–F listed in Table 1, in comparison with the hard-sphere model (Model
A) (Color figure online)

Models C and D The pattern of phase shifts versus angular momentum for Model A
shown in the inset of Fig. 1 is a fingerprint of the hard-sphere QP–ion potential, with
k f R = 11.17fixedby thenormal-state ionmobility. This constraint fixes the number of
relevant scattering channels. Here we consider the sensitivity of forces on the ion to the
specific pattern of phase shifts, while keeping the number of scattering channels fixed
at lmax = 11 and enforcing the constraint on the transport cross section provided by the
normal-state mobility. Models C and D are two different realizations of the random-
phase-shift model with lmax = 11, constrained to fit the normal-state ion mobility,μN.
The procedure is to use a random number generator to calculate {δl |l = 1, . . . , lmax},
then adjust the phase shift in channel l = 0 to satisfy the constraint on the transport
cross section. Models C and D differ by the seed used to generate the phase shifts.
Note that not every realization of random-phase shifts for l = 1, . . . , lmax allows
a fit to experiment by varying the remaining phase shift δ0. As Fig. 2d shows the
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random-phase-shift model fails dramatically to account for the anomalous Hall angle
for the electron bubble in 3He-A, and thus the magnitude and temperature dependence
of the transverse force on the electron bubble, even though the longitudinal mobility
shown in Fig. 2c is relatively close to that of Model A, and therefore to the measured
longitudinal force. This basic feature is characteristic of the comparison between
theory and mobility measurements for electron bubbles in 3He-A; the longitudinal
mobility is relatively insensitive to the QP–ion potential provided the model accounts
for the experimental normal-state transport cross section. In contrast, the transverse
force is sensitive to the pattern of phase shifts as a function of the angular momentum
channel, as well as the transport cross section.

Models E and F Additional motivation for considering a range of models for the QP–
ion potential is to see if a refinement to Model A can remove the small deviations
between theory and experiment evident in Fig. 1 for the Hall ratio at temperatures
near Tc, i.e. for Δ(T )/kBT → 0. Thus, we consider Pöschl–Teller potentials of the
form U (x) = U0/ cosh2[αxn], where x = k f r , as well as the hyperbolic tangent
model defined byU (x) = U0[1− tanh[(x − b)/c]]. In all cases the parameters of the
potential are adjusted to fit the normal-state transport cross section to account for the
measured normal-state mobility, μexp

N = 1.7 × 10−6 m2/Vs [7].
In Fig. 2e, f we show numerical results for the Pöschl–Teller model with two

different sets of parameters as listed in Table 1. This is a three-parameter model
describing a smoothly decaying repulsive potential. As was the case for other models
the transverse component of the Stokes tensor, ηAH, and thus the Hall angle, is more
sensitive to the structure of the potential (Fig. 2f), than is the longitudinal mobility
μ⊥. The phase shifts, particularly those of Model F, are very close to those of Model
A (inset of Fig. 2e). The results for Model F are also much closer to Model A, and to
experiment, than those of Model E, which is a softer and longer range potential. The
general trend is that the numerical results obtained with the Pöschl–Teller potential are
almost indistinguishable from Model A in the limit that the strength of the potential
is sufficiently repulsive, i.e. U0 � 6E f (not shown).

Models G, H, I and J Lastly, we consider the hyperbolic tangent and the soft-sphere
models, each with two different sets of parameters, indicated in Table 1 as Models G
and H and Models I and J, respectively. The numerical results, which are not shown,
for these models are barely distinguishable from those of Model A, and in contrast
to the Pöschl–Teller model, the results for Models G–J are practically insensitive to
variations of the magnitude of the potential U0, provided U0 > E f . Finally, we note
that the small deviations between theory and experiment for the anomalous Hall ratio
persist, suggesting that there may be an additional scattering mechanism not captured
by a repulsive, short-range, spin-independent, isotropic QP–ion potential.

4 Conclusions

We considered a number of models for the effective potential describing the interac-
tion between normal-state quasiparticles and ions embedded in 3He. This potential
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determines the normal-state scattering phase shifts which are the input parameters to
the theory for Bogoliubov quasiparticles scattering off electron bubbles moving in the
chiral A-phase of superfluid 3He. We show that the scattering theory developed in
Ref. [13], with a strongly repulsive, short-range QP–ion potential—specifically the
hard-sphere model—is in very good agreement with experimental measurements of
the longitudinal mobility and anomalous Hall current for electron bubbles moving in
3He-A [7–9]. We also show that softer, longer range potentials, as well as potentials
with intermediate-range attraction, fail to account for the magnitude and temperature
dependence of the Hall angle.
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