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Abstract The magnetic susceptibility of a long mesoscopic superconducting square
prism containing one/two (dot) anti-dots is calculated in the framework of the
Ginzburg–Landau theoretical model. This magnetic susceptibility shows jumps at
each of the vortex transition fields. We studied the influence of the number, size and
geometry of the anti-dots on the magnetic susceptibility in a superconducting sample.
We found interesting physical behavior when several kinds of materials filled into the
anti-dot are considered.
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1 Introduction

The magnetic property of a superconducting material at low temperature in contact
with different kinds of materials is one of the aspects of the physics of condensed mat-
ter (superconductivity) that has been studiedmore in recent years. Current applications
of high-temperature superconductivity include magnetic devices that protect medical
imaging systems, SQUIDs, infrared sensors, accelerators of particles, magnetic levi-
tation transport vehicles, etc. It is well known that when a superconductor is in contact
with other materials such as metal, ferroelectric, superconductor at higher critical
temperature, the proximity effects can induce surface domains, where nucleation of
the superconductivity can be decreased/increased [1–5]. Heat capacity in mesoscopic
system studies contributes significantly to technological innovation by improving the
capabilities of electronic devices [6–8]. The heat capacity CP,V was measured in
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the phase transitions between vortex states in mesoscopic superconductors, and the
experiments were carried out on arrays of mesoscopic disks and rings to maximize the
output signal and found that the information process could be easily manipulated in
nano-structured devices [6,9,10]. In a recent work, a Ginzburg–Landau approach was
applied to calculate the magnetic susceptibility (χm) for two- and three-dimensional
superconducting sampleswith different boundary conditions and sizes, and the authors
found a strong dependence of the boundary conditions, dimensionality and size of the
sample on the signature in the magnetic susceptibility of a superconducting sample
[11]. A link between deGennes microscopic boundary condition and the Ginzburg–
Landau approach, and a discussion of some relevant experiments for slabs, cylinders,
spheres, hypercubes were found by Fink [12], and in this work the authors studied
the effect upon the transition temperature Tc of a superconductor via the deGennes
parameter b. A complete theoretical analysis of the specific heat of the mixed state
in superconductors was first discussed by deGennes [13] and Fetter [14], and in this
analysis, the authors described the specific heat change between two different vortex
states, which is proportional to the difference obtained in χm [15] leading to the pre-
diction of specific heat jumps at magnetic fields for which a vortex enters or leaves
the sample [16]. Other attempts have used the BCS theory or the Eilenberg equations
to describe calorimetric properties of superconductors [17]. In the present paper, we
report changes in the numerical calculus of magnetic susceptibility due to the choice
of different values of (dot) anti-dot size, internal boundary conditions and geometry of
the defect.We simulated (via the deGennes parameter) an anti-dot defect in the sample
filled by a dielectric material b → ∞, a metal b > 0, or a higher critical temperature
superconductor b < 0. As is well known, the order parameter or superconductivity is
suppressed (enhanced) in the anti-dot surfaces when b > 0 (b < 0) is used [11].

2 Theoretical Formalism

We considered a long superconducting mesoscopic prism (either of circular or of
rectangular cross section) surrounded by a uniform magnetic field H0, with one/two
anti-dots filled by different kinds of materials (see Fig. 1). The derivation of the G–L
equations takes the dimensionless units as follows: |ψ | is the order parameter in units
of ψ∞(0) = √−α(0)/β, lengths in units of the coherence length ξ(0); A in units of
Hc2(0)ξ(0), where Hc2(0) is the second critical field, temperature in units of the critical
temperature Tc [13]. For the borders of the anti-dots (internal boundary conditions),
we assume that the perpendicular component of the superconducting current is equal
to zero at the surface (J ·n = 0), where the suffix n denotes the direction normal to the
surface (i.e., (∇−iA)·n = aψs/b). a is the unit cell and b the deGennes parameter. For
a better analysis, we choose a new parameter γ = 1−a/b. In n direction, we introduce
the superconductor–metal (b > a, 0 < γ < 1), the superconductor–superconductor
(b < 0, γ > 1) and superconductor–vacuum (or dielectric) (b → ∞, γ = 1) boundary
conditions [18,19]. Since the external magnetic field is always parallel to the z axis,
we take H0 ≡ H0ẑ. As a model system, we considered a square sample of area L2
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Fig. 1 (Color online) Layout of the studied samples with (dot) anti-dots: a Case A: a long cylinder of
rectangular cross section with one square anti-dot of size d × d, b Case B: a long cylinder of rectangular
cross section with two asymmetrical squares anti-dots of size d×d, c Case C: a long cylinder of rectangular
cross section with one square anti-dot of size d × d and one rectangular anti-dot of size d1 × d2. b d) Case
D: a long cylinder of circular cross section of radius R with one central isosceles triangle anti-dot of edge
d, e Case E: a long cylinder of circular cross section with a central isosceles triangle dot of edge d and
weight w
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with an anti-dot of size d1 ×d2, respectively, with unit cell a = 0.125. The Ginzburg–
Landau parameter κ = λ/ξ = 1.0 which is close to the experimental value for Al,
Nb, or Pb mesoscopic samples. We solved the Ginzburg–Landau (G–L) equations
by considering the magnetic induction and density of the superconducting electrons
invariant on the z axis, in this scenario the demagnetization effects are not present, and
we have a bi-dimensional problem, that is, the local magnetic field outside the sample
is the external applied magnetic field [18–24].

∂ψ

∂t
= −(−i∇ − A)2ψ + (1 − T )ψ(1 − |ψ |2) (1)

∂A
∂t

= (1 − T )Re
[
ψ̄(−i∇ − A)ψ

] − κ2∇ × ∇ × A (2)

Notice that Eqs. 1 and 2 are gauge invariant since they do not change under the
transformation ψ

′ = ψexp(iχ), A
′ = A + ∇χ and φ

′ = φ − ∂χ/∂t . We choose the
zero-scalar- potential gauge, that is, φ

′ = 0 at all times. The presence of a dot in the
Ginzburg–Landau model is considered by the w function, so Eq. 1 is:

∂ψ

∂t
= −(−i∇ − A)2ψ + (1 − T )ψ(1 − |ψ |2) − i(i∇ + A) · ∇w

w
(3)

where 0 < w ≤ ξ is a function that describes the effect of the variation of the sample
thickness on the superconducting condensate. In this case, we can assume that the
superconducting condensate is homogeneous along the z-direction and consequently
we may take for the volume of the sample dV = wdS, where dS is the surface
differential perpendicular to axe z. w = 1 everywhere, except in the dot region where
is w = 1.12 (for more details of this calculus, see Ref. [21]). Equation 2 remains
unchanged. Equations 1 and 2 are solved using the iterative procedure as outlined in
Ref. [22]. To calculate the magnetic susceptibility, we used:

χm = ∂M

∂H0
(4)

4πM = 〈H〉 − H0 (5)

where M(H0) is the magnetization as a function of the external magnetic field H0.
The magnetic susceptibility is numerically calculated using the Runge–Kutta method
of fifth order [24].

3 Results and Discussion

The magnetic susceptibility χm as a magnetic field function at T = 0 for case A with
L = 8ξ , considering a superconducting–vacuum interface γ = 1.0 for (a) d = 0ξ ,
H1 = 1.05Hc2, (b) d = 2ξ , H1 = 0.8Hc2, (c) d = 3ξ , H1 = 0.75Hc2 and (d)
d = 4ξ , H1 = 0.75Hc2, is shown in Fig. 2. As the magnetic field is increased, at a
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Fig. 2 Magnetic susceptibility for case A with L = 8ξ , considering a superconducting–vacuum interface
γ = 1.0 for a d = 0ξ , H1 = 1.05Hc2, b d = 2ξ , H1 = 0.8Hc2, c d = 3ξ , H1 = 0.75Hc2. H1 and d
d = 4ξ , H1 = 0.75Hc2. H1 is the critical field in which the first vortex entry occurs and it decreases as
anti-dot size d increases (except for d = 0 case) (Color figure online)

certain point H1 a Meissner–Abrikosov state transition occurs (in the magnetization
−4πM curve as a function of the appliedmagnetic field, the first vortex entrymagnetic
field H1 is easily identified). At this point, the susceptibility jumps abruptly, then
as the field continues increasing, the magnetic susceptibility decreases until another
vortex (or chain of vortices) penetrates when it jumps occurs. This continues until
the superconducting–normal state transitions. The effect of the size of the defect d is
large; we estimate that the first jump occurs in H1/Hc2 = 1.1, 1.05, 0.80, 0.75, 0.38
for d/ξ = 0, 2, 3, 4, 5, respectively. We can see that the height of the first peak
changes. All the samples show approximately equal diamagnetism. As we know once
the vortices penetrate into the sample, they move from the screening currents in its
boundary, but the vortices cannot reach the exact middle of the sample due to screening
currents around the defect, as the size of the defect is bigger, the variation in the
number of jumps in the magnetization and flux into the defect is major. The magnetic
susceptibility χm as a magnetic field function for case A, with L = 8ξ , d = 2ξ
considering the internal boundary conditions: (A) γ = 0.98, H1 ≈ 0.98Hc2, (B)
γ = 1.05, H1 ≈ 0.99Hc2, (C) γ = 1.01, H1 ≈ 1.0Hc2 (D) γ = 1.2 H1 ≈ 1.0Hc2 is
shown in Fig. 3.When the border of the anti-dot is in contactwith a thin layer of another
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Fig. 3 Magnetic susceptibility for case A with L = 8ξ , d = 2ξ considering the following internal
boundary conditions: a γ = 0.98, H1 ≈ 0.98Hc2, b γ = 1.05, H1 ≈ 0.99Hc2, c γ = 1.01, H1 ≈ 1.0Hc2
d γ = 1.2 H1 ≈ 1.0Hc2. H1 increase as γ increases

material (different values of deGennes parameter b related to γ), the susceptibility
exhibits several peaks. We can appreciate that the difference of peaks in χm between
adjacent vortex states is higher for a higher number of magnetic fluxoids Φ0 in the
sample, while the amplitude of the oscillation is smaller for a lower number of Φ0.
For γ = 0.98, 1.05, 1.10, 1.25, we found H1/Hc2 = 0.98, 0.985, 0.990, 1.010. H1
increase as γ increase. In Figs. 4 and 5, we studied the magnetic susceptibility for case
B with L = 8ξ , d = 2ξ , considering the internal boundary conditions: (a) γ = 0.90,
H1 ≈ 0.55Hc2, (B) γ = 0.98, H1 ≈ 0.71Hc2 (C) γ = 1.10, H1 ≈ 1.18Hc2 and
(a) γ = 0.90, H1 ≈ 0.81Hc2, (b) γ = 0.98, H1 ≈ 0.71Hc2, respectively. When the
superconducting–metal (0 < γ < 1) and superconducting–superconducting at higher
critical temperature (γ > 1) internal boundary conditions are used in the anti-dot,
we found that the highest values of χm are reached with the highest values of γ,
so the diamagnetism can remain in the sample and thus is important when used in
technological devices. In Fig. 6a, b, we studied the magnetic susceptibility for cases
D and E, with R = 8ξ , d = 2ξ , considering the boundary conditions γ = 1.0,
H1 ≈ 1.05Hc2 for both studied cases. The curves show that the highest (and lowest)
values of magnetic susceptibility are independent of the presence of triangular dot or
anti-dot for this studied case.
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Fig. 4 Magnetic susceptibility for case B with L = 8ξ , d = 2ξ , considering the following internal
boundary conditions: a γ = 0.90, H1 ≈ 0.55Hc2, b γ = 0.98, H1 ≈ 0.71Hc2 c γ = 1.10, H1 ≈ 1.18Hc2

Fig. 5 Magnetic susceptibility for case C with L = 8ξ , d = 2ξ , d1 = 4ξ , d2 = 1ξ , considering the
following internal boundary conditions: a γ = 0.90, H1 ≈ 0.81Hc2, b γ = 0.98, H1 ≈ 0.71Hc2
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Fig. 6 Magnetic susceptibility for cases (D, E) with R = 8ξ , d = 2ξ , γ = 1.0 and w = 1.12 for the dot
(case D), H1 ≈ 1.05Hc2 for both cases

4 Conclusions

We calculate the magnetic susceptibility χm = ∂M/∂H0 within the Ginzburg–Landau
theory for superconducting samples containing anti-dots. We studied the effect of
the anti-dot size and the internal boundary conditions on the magnetic susceptibility
χm(H) in a long square prism. We found that the variations will produce different
signatures in the magnetic susceptibility. Lastly, we also found that H1 increase as γ

increase into the anti-dots. For the triangular dot case, the presence of the dot does not
show relevant changes of the signature of the magnetic susceptibility.
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