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Abstract Using the variational method of the Pekar type, we study the influences
of the temperature on the parabolic quantum dot qubit in the magnetic field under
the condition of electric–LO-phonon strong coupling. Then we derive the numerical
results and formulate the derivative relationships of the oscillation period of the elec-
tron in the superposition state of the ground state and the first-excited state with the
magnetic field, the electron–LO-phonon coupling constant and the confinement length
at different temperatures, respectively.
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1 Introduction

We all know that a quantum computer (QC) will be more efficient than a classi-
cal computer in solving some certain problems. The elementary unit of quantum
information in a QC is the quantum bit (qubit), and a variety of physical sys-
tems have been suggested as qubits. Due to the knowledge of their theoretical and
experimental properties and the existence of an industrial base for semiconductor
processing, semiconducting quantum dots as a promising candidate for scalable quan-
tum information processing have attracted wide attention for more than a decade.
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However, the physical implementation of a quantum register requires a high degree
of the quantum regime isolation from the environment. If not, decoherence will
lead to loss of quantum information [1,2]. Therefore, the decoherence dynamics
attributed to the entanglement of the qubit system with its surrounding environment
has become the central issue in the investigation of quantum information processing
[3–8].

In the real world, the work of the experiment about quantum qubits is performed
at finite temperature. However, quantum systems are very frail and the temperature
destroys the quantumcoherence of the stored information [9], a process called decoher-
ence. So that the temperature effects on quantum systems for information processing
should be investigated. One of the most prominent issues facing investigation of quan-
tum decoherence inQDs qubit is the influence of the temperature on theQDs qubit.We
have studied the temperature effects of the parabolic linear bound potential quantum
dot qubit and the parabolic quantum dot qubit in the electric field in our earlier papers
[10–12], and the effects of the temperature on the coherence time of a PQD qubit and
a RbCl parabolic QD qubit have been researched in our other papers [13–15] and the
paper of Xiao and Wang [16].

In this paper, using the variational method of the Pekar type, the temperature influ-
ences on the parabolic quantumdot are studied in themagnetic field under the condition
of electric–LO-phonon strong coupling. The paper is arranged as follows. In Sect. 2,
we first analyze the system and introduce the general Hamiltonian of an electric–LO-
phonon system in the magnetic field and then obtain the relations of the oscillation
period of the electron in the superposition state of the ground state and the first-excited
state to the temperature, the magnetic field, the electron–LO-phonon coupling con-
stant and the confinement length, respectively. In Sect. 3,we demonstrate the numerical
results in detail. Sect. 4 presents our conclusions.

2 Theoretical Model

We consider a system where the electrons are bounded by the parabolic potential and
the magnetic field. The electrons are much more confined in one direction (taken as
the Z direction) than in other two directions. Therefore, we shall only take the effect
of electron and LO-phonon on the QDs qubit into account assuming that the electrons
move in the X–Y plane. TheHamiltonian of an electron–phonon system in the presence
of the static uniform magnetic field which is along the z direction B = (0, 0, B) and
described by a vector potential in the Landau gauge A = B(−y/2, x/2, 0) can be
written as follows:

H = (p + eA)2/2m∗ + m∗ω2
0ρ

2/2 +
∑

q

h̄ωLOb
+
q bq +

∑

q

(
Vqe

iq·rbq + h · c
)
,

(1)

where m∗ is the band mass of electron. p is the momentum operator of the elec-
tron. ρ is the two-dimensional coordinate vector, and ω0 is the confinement constant.
m∗ω2

0ρ
2/2 is the parabolic confining potential in a single QD. ωLO is the frequency
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of the longitudinal optical vibrational mode of the lattice oscillation. b+
q

(
bq

)
is the

creation (annihilation) operator of bulk LO-phonon with the wave vector q(q//, q⊥).
r = (ρ, z) is the coordinate of the electron. e is the electron charge, and

Vq = (i h̄ωLO/q)
(
h̄/2m∗ωLO

)1/4
(4πα/V )1/2 , (2)

α =
(
e2/2h̄ωLO

) (
2m∗ωLO/h̄

)1/2
(1/ε∞ − 1/ε0) , (3)

where α is the dimensionless number that plays the role of an electron–LO-phonon
coupling constant for the lattice–electron interaction. V is the volume of the crystal.
ε∞ and ε0 are the high-frequency and vacuum dielectric constant, respectively.

Using the Fourier expansion and the LLP transformation, we have

H ′ = U−1HU. (4)

2.1 Two-level Systems of Electron–Phonon

Suppose the Gaussian function approximation is valid in the ground state and the
first-excited state of electron–phonon system by the method of the Pekar type. We
choose the trial wave functions of the electron–phonon system in the ground and the
first-excited state [17] as

|φe−p〉 =
[
λexp(−λ2ρ2/2)/

√
π

]
|ξ(z)〉|0ph〉, (5)

|φe−p〉′ =
[
λ2ρ exp(−λ2ρ2/2)exp(±iϕ)/

√
π

]
|ξ(z)〉|0ph〉. (6)

Using l0, θ and ωc to denote (h̄/m∗ω0)
1/2 , ωc/ωLO and eB/m∗ respectively,

choosing the polaron unit (h̄ = 2m∗ = ωLO = 1), we find the ground state energy
and the first-excited state energy of the electron as the following forms

E0 = λ20 + (1 + θ2/16)/λ20l
4
0 − αλ0(2π)1/2/2, (7)

E1 = 2λ20 + (1 + θ2/16)/λ20l
4
0 − 11αλ0(2π)1/2/32, (8)

where l0 is the confinement length and θ is the cyclotron frequency parameter [18–21].
We can obtain λ0 by the variational method, and then we can get the eigenlevel

and the eigenwave function. Thus, we obtain the two-level system needed by a single
qubit.

2.2 Probability Density

The time evolution of the quantum state of the electron in this system can be written
as

ψ01 = [
φ0 (ρ) exp (−i E0t/h̄)

]
/
√
2 + [

φ1 (ρ) exp (−i E1t/h̄)
]
/
√
2. (9)
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Based on Eqs. (7)–(9), we can present the probability density in the following form

Q(ρ, t) = [|φ0(ρ)|2 + |φ1(ρ)|2 + φ∗
0 (ρ)φ1(ρ) exp(iω01t)

+φ0(ρ)φ∗
1 (ρ) exp(−iω01t)]/2, (10)

where φ0(ρ) and φ1(ρ) of Eqs. (9) and (10) are the ground state and the first-excited
state, respectively. And

ω01 = (E1 − E0)/h̄ (11)

then the period of oscillation is

T0 = 2π/ω01 = 2π/
[
λ20 +

(
1 + θ2/16

)
/λ20l

4
0 + 5 (2π)1/2 αλ0/32

]
. (12)

The mean number of optical phonons of the superposition state around the electron in
parabolic quantum dot is

Nq =
〈
ψ01|U−1

∑

q

b+
q bqU |ψ01

〉
= 27(2π)1/2αλ0/64. (13)

2.3 Temperature Influences

At a finite temperature, the electron–phonon system is no longer in the ground state
entirely. The lattice vibrations excite not only the real phonon but also the electron in
a parabolic potential. In this case, the statistical average value of the electron–phonon
system in various states can describe the properties of the bound polaron. According to
quantum statistics, the statistical average number of optical phonons can be described
as

N̄q = [
exp(h̄ωLO/kBT ) − 1

]−1
, (14)

where kB is the Boltzmann constant.
Through Eqs. (13) and (14) self-consistent calculation, we can obtain the relation-

ship of the variational parameter λ0 with the temperature T . From Eqs. (7), (8) and
(12), we can obtain the relation of T0 to λ0, T .

3 Results and Discussions

The influences of the temperature on the period of oscillation, which are extracted
from a numerical evaluation, are shown in Figs. 1, 2 and 3.

Figure 1a illustrates the period of oscillation as a function of the temperature and the
cyclotron frequency parameterwhen the electron is in the superposition state ofψ01 for
the electron–LO-phonon coupling constantα = 6 and the confinement length l0 = 0.5.
It is shown that the periodof oscillation is increasingwith increasing temperaturewhich
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(a)

(b)

Fig. 1 a The period of oscillation as a function of the temperature and the cyclotron frequency parameter.
b The period of oscillation as a function of the cyclotron frequency parameter at different temperatures

is in agreement with the results of the paper [12]. The reason is that, with the increment
of temperature, the velocity for thermalmotion of the electron and the phonon increases
so that the electron will interact with more phonons. However, the contribution that
the increment of the velocity of the electron causes the probability of the electron in
the superposition state to increase is relatively strong. And the contribution from the
electron interacting with more phonons to destruct the superposition state is relatively
weak. Therefore, the electron lifetime on the superposition state is prolonged and the
period of oscillation increases with the increase in temperature. Figure 1a also shows
that the period of oscillation slowly decreases with the cyclotron frequency parameter
increasing at any temperatures (Fig. 1b is clearer). Due to the existence of themagnetic
field, the ground and the first-excited state energies increase and the effect on the first-
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(a)

(b)

Fig. 2 The period of oscillation as a function of the temperature and the electron–LO-phonon coupling
constant for different cyclotron frequency parameters

excited state energy is greater than on the ground state energy. As a result, the energy
spacing between the ground and the first-excited states increases and the period of
oscillation decreases [17]. The decrease of the period of oscillation will inevitably
lead to the process of decoherence quicken. It is very harmful to store information in
the QD qubit. Meanwhile, as is shown in Fig. 1b, at a finite temperature, the cyclotron
frequency parameter does not impact the dependence of the period of oscillation on
the temperature.

Figure 2a and b depict the period of oscillation as a function of the temperature
and the electron–LO-phonon coupling constant for the confinement length l0 = 0.5
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and different cyclotron frequency parameters θ = 1,2.5. They are shown, when the
cyclotron frequency parameter θ is 1 or 2.5, that the period of oscillation increases
with the increase in temperature. The reason is the same as discussed above. Figure 2
also depicts, when the cyclotron frequency parameter θ is 1 or 2.5, that the period
of oscillation decreases with the increase in electron–LO-phonon coupling constant.
This is because the coupling constant of the electron–phonon interaction is weaker in
the first-excited state than that in the ground state, then the energy spacing increases
with the increasing coupling constant. The increase in the energy spacing causes a
reduction in the period of oscillation [11,12,22]. Furthermore, Fig. 2 reveals that the
period of oscillation decreases with the increase in cyclotron frequency parameter as
in Fig. 1. Besides, Fig. 2 also means that the cyclotron frequency parameter does not
change the relations of the period of oscillation with the temperature and the electron–
LO-phonon coupling at finite temperature (can compare Fig. 2 with Fig. 2 in Refs.
[11,12]).

Figure 3a and b describe the period of oscillation as a function of the temperature
and the confinement length for the electron–LO-phonon coupling constant α = 6
and different cyclotron frequency parameters θ = 1, 2.5. As is seen in Fig.3, at
different cyclotron frequency parameters, the period of oscillation increases with the
confinement length increasing at any temperature. For the same reason as in Fig. 2, the
period of oscillation fluctuates because of the increase in temperature and the period of
oscillation decreases with the increase in cyclotron frequency parameter as in Fig. 1.
From another point of view, when the temperature is high and the confinement length
is strong, the period of oscillation rising is faster with the temperature increasing than
when the temperature is low and the confinement length is weak. This is because the
strong confinement length means the lattice thermal vibrations to become strong and
it makes the numbers of phonon around electron decrease sharply. At the same time,
Fig. 3 also shows that the cyclotron frequency parameter does not make the relations
of the period of oscillation with the temperature and the confinement length change
(can compare Fig. 3 with Fig. 4 in Refs. [11,12]).

The period of oscillation of the probability density is one of crucial quantities to
describe the life time of the qubit [14]. It has been demonstrated that the longer the
period of oscillation is, the longer the life time of the qubit is [14,16,23]. The above
results indicate that the period of oscillation increases in superposition state of electron
in a QD with the increment of temperature when the magnetic field is existent. And
our earlier studies show the probability density of electron and the period of oscillation
are all affected by the temperature due to the existence of the parabolic linear bound
potential, the electric field and the Coulomb bound potential [10–12]. A qubit cannot
be independent of environment and must interact with the heat bath. As a result, the
interaction generally destroys the superposition state of a qubit. However, the period
of oscillation increases, in other words, the lifetime of a qubit increases. So the process
of decoherence is slower. It is very useful to store information where the QD is made
as its elementary unit.
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(a)

(b)

Fig. 3 The period of oscillation as a function of the temperature and the confinement length for different
cyclotron frequency parameters

4 Conclusions

Using the Pekar variational method, the influences of the temperature on the parabolic
quantum dot qubit in the magnetic field have been investigated. From a numerical
evaluation, we have shown that the period of oscillation decreases with the magnetic
field at any temperature. Meanwhile, at lower magnetic field or higher magnetic field,
our results show: (1) the period of oscillation increases with the increasing tempera-
ture; (2) the period of oscillation decreases with the increase in electron–LO-phonon
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coupling constant when the temperature is lower or higher; (3) the period of oscilla-
tion increases with the confinement length when the temperature is lower or higher.
In addition, our work shows the advantage of the method that we used in this paper is
the simplicity of the design of the computation process.
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