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Abstract We report on a novel technique to measure quartz tuning forks, and possibly
other vibrating objects, in a quantum fluid using a multifrequency lock-in amplifier.
The multifrequency technique allows to measure the resonance curve of a vibrating
object much faster than a conventional single frequency lock-in amplifier technique.
Forks with resonance frequencies of 12kHz and 16kHz were excited and measured
electro-mechanically either at a single frequency or at up to 40 different frequencies
simultaneously around the same mechanical mode. The response of each fork was
identical for both methods and validates the use of the multifrequency lock-in technique
to probe properties of liquid helium at low fork velocities. Using both methods we
measured the resonance frequency and drag of two 25-pwm-wide quartz tuning forks
immersed in liquid “He in the temperature range from 4.2K to 1.5K at saturated
vapour pressure. The damping and shift of resonance frequency experienced by both
tuning forks at low velocities are well described by hydrodynamic contributions in
the framework of the two-fluid model. The sensitivity of the 25-pum-wide tuning forks
is larger compared to similar 75-pm-wide forks and in combination with the faster
multifrequency lock-in technique could be used to improve thermometry in liquid “He.
The multifrequency technique could also be used for studies of the onset of non-linear
phenomena such as quantum turbulence and cavitation in superfluids.
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1 Introduction

Quartz tuning forks were relatively recently introduced for probing quantum liquids
[1] and were quickly adopted for low temperature thermometry [2—4], the generation
and detection of quantum turbulence [5—8] and studies of acoustic emission [9—11] and
cavitation [12]. The popularity of quartz tuning forks is driven by their availability, high
quality factor and ease of use. The majority of tuning forks studied so far in quantum
fluids research have been common off-the-shelf electronic components and depending
on the manufacturer had different physical dimensions, length, width and thickness,
even though the resonance frequencies are the same. Previously, to investigate the
frequency dependence of acoustic emission and the critical velocity for the generation
of turbulence in superfluid ‘He [7,10], we had manufactured custom-designed tuning
forks on a 75-micron quartz wafer! and used the length of the forks to control resonance
frequencies. Here we present the temperature dependence of damping experienced by
two forks manufactured on a 25 pm thick wafer. The miniaturisation of the forks was
driven by a desire to probe local properties of helium and to boost the fork’s sensitivity
to temperature.

Conventional measurements of the resonant properties of an oscillating object use
a continual sweep of the excitation frequency using a signal generator and detection of
the object’s response using a lock-in amplifier. While this technique is well established
for linear systems, mapping out the complete resonant curve can be quite slow. The
single frequency lock-in technique is also used to capture the resonance properties in
non-linear systems and has successfully characterised Duffing-like oscillators [13].
Furthermore, the presence of strong non-linear interactions in a system brings new
opportunities to probe such systems using various modes of multifrequency excitation
and detection. For example, the strong non-linearities between the different mechan-
ical resonance modes of an oscillator are utilised to study nano-electromechanical
structures [14,15]. Atomic force microscopy community also has developed multifre-
quency techniques for scanning the surface of a sample using a cantilever [16,17]. One
such technique excites the fundamental mechanical mode of a resonator using two fre-
quencies and detects intermodulation (mixing) products created by strong non-linear
interactions of the system [18].

We adapted the intermodulation approach and have observed that at low oscillation
velocities the tuning forks only respond at the excitation frequencies. The absence
of frequency mixing implies that our tuning forks are extremely linear and have no
visible intrinsic non-linear effects. As a result, we devised a new linear multifrequency
technique that excites a tuning fork in the vicinity of the lowest mode resonance at
40 separate frequencies simultaneously and measures its resonance curve without fre-
quency sweeping. In this paper, we compare the measurements of the tuning forks
by the conventional technique, using a Stanford Research Systems SR830 Lock-in
Amplifier, with the multifrequency approach using an Intermodulation Products Mul-
tifrequency Lock-in Analyser (MLA) [19].> We demonstrate that new technique is

! Manufactured by the Statek Corporation, 512, N. Main Street, Orange, CA 92868, USA.
2 Intermodulation Products AB, Landa Landaviagen 4193, SE - 823 93 Segersta, Sweden.
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Fig. 1 Left Schematic diagram of the electrical setup used to excite and detect the motion of a fork. See
text for details. Right Sketch of the important dimensions of a fork: the prong length L, width W, separation
D and thickness 7 (Colour figure online)

applicable even when the fork is immersed in liquid helium as the interactions of the
fork with the fluid remain linear at small fork velocities. In the future, if non-linear
effects are observed at high fork velocities the mixing effects can be attributed solely
to the interaction of the fork with the fluid and should help to understand the nature
of arising non-linearities.

2 Experimental Details

All measurements on the tuning forks were conducted in a simple *He immersion
cryostat that operates in the temperature range from 4.2 K down to a base temperature
of ~1.5K using the evaporative cooling technique. The temperature of the liquid
helium was deduced from the vapour pressure [20]. Both tuning forks were mounted
directly in the helium bath and immersed in liquid helium.

The studied tuning forks were fabricated on a single quartz wafer with a thickness
of 25 wm using the same lengths and thicknesses as the previously reported 75-pm-
wide forks [10]. The prong lengths of the forks were L = 2600 um and L = 2200 pm,
resulting in resonance frequencies of approximately 12kHz and 16kHz, respectively.
Both forks have an identical prong width of W =25 pm, prong thickness of 7 =90 pm
and inter-prong distance of D =75 pum. The right side of Fig. 1 shows a photograph
of the 12kHz fork with the corresponding dimensions.

In our measurements, forks were driven and detected electro-mechanically. The left
side of Figure 1 shows a diagram of the electrical circuit used. The fork motion was
excited by applying an alternating voltage from a signal generator that was attenuated
by 20 dB. The motion of the fork induces a current, which was amplified by a custom-
built IV-converter [21] with a gain of 10° VA™! and the voltage was measured by a
lock-in amplifier. Due to the presence of a summation amplifier, we can measure the
fork’s response using conventional lock-in technique either with an Agilent 33521
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signal generator and SR830 lock-in amplifier or with a Intermodulation Products
MLA and its internal generator. Furthermore, the multifrequency lock-in technique
can be operated with the MLA on up to 42 frequencies simultaneously. We direct the
interested reader to the paper by Tholén et al. [19] for details behind the operating
principles of the MLA. We have measured the resonance curve of each fork using both
sets of lock-in amplifiers in order to compare them.

The physical parameters of the fork such as force and velocity can be determined
from the applied voltage and measured current [2]. The force experienced by the fork
prong is determined by the applied voltage V and is given by F = aV /2, where the
coefficient a is termed the fork constant. The resulting motion of the fork induces
current / = av, where v is the velocity of the tip of the prong. The experimental value
of the fork constant is given by

4 o A fo l
u— /ﬂmet‘f/ f2 ' )

The resonant current /, and the damping width of the resonance A f> can be obtained
from a measurement of a single frequency sweep around the resonance at excitation
voltage V. The only parameter still required to deduce the experimental fork constant
is the effective mass of the prong mesr, assumed to be a quarter of the actual mass
of the fork prong, p, WT L /4 [10], where p, = 2659kg m~3 is the density of quartz.
Previous measurements show that the experimental fork constant determined electro-
mechanically agrees with a direct optical detection to within 10 % [7].

3 Experimental Results

After the cryostat was filled with *He and left to settle for a period of about 20 minutes,
the temperature of the cryostat was reduced from 4.2 K down to the base temperature
of about 1.5 K by pumping the helium bath over a period of approximately 3—4 h. The
frequency response of the 12 kHz tuning fork near resonance was measured continually
during cooling by alternating between the conventional lock-in technique using the
SR830 and the multifrequency mode using the MLA.

3.1 Comparison Between SR830 and MLA

Figure 2 shows the frequency dependence of the 12 kHz fork response normalised
by the excitation voltage at the base temperature of the cryostat, 1.45K at saturated
vapour pressure. The left and right sides of the figure correspond to the in-phase and
quadrature responses, while filled and open symbols denote the SR830 and MLA
measurements, respectively. The difference between the measurements is negligible
and the red solid line shows the expected Lorentzian lineshape for a driven damped
harmonic oscillator in a fluid [10]

o(f) = F nfrHif(fg = =nh
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Fig. 2 Frequency response of the 12kHz tuning fork in superfluid 4He at 1.45K and saturated vapour
pressure. Left Frequency dependence of the in-phase component. Right Frequency dependence of the
quadrature component. Filled and open symbols correspond to SR830 and MLA measurements, respectively.
The solid red line is a Lorentzian fit of the data. See text for details (Colour figure online)

Here fj is the vacuum frequency of the oscillator, and y = y» + iy describes the
complex drag force, where the real component y» corresponds to the dissipative drag
forces, and the non-dissipative imaginary component y; arises from the backflow
of fluid around the oscillator and the mass enhancement due to the normal compo-
nent clamped around the oscillator. The least-squares fit yields a resonance width of
Afy = y»/2m = 8.3Hz, and resonance frequency of 11597.6 Hz in superfluid “He at
1.45K. The fork constants deduced from the resonance curves are (9.12 + 0.02) x
1078 NV~ and (9.04 £ 0.03) x 108N V~! correspondingly for SR830 and MLA
measurements. The non-zero quadrature component at resonance frequency is due to
the intrinsic capacitance of the fork and can be used to verify that the current amplifier
and our electronic circuit are working as expected even in the absence of the resonance.

The SR830 data presented in Fig. 2 were obtained by performing a conventional
frequency sweep and comprises 60 data points. The time interval between acquisition
of each data point was 1s. The generator excitation was constant and equal to 50mV
before being reduced by the 20dB attenuator. The peak velocity of the top of the fork
prong was 1.2mms~! at the resonance frequency. The MLA data were obtained by
exciting the fork with a frequency comb of 40 discrete, equally spaced tones with
peak amplitude of 20mV each and detected by the phase-sensitive lock-in technique
at 40 different frequencies. In the present measurements, the frequency comb had
identical phases on all excitation frequencies, but it would be interesting in the future
to alter the relative phases in order to cancel the overall motion of the fork and only have
a low-frequency beating®. We have used a reduced amplitude for the multifrequency
lock-in measurements compared with the single frequency lock-in measurements since

3 We thank one of the referees for this suggestion.
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for correct operation the MLA’s amplitude of the generated voltage signal combined
across all frequencies should not exceed 2V, to avoid clipping of the lock-in amplifier.
The peak velocity of the fork was 0.46mms~! at the resonance frequency. It is very
instructive to compare the power injected into the system using both methods. The
power injected into the fluid at a single excitation frequency is /V or 2Fv and for a
conventional frequency sweep has the largest value at the resonance frequency and
equals 0.4pW. To deduce the power applied in the multifrequency approach, the sum
of power injected at each frequency needs to be calculated and equals 0.6 pW. The
power injected into the system using the frequency comb was only 50% higher than
in a single frequency technique due to nearly 3 times lower excitation and hence ~3
times lower peak velocity at the resonance.

The observed response of the fork to a multifrequency excitation is observed to be
nearly identical to that from a single frequency excitation due to the small velocity of
the fork and of the surrounding liquid. This result suggests that the velocity fields of
different modes do not interact and the equations of motion for each frequency can
be separated. The resulting velocity field is then simply the superposition of the fields
of the individual modes. In this case, the quadratic (vVv) term in Euler’s equation
is negligible, and the total mass of the system “oscillator plus moving fluid liquid”
does not depend on the amplitude of the oscillations*. Hence the Lorentzian shape
described by Eq. 2 can be observed. At much higher peak fork velocities, on the order
of ~8cms™!, the quantum turbulence is expected to be generated by a tuning fork
[7], and the shape of resonance curve should look completely different for the single
frequency sweep and multifrequency excitation. To reach this velocity, the generator
voltage should be on the order of the 330 mV and the multifrequency lock-in amplifier
will need to be excited at a fewer number of frequencies in order to avoid saturation of
the MLA. We have not carried out such turbulence measurements yet, but are planning
to do them in the near future.

The acquisition time of the presented MLA data in Fig. 2 was about 40s and
could be reduced by nearly an order of magnitude. We have not tried to minimise
the measurement time in this instance as we wanted to keep the time for acquiring
the full spectrum roughly the same for both methods during the evaporative cooling.
The measurement time is limited by the resolution of the frequency comb and the
signal-to-noise ratio. The measurement frequencies of the MLA in multifrequency
mode are not arbitrary, but have to form a frequency comb where all frequencies are
integer multiples of some base frequency A fcomb [19]. The base frequency is used as
a reference frequency in the lock-in amplifier calculations, and in our measurements
its value is determined by the quality factor of the fork or the width of the fork
resonance. For example, a base frequency of 1 Hz would allow for a frequency comb
that contains frequencies which are integer multiples of 1 Hz a minimal frequency
coverage/span of 40 Hz. Such a comb is nearly ideal for a fork in liquid “*He with a
10Hz wide resonance and a quality factor of ~10. The shortest measurement time
tmin = 1/Afcomb 1S inversely proportional to the base frequency and so should be on
the order of 1s for the 1 Hz base frequency.

4 We thank one of the referees for the suggested theoretical justification.
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Fig. 3 The in-phase component of the resonance curve of the 16kHz fork as a function of the MLA
measurement time. The fork was measured in vacuum at room temperature with 20mV excitation on each
of the 40 frequencies. See text for details (Colour figure online)

Figure 3 shows the in-phase component of the resonance curve of the 16 kHz fork
as a function of MLA’s measurement time at room temperature acquired using a comb
of 40 frequencies. The comb had frequency separation of 0.5Hz and was identical
in all of these measurements. The shortest total measurement time needed for this
frequency comb is thus 2s. While the 2 s data are clearly noisier than the rest of the
measurements, it is impressive that a complete resonance curve of the tuning fork
can be acquired in such a short time. Increasing the measurement time to 5s makes
the resonance curve much better defined, while further time increases to 15s and 60s
do not improve the quality of the fit significantly enough to warrant longer waiting
times. Tripling the shortest possible measurement time #ni, of the MLA is a good
compromise between the quality of experimental data and the acquisition time. The
multifrequency measurement time increases as the frequency comb narrows, but the
requirement to have a smaller frequency spacing usually correlates with an increase
in the quality factor of an oscillator. In this situation, the single frequency lock-in
technique also requires longer acquisition times to account for the increased ringdown
time between frequency steps.

3.2 Temperature Dependence of Resonance Properties
We measured the temperature dependence of the resonance frequency and reso-

nance width of the forks immersed in liquid helium in the temperature range from
4.2K down to ~1.5K. The top part of Fig. 4 presents the temperature dependence of
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Fig. 4 Temperature dependence of resonance frequency (fop) and resonance width (bottom) of the 12kHz
fork, obtained from the same measurements. The filled and opened symbols are measured using the frequency
sweep method with the SR830 and the frequency comb approach with the MLA correspondingly. The solid
lines are fits to the data using Eqs. 3 and 4 for the top and bottom parts of the figure, respectively. See text
for details (Colour figure online)

the square of the ratio of resonant frequency in vacuum fy and in liquid helium fy of
the 12kHz fork. The bottom part of Fig. 4 shows the temperature dependence of the
resonance damping width of the fork Af>. The filled and open symbols correspond
to SR830 and MLA measurements respectively, and are in an excellent agreement.
Each point of Fig. 4 was obtained by acquiring a resonance curve for the fork, and
measurements were taken alternatively using the frequency sweep method with the
SR830 and the frequency comb approach with the MLA.

To quantitatively explain our results, we follow the approach and annotation
described by Blaauwgeers et al. [2] and Bradley et al. [10] by assuming that the viscous
penetration depth (~1 pm for both forks) is much smaller than the fork dimensions and
that acoustic damping is negligible at resonance frequencies below 100kHz. In such
case, it is possible to employ the two-fluid model of the superfluid and to obtain the
fork resonance frequency and resonance width using the hydrodynamic contributions
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to the effective mass and Stokes’ drag. The dependence of the resonance frequency in
superfluid helium is given by the following expression:

2
(ﬁ) — 1 ply g S [lent 3)
fu Meff meit V' 77 fo
Here the second term describes the fluid backflow around the fork and is related to
the prong volume V = T W L via a geometric parameter 8, while the third term arises
from the normal component being viscously clamped around the fork. The thickness of
normal fluid clamped to the surface of aprong, S = 2L (T + W), is approximately equal
to the viscous penetration depth and warrants the introduction of another geometrical

factor B. These terms are governed by the densities of the whole fluid py and normal
fluid pyf, respectively. The viscosity n also gives rise to the Stokes’ drag [2]

S [paenfo (fH)2
Afp=C—,|7——=Z"]) , 4
S 2mefr b4 fo @

where C is another geometrical factor of the order of unity.

We treated all three geometrical factors 8, B and C as fitting parameters to compare
our measurements and the hydrodynamic two-fluid model described above. Solid lines
on Fig. 4 are least-square fits using Eqs. 3 and 4 and show good agreement between
the data and the model. We found that the values of geometric parameters were almost
identical for the SR830 and MLA measurements and are summarised as follows:
B =0.1030 £ 0.0004, B = 0.236 £ 0.006 and C = 0.410 £ 0.002.

The frequency fit on the top part of Fig. 4 shows a slight discrepancy at high
and low temperatures. This disagreement can be eliminated by allowing the vacuum
frequency of the fork to become a fitting parameter. In our measurements, the vacuum
frequency fp=11.730kHz was measured in saturated vapour pressure of helium at
1.45K by allowing the superfluid helium level to drop below the fork location. The
fitted vacuum frequency yielded a value of 11.749kHz while the values of 8, B and
C were largely unchanged. The observed discrepancy of the vacuum frequencies is
almost certainly due to conducting experiments in the main bath of the cryostat, and
not in a dedicated cell filled with clean helium. Any impurities contained in helium
transport dewar: water, oil or air molecules would reduce the measured fork frequency
as they would be deposited on a fork and possibly change their position on a fork
with helium level. It is worth noting here that subsequent cooldowns typically showed
slightly different results and the fitting parameters changed on the order of 5-10%
between cooldowns. For identical results and reproducible thermometry, the vibrating
object needs to be placed in a cell that is linked to the main bath of the cryostat via a
filter and the purity of the liquid helium should be controlled.

The results of measurements obtained using the 16 kHz fork are nearly identical to
the results of the 12kHz fork. Table 1 summarises the parameters of both forks and
contrasts them with the parameters of two 75-wm-wide forks that have similar fork
length, the same prong separation and thickness [10].

The value of B, linked to clamping of the normal component, is almost identical
for both types of forks. The geometrical factor associated with the fluid backflow, 8,
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Table 1 Parameters of the resonant properties of tuning forks

Fork fo L w T a x 107 B B c
(kHz) (pom) (vm) (pom) NV~

S3 11.730 2600 25 90 0.91 0.1030 0.236 0411

S4 16.192 2200 25 90 1.18 0.0950 0.243 0.490

W3Sl 6.757 3500 75 90 3.93 0.265 0.253 0.5529

W3LI 22.502 1900 75 90 6.77 0.262 0.272 0.544

The first column of the table contains a fork label, while the second column lists the vacuum frequency of
the fork. The third, fourth and fifth columns show the geometric dimensions of the fork, length L, width
W and thickness T, respectively. The experimental fork constant is presented in the sixth column. The last
three columns of the table show the resulting fitting parameters 8, B and C, which assume the presence of
the hydrodynamic drag only. The two W = 75um quartz tuning forks were previously reported[10]

is reduced by a factor of 2.6-2.8 compared to the wider forks, which roughly agrees
with a factor of three expected from the theoretical expression of 8 = 7w W /16T for a
cantilever beam [2,22]. Our definition of 8 is a quarter of the conventional definition
due to our introduction of the effective mass of the fork. The experimental values of
the 8 are ~50 % larger than the expected theoretical values for a single beam, which is
not unreasonable as forks have a more complicated flow geometry due to the presence
of two prongs that oscillate in anti-phase [2].

The value of constant C is slightly smaller than for larger forks and analysis of
Eq. 4 leads to the conclusion that thinner forks have a higher sensitivity in terms
of the magnitude of the change in resonance width as temperature changes. Let us
consider two forks A and B that have different widths W4 and Wpg, while all other
physical parameters, the length, thickness and distance between prongs, are identical.
The resonance frequency of the fork in vacuum is a function of prong length and its
thickness, and does not depend on the width of the fork [2]. The ratio of the vacuum
and helium frequencies is on the order of unity for both forks and consequently the
ratio of resonance widths of these forks is given below

Af CaSa mly  CaWa+T W
AfE mhd CpSp  Cp Wa W4T

(&)

The right side of this equation shows that the main difference between sensitivi-
ties of two considered forks is governed by a ratio of the fork thickness and width
1 + T/W. For the 75-wm-wide fork this ratio is 2.2, while for 25-um-wide fork
it is 4.6. Substitution of values of the ratios and of parameter C explains the near
doubling of resonance width change with the temperature of the present forks. To
further enhance sensitivity, we would recommend using the thinnest available forks
with shortest lengths or highest resonance frequencies; however, care should be taken
to keep the acoustic damping of forks negligible [10].

4 Conclusions

We have probed properties of liquid *He using custom-manufactured quartz tun-
ing forks in the temperature range from 4.2K down to ~1.5K. The tuning forks
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were excited and detected electro-mechanically simultaneously at 40 frequencies.
Our results show that at low fork velocities the multifrequency and conventional sin-
gle frequency lock-in techniques produce identical resonance curves, and suggest
that tuning forks behave as linear oscillators at low excitation. We find the identical
fork response for both methods fascinating as the fluid flow around the fork is the
superposition of fluid motion at all possible frequencies. The multifrequency lock-in
technique has many applications and benefits: it requires shorter measurement time; it
could be used to study the response of an oscillating object at various harmonics and
the interplay between them and offers the possibility to study more than one vibrat-
ing object at the same time. Furthermore, at high oscillation velocities, the response
in superfluid should become non-linear due to the development of quantum turbu-
lence or cavitation, and the multifrequency lock-in technique will be useful to study
the origins of these phenomena. The temperature dependence of the resonance width
of 25-pm-wide tuning forks shows that the fork damping at low velocities is well
described by a hydrodynamic contribution in the framework of the two-fluid model.
The “He liquid temperature sensitivity of the 25-pm-wide tuning forks is larger com-
pared to similar 75-pm-wide forks and in combination with the faster multifrequency
lock-in technique could be used to improve thermometry in liquid “He by probing
fluid directly and locally. Localised thermometry should be useful in studies of second
sound, co-flow, counterflow turbulence and cavitation.
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