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Abstract Thin films of superfluid 3He were predicted, based on weak-coupling BCS
theory, to have a stable phase which spontaneously breaks translational symmetry in
the plane of the film. This crystalline superfluid, or “stripe” phase, develops as a one-
dimensional periodic array of domain walls separating degenerate B phase domains.
We report calculations of the phases and phase diagram for superfluid 3He in thin
films using a strong-coupling Ginzburg–Landau theory that accurately reproduces the
bulk 3He superfluid phase diagram. We find that the stability of the Stripe phase is
diminished relative to the A phase, but the Stripe phase is stable in a large range of
temperatures, pressures, confinement, and surface conditions.

Keywords Superfluid 3He · Phase transitions · Confined quantum liquids

1 Introduction

The theoretical prediction of a crystalline superfluid, or “stripe” phase, that sponta-
neously breaks translational symmetry in thin films of 3He [1], along with advances
in nanoscale fabrication and experimental instrumentation [2], has renewed interest in
the properties of superfluid 3He in thin films and confined geometries. Recent theo-
retical work on nanoscale cylindrical channels predict several new phases of 3He not
realized in bulk 3He, including the polar phase, two distinct chiral phaseswith different
symmetries, and a periodic domain wall phase that spontaneously breaks translational
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symmetry along the axis of the channel, and is analogous to the predicted Stripe phase
in thin films [3,4]. Experiments to search for these new phases in 100 nm cylindrical
channels are in progress.1 In an exciting development, recent reports of NMR exper-
iments on 3He confined within anisotropic aerogels identify NMR signatures for the
superfluid polar phase [5]. This phase appears to be ideally suited for stabilizing half-
quantum vortices [6]. The combination of disorder and confinement has also led to
new realizations of Larkin–Imry–Ma phases [5,7]. Recently, experiments on super-
fluid 3He under planar confinement have been done on individual, precisely fabricated
slabs, in part to search for the Stripe phase [2]. In the weak-coupling limit of BCS
theory the Stripe phase is predicted to be stable in a large region of temperature and
pressure for films of thickness D ∼ 700 nm. However, the recent experiments on 3He
confined in slabs of thickness D ≈ 700 nm and D ≈ 1080 nm have failed to detect
the evidence of the Stripe phase [2].

A limitation of the Vorontsov and Sauls theory is that it does not include strong-
coupling corrections to the BCS free energy. In bulk 3He, weak-coupling theory
predicts a stable B phase at all temperatures and pressures; however, the A phase
is found to be stable experimentally at Tc and pressures above pPCP ≈ 21.22 bar,
with a first-order transition at TAB < Tc to the B phase. Theoretically, accounting
for the stability of the A phase requires including next-to-leading order corrections
to the full free energy functional, i.e., corrections to the weak-coupling functional
[8]. While these strong-coupling corrections are largest at high pressures, they remain
significant even for p ∼ 0 bar [9]. Thus, for superfluid 3He confined within a film, it
is to be expected that strong-coupling effects will increase the stability of the A phase
relative to both the B- and Stripe phases, which could diminish, or even eliminate, the
experimentally accessible region of the Stripe phase.

In this paper, we report our study of the A-Stripe and Stripe-B superfluid tran-
sitions using a Ginzburg–Landau (GL) functional that incorporates strong-coupling
corrections to the weak-coupling GL material coefficients and accurately reproduces
the bulk superfluid 3He phase diagram [3]. Within this strong-coupling GL theory, we
calculate the superfluid order parameter and phase diagram as a function of pressure,
temperature, confinement, and surface conditions.

2 Ginzburg–Landau Theory

The general form of the p-wave, spin triplet order parameter for 3He is given by the
mean-field pairing self energy, which can be expanded in the basis of symmetric Pauli
matrices (S = 1) and vector basis of orbital momenta (L = 1),

�̂( p̂) =
∑

αi

Aαi (iσασy) p̂i , (1)

where p̂ is the direction of relative momentum of the Cooper pairs defined on the
Fermi surface, and Aαi are the elements of a 3 × 3 complex matrix,

1 W. P. Halperin, private communication.
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A =
⎛

⎝
Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

⎞

⎠ , (2)

that transforms as a vector under spin rotations (with respect to α) and (separately) as
a vector under orbital rotations (with respect to i). We choose aligned spin and orbital
coordinate axes.

2.1 Free Energy Functional

To determine the order parameter and the phase diagram of 3He in a film geometry, we
solve the Euler–Lagrange equations of the GL functional, subject to relevant boundary
conditions, and calculate the order parameter and the stationary free energy. The GL
functional is defined by bulk and gradient energieswith temperature-dependent strong-
coupling corrections, and is supplemented by boundary conditions that we can tune
from maximal to minimal pairbreaking [3].

The GL free energy functional is expressed in terms of invariants constructed from
the order parameter matrix, A, and is given by [10]

�[A] =
∫

V
dR

{
α(T )Tr

(
AA†

)
+ β1

∣∣∣Tr
(
AAT

)∣∣∣
2 + β2

[
Tr

(
AA†

)]2

+ β3 Tr
[
AAT

(
AAT

)∗]
+ β4 Tr

[(
AA†

)2
]

+ β5 Tr
[
AA†

(
AA†

)∗]

+ K1

(
∇k Aα j∇k A

∗
α j

)
+ K2

(∇ j Aα j∇k A
∗
αk

) + K3
(∇k Aα j∇ j A

∗
αk

)}
. (3)

In the weak-coupling limit, the GL material parameters are given by

αwc(T ) = 1
3N (0)(T/Tc − 1), (4)

2βwc
1 = −βwc

2 = −βwc
3 = −βwc

4 = βwc
5 , (5)

βwc
1 = − N (0)

(πkBTc)2

{
1

30

[
7

8
ζ(3)

]}
, (6)

Kwc
1 = Kwc

2 = Kwc
3 = 7ζ(3)

60
N (0) ξ20 , (7)

and determined by the normal-state, single-spin density of states at the Fermi energy,
N (0), the bulk transition temperature, Tc, and the Fermi velocity, vf . The Cooper
pair correlation length ξ0 ≡ h̄vf/2πkBTc varies from ξ0 � 770Å at p = 0bar to
ξ0 � 160Å at p = 34 bar.

2.2 Strong-Coupling Corrections

The fourth-order β parameters that enter the GL free energy functional are modified
by next-to-leading order corrections to the full Luttinger–Ward free energy functional
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Fig. 1 Left Bulk phase diagram with lines showing the measured phase transitions and shading showing
the calculated regions of phase stability based on GL theory. The �βsc

i coefficients are from Choi et al. [9]
and are plotted in the right panel (Color figure online)

[8]. These corrections scale as �βsc
i ∼ βwc

i (T/TF) near Tc. Combining the �βsc
i with

the weak-coupling coefficients in the bulk GL functional yields the critical pressure,
pPCP, above which the A phase is stable relative to the B phase. For p > pPCP the
temperature scaling of the strong-coupling corrections relative to the weak-coupling
β parameters breaks the degeneracy in temperature between the A and B phases at the
critical pressure and accounts for the pressure dependence of the A–B transition line,
TAB(p), and thus an accurate bulk phase diagram [3]. The resulting strong-coupling
β parameters are given by

βi (T, p) = βwc
i (p, Tc(p)) + T

Tc
�βsc

i (p). (8)

Figure 1 shows the experimental bulk superfluid phase diagram as well as the phase
diagram calculated from strong-coupling GL theory using �βsc

i coefficients obtained
based on analysis of selected experiments by Choi et al. [9] These β coefficients differ
substantively from those calculated from strong-coupling theory based on a quasi-
particle scattering amplitude that accounts for the normal Fermi liquid properties of
3He. Figure 2 shows the bulk phase diagram calculated using the�βsc

i from Sauls and
Serene [11]. This set of β coefficients has a higher polycritical pressure than experi-
ment; however, the pressure dependence of the �βsc

i represents the expectation based
on strong-coupling theory dominated scattering from ferromagnetic spin-fluctuations.
Below p = 12 bar, the �βsc

i are extrapolated to zero at a negative pressure corre-
sponding to Tc = 0 [3].

2.3 Boundary Conditions

Confinement is represented in theGL theory through boundary conditions. For infinite,
planar surfaces there are two limiting cases: maximal pairbreaking, due to the retrore-
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Fig. 2 Left Bulk phase diagram where the shaded regions represents the phases calculated from GL theory
with the �βsc

i of Sauls and Serene [11]. These strong-coupling corrections are plotted in the right panel
(Color figure online)

flection of quasiparticles [12], and minimal pairbreaking, corresponding to specular
reflection [13]. For a surface on the x–y plane with 3He filling z > 0, maximal
pairbreaking is defined within GL theory by

Aαi
∣∣
z=0 = 0 ∀i ∈ {x, y, z}, (9)

while minimal pairbreaking is defined by

Aαz
∣∣
z=0 = 0,

∇z Aαx
∣∣
z=0 = ∇z Aαy

∣∣
z=0 = 0. (10)

These boundary conditions may be extended by interpolating between the two
extremes. In particular, Ambegaokar, de Gennes, and Rainer (AdGR) showed that
diffuse scattering from an atomically rough surface leads to a GL boundary condition
in which the transverse orbital components of the order parameter are finite at the
surface, but extrapolate linearly to zero a distance bT = 0.54ξ0 past the boundary.
Thus, we introduce more general boundary conditions defined by

Aαz
∣∣
z=0 = 0,

∇z Aαx
∣∣
z=0 = 1

bT
Aαx

∣∣
z=0

∇z Aαy
∣∣
z=0 = 1

bT
Aαy

∣∣
z=0, (11)

where bT = b′
T ξ0 is the extrapolation length. The parameter b′

T is allowed to vary
from b′

T = 0, maximal pairbreaking, to b′
T → ∞, minimal pairbreaking. The film

geometry consists of two infinite coplanar surfaces separated by a distance D with
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3He filling the region between them. The boundary conditions in Eq. 11 are imposed
at z = ±D/2.

2.4 Extrapolating GL Theory to Low Temperatures

GL theory is only expected to be accurate in the vicinity of Tc. This is easily seen in the
order parameter amplitude,�2 ∼ 1−T/Tc, which varies linearly in T down to T = 0,
whereas the weak-coupling BCS order parameter saturates at low temperatures. In
confined 3He, this difference is reflected in the characteristic length scale for variations
of the order parameter, which in GL theory is

ξGL(T ) =
[
7ζ(3)/20

1 − T/Tc

]1/2 (
h̄vf

2πkBTc

)
. (12)

In weak-coupling BCS theory, the characteristic length scale is

ξ�(T ) = h̄vf√
10�BCS

B (T )
, (13)

which is significantly larger than ξGL(T ) at low temperatures. In order to more
accurately extrapolate the spatial variations of the order parameter, as well as the
confinement phase diagram, to lower temperatures, we rescale the film of thickness in
the GL equations D → D(T ) with

D(T ) = D(Tc)
ξGL(T )

ξ�(T )
, (14)

where D(Tc) = D is the thickness of the film and D(T ) is a rescaled thickness used
within the GL theory calculation. Figure 3 shows the effect of this rescaling on the
weak-coupling GL theory phase diagram for the region of stability of the Stripe phase
in comparison to the Stripe phase region obtained in weak-coupling quasiclassical
theory [1]. Rescaling lengths in the GL theory in terms of ξ�(T ) gives a more accurate
representation of the confinement phase diagram than simple extrapolation of the GL
results to low temperature. The deviations that remain reflect the non-locality of the
quasiclassical theory for inhomogeneous phases for T � Tc.

3 Stripe Phase

The Stripe phase spontaneously breaks translational symmetry in the plane of the film.
We assume it does so along the x axis, leaving the order parameter translationally
invariant along the y direction. Broken translational symmetry leads to a new length
scale, L , which is the half-period of the Stripe phase order parameter; L is an emergent
length scale, which varies with temperature, pressure, film thickness, and the surface
boundary condition, and must be determined by numerical minimization of the GL
free energy in parallel with the self-consistent determination of the order parameter.
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Fig. 3 Comparison of the phase diagrams calculated within weak-coupling quasiclassical theory (blue and
orange lines), weak-coupling GL theory (dashed lines), and weak-coupling GL theory with D rescaled by
ξGL(T )/ξ�(T ) (solid black lines) (Color figure online)

3.1 Order Parameter

The Stripe phase is predicted to be stable in superfluid 3Hefilms of thickness D ∼ 10ξ0
[1]. In weak-coupling theory, this phase appears as a second-order transition between
the Planar and B phases, and for D � Dc2 ≈ 13ξ0, corresponds to a periodic array of
degenerate B phase domains separated by domain walls [1].

For broken translational symmetry along the x axis the residual symmetry of the
Stripe phase is defined by the point group,

H =
{
e, cL2xc

S
2x

}
×

{
e, πL

xyπ
S
xy

}
×

{
e, πL

xzπ
S
xz

}
×

{
e, eiπcL2z

}
×T, (15)

where cL2x is an orbital space π rotation about the x axis, πS
xz is a spin space reflection

about the xz plane, and T is the operation of time reversal. Based on this residual
symmetry group, we can simplify the form of the order parameter for the Stripe phase
to

A(x, z) =
⎛

⎝
Axx 0 Axz

0 Ayy 0
Azx 0 Azz

⎞

⎠ , (16)

where the remaining five components are functions of x and z, and are all real due to
time reversal symmetry.

The spatial dependences of the self-consistent order parameter components for the
Stripe phase at pressure p = 3 bar, T/Tc = 0.5, thickness D = 12ξ0 with specu-
lar surfaces are shown in Fig. 4. Note that the calculated half-period is L ≈ 23.6ξ0,
and that the dominant components are the diagonal elements, Axx , Ayy , and Azz .
The latter exhibits a domain wall separating degenerate B-like order parameters with
sgn(Azz) = ±1. The pairbreaking of Azz on the boundaries is alleviated by the large
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Fig. 4 Stripe phase order parameter for specular surfaces as functions x and z for D = 12ξ0, p = 3 bar,
T = 0.5Tc, and calculated period L ≈ 23.6ξ0. The amplitudes are scaled in units of the bulk B phase order
parameter, �B = √|α(T )|/6(β12 + 1/3β345) (Color figure online)
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Fig. 5 Energy density of the Stripe phase with specular surfaces for D = 12ξ0, p = 3 bar, T = 0.5Tc,
and calculated period L ≈ 23.6ξ0. The energy density f is scaled by the unconfined bulk energy density
fB = 1

2α(T ) �B (T )2 < 0, and is also shown separated into bulk and gradient contributions (Color figure
online)

off-diagonal component, Azx , at the junction with the domain wall. The remaining
symmetry allowed amplitude, Axz , clearly exhibits the symmetry with respect to
cL2xc

S
2x , but is smaller by an order of magnitude.

The stability of the Stripe phase results from a tradeoff between the lowering of
the energy at junctions where the surfaces intersect the domain wall (note the gradient
energy in Fig. 5) and the cost in energy, away from the film surface, due to the sup-
pression of the order parameter along the domain wall. The total condensation energy
density, with separate bulk and gradient energy densities, is shown in Fig. 5.

3.2 Variational Model

The magnitude of the half-period of the Stripe phase, L , is most easily determined
using a variational form of the order parameter; L is a minimum at the Stripe–Planar
transition and diverges at the Stripe-B transition. At the Stripe–Planar transition, and
for specular boundaries, L may be derived from the variational order parameter,

A(x, z) =
⎛

⎝
�xx 0 0
0 �yy 0
Azx 0 Azz

⎞

⎠ , (17)

where Azx = −�zx cos(πx/L) sin(π z/D) and Azz = �zz sin(πx/L) cos(π z/D).
At the Stripe–Planar transition, we assume that
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�yy = �xx , �zx � �xx , and �zz � �xx . (18)

After spatially averaging and dropping terms greater than second order in �zx and
�zz the resulting GL functional reduces to,

Fvar = 2α�2
xx + 4βP�4

xx − π2K23�zx�zz

2DL

+ �2
zx

{
α

4
+ βP�2

xx + π2
(
K123D2 + K1L2

4D2L2

)}

+ �2
zz

{
α

4
+ β12�

2
xx + π2

(
K1D2 + K123L2

4D2L2

)}
, (19)

where βi jk... = βi + β j + βk + · · · , Ki jk... = Ki + K j + Kk + · · · , and βP =
β12 + 1/2β345 determine bulk free energy of the Planar phase. Minimizing Fvar with
respect to �2

xx gives,

�2
xx = |α|

2βP
− �2

zx

8
− �2

zzβ12

8βP
. (20)

The reduced free energy functional then simplifies to

Fvar = − α2

4βP
− π2K23�zx�zz

2DL

+ �2
zx

{
π2

(
K123D2 + K1L2

4D2L2

)}

+ �2
zz

{
α

(
βP − β12

4βP

)
+ π2

(
K1D2 + K123L2

4D2L2

)}
. (21)

The last three terms in Eq. 21 determine when non-zero values of �zx and �zz are
favorable and the Stripe–Planar instability occurs. At the instability

α(T ) = − π2βP

D2L2(βP − β12)

{
− 2DLK23

(
�zx

�zz

)

+
(
D2K123 + L2K1

) (
�zx

�zz

)2

+ (D2K1 + L2K123)

}
. (22)

Minimizing Fvar with respect to the ratio �zx/�zz gives

�zx

�zz
= DLK23

D2K123 + L2K1
. (23)

Combining Eq. 23 with Eq. 22 yields the Planar–Stripe instability temperature, TPS, as
a function of D and L . Optimizing TPS with respect to the Stripe phase period yields,
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Fig. 6 Temperature and pressure dependence of the wavenumber Q for film thicknesses D = 11 ξ0, with
no Stripe to B transition (left panel), and D = 11.5 ξ0, with a Stripe to B transition (right panel). The onset
of the Stripe transition is based on the Planar–Stripe instability, i.e., omitting the A phase (Color figure
online)

L =
√

K123

|K23 − K1| D, (24)

which for weak-coupling values of K1, K2, and K3, reduces to L = √
3D.

Although the Planar to Stripe transition is interrupted by a first-order transition
to the A phase, the Stripe–Planar instability determines the scale of the half-period,
L , and the temperature region where the Stripe phase is expected to be stable. The
half-period defines the wavenumber, Q0 = π/

√
3D, of the single-mode instability at

TPS. The wavenumber varies with the film thickness, D, and temperature. Figure 6
shows the temperature dependence of Q for two values of the film thickness starting
from the Planar to Stripe instability at TPS, i.e., omitting the A phase. The stability of
the A phase relative to the Planar phase changes the Stripe instability to a first-order
transition at a lower temperature TAS. For D = 11 ξ0, the stable region of Stripe phase
persists to T = 0, while for D = 11.5 ξ0 there is a Stripe to B phase transition at a
temperature, TSB < TPS. In both cases, the wavenumber decreases (L increases) as T
drops below TPS, with Q → 0 (L → ∞) as T → TSB. Strong-coupling corrections to
the free energy lead to a modest increase the period of the Stripe phase away from the
Stripe to B transition; however, the transition temperature, TSB, is sensitive to pressure
(strong-coupling) as shown in the right panel of Fig. 6.

4 Stripe Phase Stability

The most prominent effect of strong-coupling corrections to the weak-coupling BCS
theory in bulk superfluid 3He is the stability of the A phase above pPCP = 21.22 bar. In
sufficiently thin films, the A phase is energetically stable relative to the B phase even in
weak-coupling theory, and is degenerate with the Planar phase [1,14]. Strong-coupling
corrections favor the A phase over the Planar phase, leading to a stable A phase in thin
films at all pressures. Since the Stripe phase can be understood as a periodic array of
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Fig. 7 Pressure–temperature-confinement phase diagram for thefilmwithminimal pairbreakingboundaries
and experimental strong-coupling corrections. The A phase is stable everywhere not excluded by the Stripe
and B phases (Color figure online)

degenerate B phase domains separated by time-reversal invariant domain walls, one
expects strong-coupling to favor the A phase near the Planar–Stripe instability line.
Indeed, the A phase suppresses the Planar to Stripe instability temperature. However,
the Stripe phase is found to be stable over a wide range of temperatures and pressures.

Figure 7 shows the phase diagram for minimal pairbreaking (specular) surfaces at
pressures from 0 to 12 bar, with the Stripe phase onsetting at temperatures above 0.5Tc.
The accuracy of the strong-coupling GL theory is expected to diminish at very low
temperatures; therefore, we show results for low and intermediate pressures for which
the A- to Stripe transition onsets above 0.5Tc. Note that at T = 0 the strong-coupling
GL corrections vanish, and the phase boundaries are determined by weak-coupling
theory at T = 0 and thus pressure independent. This is an artifact of the temperature
scaling of the strong-coupling GL parameters. It is known that there are residual
strong-coupling corrections at the few percent level in the limit T = 0 [15].

A striking difference between the two sets of strong-coupling β parameters shown
in Figs. 1 and 2 is evident at low pressures. The �βsc

i from Choi et al. [16] are non-
monotonic between p = 0 and p = 12 bar, which leads to maximal stability of the
Stripe phase at p ≈ 3 bar. In contrast, the theoretically calculated strong-coupling
corrections are monotonic functions of pressure and predict maximal stability of the
Stripe phase at p = 0 bar and decreasing stability with increasing pressure.

4.1 Pressure–Temperature Phase Diagram

Although a number of experiments have been reported on superfluid 3He in planar
geometries, of particular interest are those involving slabs of thickness D ≈ 700 nm
and D ≈ 1080 nm, which are in the range of confinement where the Stripe phase is
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Fig. 8 Pressure–temperature phase diagram for a film of thickness D = 700 nmwithminimal pairbreaking
(specular) boundary conditions. The A phase is stable everywhere in the white region below the bulk
transition temperature. The larger yellow circles are data for the A–B transition based on NMR from
Levitin et al. obtained with 4He preplating [2] (Color figure online)

expected to be stable. Levitin et al. [2] (RHUL group) used transverse NMR frequency
shifts to determine transition temperatures in these cells. They did not find NMR
evidence of the Stripe phase. These experiments were done both with and without
preplating the surfaces of the slab with 4He, the presence of which greatly increases
the specularity of the surface.Without the 4He present, the RHUL group reported large
suppression of the onset of the superfluid transition—a suppression larger than that
predicted theoretically for maximally pairbreaking retro-reflective surface scattering.
The explanation or origin of this anomalous suppression is currently lacking. Thus,
we focus on the measurements done with 4He preplating, which exhibit minimal Tc
suppression, and may be modeled theoretically with minimal pairbreaking boundary
conditions (specular scattering).

Calculations of the phase diagram for D = 700 nm are shown in Fig. 8. The A
phase onsets at the bulk Tc. There is an A- to Stripe transition followed by the Stripe
to B transition. For both sets of strong-coupling β parameters, the Stripe phase is
predicted to be stable at low pressures and at experimentally accessible temperatures.
Although the stability of the A phase is maximal with specular boundary conditions,
the calculated A–B or A–S phase transition occurs at significantly higher temperature
than that reported by the RHUL group. The discrepancy is sufficiently large that it is
well outside uncertainties in the magnitude of the strong-coupling parameters based
bulk A- and B phase free energies. Based on our calculations accessing the Stripe
phase would be optimal for pressures between p = 1 and p = 1.5 bar.

For the thicker slab geometry, D = 1080 nm, shown in Fig. 9, the Stripe phase
is predicted to have a negligible region of stability in the pressure-temperature plane
based on the β parameters fromChoi et al. [16], and only a small window of stability at
the lowest pressures based on the theoretically calculated strong-coupling parameters.

4.2 Effects of Surface Boundary Conditions on the Phase Diagram

We use the variable boundary conditions in Eq. 11 to investigate the sensitivity of
the Stripe phase to surface disorder. Figure 10 shows the temperature-confinement
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Fig. 9 Pressure–temperature phase diagram for afilmof thickness D = 1080nmwithminimal pairbreaking
boundaries. The A phase is stable everywhere not excluded by the Stripe and B phases (Color figure online)

Fig. 10 Temperature-confinement phase diagram for films at p = 3 bar with the Choi et al. strong-
coupling corrections. Results for three boundary conditions are shown: minimal pairbreaking, b′

T → ∞
(solid); diffuse, b′

T = 0.54 (dashed); and maximal pairbreaking, b′
T = 0 (dotted). For diffuse and maximal

pairbreaking, the suppression of the A to normal phase transitions is also shown (Color figure online)

phase diagram at p = 3 bar for maximal (b′
T = 0), diffuse (b′

T = 0.54), and min-
imal (b′

T = ∞) pairbreaking boundary conditions. Maximal stability of the Stripe
phase occurs for minimal pairbreaking, i.e., specular surfaces, as shown by the blue
region of stable Stripe phase. Note that for diffuse scattering the region of Stripe
phase stability does not differ significantly from that for specular boundary scattering.
Conversely, for maximal pairbreaking the Stripe phase exists only in the vicinity of
T = 0.
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5 NMR Signatures of the Stripe Phase

Nuclear magnetic resonance (NMR) spectroscopy of the 3He order parameter is based
on resonance frequency shifts originating from the Cooper pair contribution to the
nuclear magnetic dipole energy, ��D = ∫

V d3r fD[A], which evaluated to leading
order in A is

fD = gD
(
|Tr A|2 + Tr AA∗)

, (25)

where gD = χ

2γ 2 �
2
A/�2

A is the nuclear dipole coupling; γ is the 3He nuclear gyro-

magnetic ratio; χ is the nuclear magnetic susceptibility of normal 3He; and �A is the
A phase longitudinal NMR resonance frequency. The dipole energy, of order gD�2

A,
lifts the degeneracy of relative rotations of the spin- and orbital state of the Cooper
pairs.

NMR spectroscopy is based on the NMR frequency shift, �ω = ω −ωL , resulting
from the dipolar torque acting on the total nuclear magnetization. The shift depends in
general on the orientation of the NMR field, H, the initial tipping angle, β, generated
by the r.f. pulse, and particularly the spin- and orbital structure of the order parameter.
We use the reduction of Leggett’s theory of NMR in 3He proposed by Fomin [17],
valid for intermediate magnetic fields, �A � ωL � �, where ωL = γ H is the
Larmor frequency [17]. The key approximation is the first inequality which provides a
separation of “fast” and “slow” timescales for the spin dynamics. The second inequality
allows us to neglect the deformation of the order parameter by the Zeeman field.
Similarly, for inhomogeneous states we use the separation of length scales for spatial
variations of the Stripe phase, of order L ∼ D ≈ 1µm, both small compared to the
dipole coherence length, ξD ≡ √

gD/K1 ≈ 20µm. The spin degrees of freedom of
the order parameter cannot vary on length scales shorter than the dipole coherence
length ξD . Thus, for L � ξD the nuclear spin dynamics is determined by the spatially
averaged dipole energy. An exception to this spatial averaging occurs near the Stripe-
B transition where the period of the Stripe phase diverges. In this limit the dipolar
energy varies on sufficiently long spatial scales that the spin dynamics is determined
by a spatially varying dipolar potential. Combined with Fomin’s formulation, the
separation in scales for spatial variations of the orbital and spin components of the
order parameter allows us to calculate the non-linear NMR frequency shifts for the
inhomogeneous phases of the thin film as described in Ref. [3].

5.1 Translationally Invariant Planar-Distorted B Phase

For non-equal-spin pairing (non-ESP) states, e.g., the polar distorted B phase or the
Stripe phase, the nuclear magnetic susceptibility, χ , is suppressed relative to that of
normal 3He, χN . For all non-ESP phases, including the Stripe phase, the susceptibility
can be expressed as

χB = χN

1 + 2 gz/χN (〈�2
zx 〉 + 〈�2

zz〉)
. (26)
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For a non-ESP superfluid phase of a 3He film with the magnetic fieldH||z, for both
the B and Stripe phases, there are two possible dipole orientations corresponding to
different local minima in the dipole energy [18]. The first orientation is a minimum
of the dipole energy and has positive frequency shift, which following Levitin et al.
we denote as the B+ state in the case of the translationally invariant B phase. The
frequency shift for the B+ state is obtained as

ω�ω+ = γ 2

χB
gD

×
⎧
⎨

⎩

〈
A2
xx

〉2−〈Axx Azz〉2
〈A2

xx〉 + 2
( 〈Axx Azz〉2〈A2

xx〉 − 〈
A2
zz

〉)
cosβ, cosβ ≥ cosβ∗,

− 〈
A2
xx

〉 − 〈Axx Azz〉 − 2
〈
(Axx + Azz)

2
〉
cosβ, cosβ < cosβ∗,

(27)

where 〈...〉 = (1/V )
∫
V d3R . . . denotes spatial averaging, and

cosβ∗ = 1

2

(
〈Axx Azz〉 − 2

〈
A2
xx

〉

〈Axx Azz〉 + 〈
A2
xx

〉
)

(28)

is the critical angle [19].

Axial symmetry of the Planar-distorted B phase implies
〈
A2
yy

〉
= 〈

A2
xx

〉
; thus, only

〈
A2
xx

〉
,

〈
A2
zz

〉
, and 〈Axx Azz〉 are non-zero. This NMR resonance is analogous to the

Brinkman–Smith mode in bulk 3He–B, but with a positive frequency shift at small
tipping angle and a shifted critical angle. The translationally invariant, but metastable,
B− state corresponds to a minimum of the combined dipole and Zeeman energies, and
has a frequency shift given by [19]

ω�ω− = γ 2

χB
gD

{
−

(〈
A2
xx

〉
+ 2

〈
A2
zz

〉)
cosβ

}
. (29)

This mode has a negative frequency shift at small tipping angles and, unlike the
B+ state, has no critical angle, and therefore no deviation from cosine tipping angle
dependence. This state is metastable in the high-field limit, but unstable when the
Zeeman energy is comparable to the dipole energy. (See also Ref. [20].) The tipping
angle dependences of both Planar-distorted B phase states are shown in Fig. 11 plotted
as a functionof cos β. Thepositive (negative) shift at small tipping angle is the signature
of the B+ (B−) state in the NMR spectra of the RHUL group [2]. These identifications
are confirmed by non-linear NMR measurements [19] showing both the pure cosine
tipping angle dependence of ω�ω for the B− state, and the “kink” in the shift at the
critical angle β∗ for the B+ state. Note that for D = 12ξ0 at p = 3 bar there is a small
slope to the positive shift for cosβ > cosβ∗.
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Fig. 11 Transverse NMR frequency shifts as a function of tipping angle β at D = 12ξ0, p = 3 bar, and
T = 0.5 Tc, with minimal pairbreaking for the B± and S± states (Color figure online)

5.2 Non-linear NMR Shifts for the S± Stripe Phases

The breaking of both translational and rotational symmetry in the plane of the film by
the Stripe phase leads to a qualitatively different transverse NMR frequency shift for
the Stripe phase with relative spin–orbit rotation corresponding to a minimum of the
dipole energy, i.e., the S+ state,

ω�ω+ = 1

2

γ 2

χB
gD

{ 〈
(Ayy + Axx )

2
〉

−
[〈

(Ayy − Axx )
2
〉
+ 8

〈
A2
zz

〉
− 4

(〈
A2
xz

〉
+

〈
A2
zx

〉)]
cosβ

}
. (30)

The S+ phase is distinguished with respect to both the bulk B phase and the Planar-
distorted B+ phase by the absence of a critical tipping angle. This results from spatial
averaging over the period of the Stripe phase which contains equal volumes of Azz > 0
and Azz < 0 giving 〈Axx Azz〉 = 〈Ayy Azz〉 = 0.

By contrast the frequency shift of the metastable S− phase does not differ substan-
tially from that of the B− phase,

ω�ω− = 1

2

γ 2

χB
gD

{ 〈
(Ayy − Axx )

2
〉
(1 + cosβ)

−
[
2

〈
A2
xx

〉
+ 2

〈
A2
yy

〉
+ 8

〈
A2
zz

〉
− 4

(〈
A2
xz

〉
+

〈
A2
zx

〉)]
cosβ

}
. (31)

Note that the constant term in the shift for the S− state proportional to the average〈
(Ayy − Axx )

2
〉
is absent for the B− state; however, this constant shift is negligibly

small. Figure 11 shows the comparison between the translationally invariant B± NMR
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shifts and those for the corresponding stable and metastable S± Stripe phases. The
primary NMR signature of the Stripe phase is the positive shift with an offset, a finite
slope and the absence of critical angle. This signature clearly differentiates the S+
phase from the B± states and the A phase.

6 Summary and Outlook

By formulating a GL theory that incorporates pressure and temperature-dependent
strong-coupling corrections, combined with temperature-dependent rescaling of the
confinement length, D, we have greatly expanded the region of applicability of GL
theory for calculations of the properties of confined superfluid 3He. Strong-coupling
corrections expand the region of stability of the A phase and decrease the region
of stability of the Stripe phase; however, the Stripe phase remains stable in a large
region of pressure, temperature, and confinement. The stability of the Stripe phase
is insensitive to diffuse surface scattering; the phase diagram for specular and fully
diffusive scattering predicts the Stripe phase to occur in nearly equivalent regions
of the phase diagram. Non-linear NMR measurements are probably the best means
of detecting the Stripe phase. The NMR signatures—positive shift with no critical
angle—differentiate the S+ phase from the B± and A phases.
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